A Virtual Reality Cookbook

Jean-Francis Balaguer
Enrico Gobbetti

Computer Graphics Laboratory
Swiss Federal Institute of Technology
CH-1015 Lausanne, Switzerland

E-MAIL: {balaguer|gobbetti}@di.epfl.ch

A Virtual Reality Cookbook

Introduction
Temporal-spatial realism
Sensory feedback
The VB2 system

A Virtual Reality Cookbook
Virtual Reality

Goal

- Convince the participants that they are in another place

Virtual Reality

Technique

- Participants' sensory inputs are replaced with synthetic information
- Participants are put in the loop of a real-time simulation
Virtual Reality

Motivation

- Participants' tasks are shifted from cognitive to perceptual activities
- The correlation between manipulation and effect on manipulated information is increased

Participants can concentrate on application tasks

Needs

- Input devices
 - Sense participants' motion
- Output devices
 - Replace participants' sensory input
- Reactive applications
 - Immediate response to participants' action
 - Simulation of the virtual world
The Reactive Engine

Reactive applications are not a new idea:

- Ivan Sutherland, 1965
- Alan Kay, 1969

Modern interactive systems are based on these concepts

- The DeskTop is a virtual environment!
The DeskTop Virtual Environment

Input device (mouse)
- 2D motion sensing

Output device (screen)
- 2D image, visual feedback

Direct manipulation
- Continuous two-way man-machine communication
- Physical metaphors, visibility of operations
DeskTop: A 2D world!

The manipulation of 3D information requires a 3D interface!

Teleoperation
Synthetic Environment

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti
3D Virtual Environments

Same basic reactive model as for 2D applications, but:

- Need for temporal-spatial realism
- Need for new input devices
 - 3D motion sensing
- Need for new output devices
 - Depth cues to help 3D perception
- Need for new interaction metaphors
 - Manipulation of 3D information

3D Virtual Environment

- Head tracking for viewpoint specification
- Hand tracking for manipulation
Tracking

Polhemus IsoTrak

- Absolute position and orientation tracking
- Magnetic tracker
- Update rate
 - 60 Hz with one sensor
- Accuracy
 - decreases with sensor-emitter distance
 - at 75 cm from source
 - 0.63 cm in translation
 - 0.85° in orientation

Hand Measurement

DataGlove

- Polhemus tracker
- Finger flexion sensors
 - 5° resolution
- Update rate
 - Finger data: 60 Hz
 - Finger and transform data: 30 Hz
Temporal-Spatial Realism

VR requires correspondence between participants' motion and sensory feedback.

Noise and delay

Noise and delays cause temporal-spatial distortion.
Polhemus Isotrak Noise

Polhemus Isotrak Delays

- Measurement: 80-150 ms
- Transmission (IPC): 10-50 ms
- Processing and feedback generation delays are dependent on the application
Temporal-Spatial Distortion

Noise in sensor data
- Jittering of images

Accumulation of delays
- Lag between participants' motion and sensory feedback

VR Application

Motion Sickness
Difficulty in performing participants' tasks
Temporal-Spatial Realism

Noise reduction techniques

• Use better trackers
• Smoothing

Delay reduction techniques

• Speed-up applications
 - Faster trackers
 - Faster machines
 - Parallel processing (pipe-line)
• Prediction

Noise and delay reduction

• Simple low-pass filters increase delays
• Simple predictors increase noise

Noise and distortion have to be handled together
Optimal Estimation

Kalman Filter

Optimal linear estimates of the state of dynamic models

- Maximum likelihood estimates for Gaussian noises
- Weighted least square estimate for non-Gaussian noises

Can be used to predict future values of the state vector
System model

System model

\[X_{t+\Delta t} = f(X_t, \Delta t) + \xi(t) \]
\[f \text{ models the dynamic evolution of the state vector } X \]
\[\xi \text{ is a white noise process} \]

Observation model

\[Y_t = h(X_t, \Delta t) + \eta(t) \]
\[h \text{ models the measurement process} \]
\[\eta \text{ is a white noise process} \]
\[Y \text{ consists of the sensor readings} \]

Kalman Filter

\[\hat{X}_t = X_t^* + K_t \left[Y_t - h(X_t^*, \Delta t) \right] \]
\[K_t \text{ is the Kalman gain} \]

\[X_{t+\Delta t}^* = X_t^* + f(X_t^*, \Delta t) \Delta t \]

- The Kalman gain determines the influence of the residual in updating the estimate
Kalman Filter

Filter design steps

- Choose state variables
- Define the random process models
 - System process
 - Observation process
- Find optimal values of the model parameters
 - Measure device noise
 - Minimize filter's error on training data

Kalman Filter: Problems

Humans are not simple dynamic processes

- Their behavior is variable and depends on the tasks

Modeling human behavior with a state equation is difficult
Modeling Complex Behavior

