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1 Introduction

Coupling fluid and structure equations is not a simple task, specially when the
fluid is considered incompressible. A first problem is that the main variable is
not the same at the interface for the fluid and the structure. The main fluid
variable is its velocity while the main structure variable is its position. Moreover
the coupling is essentially done by equalizing the dual stress variable, which is
essentially the pressure which acts as a Lagrange multiplier for the incompress-
ible fluid equation. Both side of the interface are evolving with different and
incompatible laws so it is impossible to satisfy at the same time and all the
time the equality of all the relevant quantities: position, velocity, acceleration
and normal stress. This work is an improvement and in direct continuation of
Jaubert & Moreau (1997) ([3]) with essentially the same notations. In this pa-
per, we will try to use the fluid pressure indetermination and the fluid evolution
algorithm to match the evolution of the interface.

2 Continuous equations

The continuous fluid equation is given by:
{

∂tu + (ui − ci)∇iu − ν∆u + ∇P ) = 0
div(u) = 0

(1)

Where u is the ALE fluid velocity, i. e. the fluid velocity at a location moving
with velocity c, and P is the pressure, normalised with the fluid density. The
equation is valid on an evolving domain Ω(t). The structure equation is of the
form:

η′′ + αη′ + κη = γP (2)

where η is the displacement of the structure, η′ its velocity and η′′ its accelera-
tion. The displacement is supposed small and normal to the boundary. Changes
of the normal with the displacement are neglected.
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The interface condition reads:

u.n = η′ (3)

with n the unitary vector normal to the fluid boundary and externally oriented.
Another hidden condition is that the boundary of the fluid lies on on the one-
dimensional structure. Normally the right-hand-side of (2) should have a viscous
stress component. We neglect it here to simplify the discussion.

3 Effects of the fluid algorithm

The advancement in time of the fluid part is done by a splitting method coupled
with the ALE formulation. In fact, one time step is thought to be solved over a
moving domain, but the velocity of the boundary is taken constant in time over
the time step. So, if the boundary velocity changes, the change is approximated
by a function which is discontinuous in time. If the boundary geometry is not
plane, curvature effects forbid to respect the compatibility condition:

∫

Ω u.n = 0
both at the beginning and at the end of the time step as the displacement of
the boundary is equal to the integral of its velocity, constant over the time step.
From the structure point of view, the interface conditions force the structure
acceleration to be a bounded measure, with a Dirac time component at each
change of time step. If we want the position to be continuous in time, we
are forced to consider that the applied pressure has the same structure of the
boundary acceleration, which includes the Dirac time component at each change
of time step. In other words, the only way to change the velocity of the boundary
without changing its position is to apply a Dirac of pressure. Moreover, we can
fix this Dirac of pressure so as to satisfy the hidden compatibility condition at
the beginning of one time step (on the old geometry). The application of the
“L2”part of the pressure would allow to satisfy the compatibility condition at
the end of the time step on the new geometry. We are now going to describe a
way to do that.

4 Interface algorithm

In this part we suppose that the boundary is composed of a flow inlet Γ1 and a
moving boundary Γ2. To fix the ideas, we can consider an elastic pipe. Suppose
that we know all relevant quantities at time n. We first have to compute the new
position of the moving boundary. For this purpose, we suppose the numerical
pressure P to be split-able in the 3 following parts:

P (x, t) = S(i).δ(i.Dt) + C(t) + Q(x, t) (4)