Participant’s behavior is modeled by a state machine

- Each state represents a particular well-defined behavior
 - looking-around, observing, manipulating, etc.
- Each state has its own filter
- The correct filter is chosen based on the prediction error

Multiple Filters
Feedback Synchronicity

VR requires feedback synchronization

To obtain feedback synchronicity

- Compute longer output generation delay
- Use longest delay for input prediction
- Compensate difference in output delays by using lead times
VR Application

Sensory Feedback

VR systems must provide information on the virtual world through sensory feedback

- Visual feedback
- Sonic feedback
- Force feedback
- Tactile feedback
Visual Feedback

Feedback must match human vision capabilities
 • Should provide cues for depth perception

Depth Perception

Shading and Shadows
 • Help reconstruction of shapes

Parallax/Relative Motion
 • Perceived image changes when the viewer changes position

Binocular disparity
 • Images perceived by left and right eyes for a given point differ in their horizontal position
Depth Perception

Perspective
- Far objects appear smaller than close objects

Occlusion
- Far objects are hidden by closer objects on the line of sight

Convergence
- Coordinated rotation of eyes when focusing on an object in space

Accommodation
- Muscular tension needed to adjust the focal length of the crystalline lens to focus on an object in space
Standard Interactive Displays

Limited Depth Cues
- Perspective
- Hidden surface removal
- Basic shading

Stereo Graphics Displays

Binocular disparity
- Compute the left and right images from different positions

Head tracking
- Allows the simulation of relative motion

Fixed accommodation
- Decoupled accommodation and convergence
Computing Stereo Pairs: Generalities

Horizontal parallax
Vertical parallax
Rotations and Perspective
Translations and perspective

Horizontal Parallax

Homologous points of P

P

P0

R

Horizontal Parallax

L

Projection Plane

A Virtual Reality Cookbook

J.F. Balaguer, E. Gobbetti
Horizontal Parallax

![Diagram of horizontal parallax](image)

Horizontal Parallax Properties

![Diagram of horizontal parallax properties](image)
Vertical Parallax

Definition

- Difference between the vertical coordinates of homologous points

Causes difficulties for image fusion

Rotations and Perspective

Motivation

- Rotate scene around Y axis to simulate eye convergence
Rotations and Perspective

Problem
- Introduces non constant vertical parallax

![Diagram showing vertical parallax between two viewpoints L and R.](image1)

Rotations and Perspective

Problem
- Non planar stereo window introduces distortion

![Diagram showing stereo window, center of rotation, and projection plane.](image2)
Translations and Perspective

Use two centers of projection
Properties
- No vertical parallax
- Stereo window is planar and coincides with projection plane

Hardware configuration

Fixed displays
- CrystalEyes

Head mounted displays
- EyePhones
Cristal Eyes/Cristal Eyes VR

Fixed Displays - Head Tracking

The screen is a window on the virtual world

- Window is fixed in space
- Software must precisely model hardware configuration
- Software must take into account user's IPD
Fixed Displays - Head Tracking

Tracking

- Software must take into account observer's motion
- Viewing volumes must be recomputed continuously

Fixed Displays - No Head Tracking

Parallax changes with head motion

Distortion caused by head motion and fixed horizontal parallax
Head Mounted Display

EyePhones

- Non see-through HMD
- Polhemus magnetic tracker
- LCD screens
 - 210x140 color pixels
- LEEP optics
 - Horizontal field of view (FOV)
 Single eye: 75°, Overlapped: 60°, Binocular 90°
 - Vertical field of view: 58.4°
The VB2 System

Goals

- Provide a basis for constructing VR applications
- Allow experimentation of 3D interaction techniques
System Structure

Group of continuously running processes producing and consuming IPC messages

Input Processes

- Encapsulation of input devices
 - DataGlove, SpaceBall, Head Tracker
- Filtering of device data
- Generation of event messages at specified rates
Output Processes

- Encapsulation of output devices
 - Rendering on graphics workstations, MIDI output, playback of prerecorded sound
- Output is triggered by messages from the application process

Application Process

- Simulation of the evolution of the synthetic world
 - Immediate response to events from input processes
 - Must ensure world’s model coherence
- Providing of interaction metaphors
- Generation of appropriate sensory feedback
Interactive Behavior

- The virtual world model is updated in response to events coming from input processes
- A change propagation mechanism is responsible of obtaining a coherent evolution

Change Propagation

Expressiveness
- should allow the specification of general dependencies between objects
 - multi-way relationships
- should permit triggering of output operations

Efficiency
- should ensure the responsiveness of the interface
Change Propagation

Constraint Imperative Programming

- Constraints are used to maintain relationships between objects
 - Declarative
- All computation is performed by constraints
 - Assignment is also a constraint
- The evolution of the model is obtained by adding or removing constraints
 - Imperative

Dynamic Model

Components

- Active Variables
 - store the state of the system
- Hierarchical Constraints
 - declaratively represent multi-way relationships between active variables (introduced in ThingLab II, 1987)
- Daemons
 - react to variable changes for imperatively sequencing between system states
Active Variable

Primitive element storing the system state

- Maintains its value
- Maintains a list of dependents
- Keeps track of its state changes
- Can maintain the history of its past values

Only constraints can modify a variable's value

Hierarchical Constraint

Specifies a multi-way relation between active variables

- Declarative part
 - the set of constrained variables
- Imperative part
 - the set of methods that could be used to enforce the constraint
- Priority
 - defines the order in which constraints need to be satisfied in case of conflict
Daemon

Allows the execution of imperative code when a variable changes value

• Declarative part
 - the set of variables that trigger the daemon’s execution

• Imperative part
 - the code that has to be executed when a variable change

Variable Path

Symbolic expression of an active variable's location as a function of other variables

• Example
 - Upper_global_transf:= (parent.global_transf or else identity_transf)

• Allows the definition of indirect constraints and daemons
Dynamic Model

- State: active variables
- Behavior: constraints

State Manager

Tasks

- Keep the constraint network up-to-date
- Trigger daemon execution
- Maintain indirect paths and variables' history
State Manager

Primitive Operations

- Activation and deactivation of constraints
- Updating of the constraint graph
- Activation and deactivation of daemons
- Registering of dependencies

Constraint Satisfaction

- SkyBlue algorithm (Sannella, 1993)
 - Local propagation
 - Heuristic search of the best constraint graph
 - Method selection purely based on constraint priorities
 - Limited to acyclic constraint graphs
 - Separate planning and evaluation phases
- Lazy evaluation
Model Evolution

Interaction

- Mapping between sensor measurements and actions in the virtual world
- Defined using constraints and daemons

Direct Model Manipulation

- Interaction constraints relate sensors’ active variables to variables in the model
Adaptive Pattern Recognition

Enhances data coming from sensors with classification information

- The mapping is learned from examples
- Increases device expressiveness
- The mapping can be adapted to preferences of the user

Augmented Device Interface

- The adaptive pattern recognizer is a constraint
Recognition Techniques

Recognition steps

- Preprocessing
 - Filtering, accumulation
- Extraction of a feature vector
 - Features reduce variability within a class and enhance separation between classes
- Classification
 - Comparison with examples: parametric and non-parametric statistical classification, neural networks

Hand Gestures

Hand posture and gesture recognition

- Important mean of non-verbal communication
- Allows the simultaneous specification of categorical and quantitative information
Hand Posture Classification

- A posture is a stable hand configuration

A Virtual Reality Cookbook J.F. Balaguer, E. Gobbetti

Hand Gesture Classification

- A gesture is a path of the hand done while maintaining the fingers in the same posture

A Virtual Reality Cookbook J.F. Balaguer, E. Gobbetti
Hand Gesture Examples

Creating a cylinder by gestural input
Grabbing the cylinder through posture recognition

Virtual Tools

Motivation

- Gestural input and direct manipulation
 - Partial solutions to the interaction problem
 - Participant must know what can be manipulated and how to manipulate it
- Mediator objects
 - Help understand a model's behavior and interaction metaphors
 - Present a selective view of model's information
 - Offer the interaction metaphor to control it
Virtual Tools

First class objects
Encapsulation of visual appearance and behavior

Visual Appearance

Goals
• Provide information about the tool's behavior
• Offer visual semantic feedback during manipulation

Representation
• Articulated structure
Behavior

Goals

- Maintain consistency between visual appearance and manipulated information
- Allow information editing through a physical metaphor

Representation

- Internal constraint network

Virtual tools

Multiple tools

- Manipulation of different parts of model's information
- Manipulation of same parts of model's information with different interaction metaphors
Virtual Tool Protocol

- Binding
 - Bound active variable
 References the manipulated model
 - Binding constraints
 Multi-way relations
 Use indirect path to reference model's variables
- Second order control
 - ensure simultaneous activation/deactivation of binding constraints

Manipulation

Physical metaphor

Elementary manipulations

- Gestural input
 - initiate and terminate manipulation
 selection/deselection of tool's parts
 activation/deactivation of a motion control constraint
- Information transformation
 - Device sensor values propagate through the tool's constraint network
 - Participant's motion results in model's information changes
Example of Tool: Dr. Plane

Composite Tools

Tool's composition

- Definition of more complex tools
 - reuse of abstraction
- Enforce interface consistency
 - rapid perception of possible actions
Examples of Composite Tools

![Composite Tools Images]

VB2

Implementation and results

- Object-Oriented, written in Eiffel, composed of more than 500 classes
- Runs on Silicon Graphics workstations
- Complex applications with thousands of variables and constraints can run at interactive speeds
Back To The Future

"The ultimate display would, of course, be a room within which a computer can control the existence of matter. (...) With appropriate programming such a display could literally be the Wonderland into which Alice walked".

- Ivan Sutherland, The Ultimate Display, 1965.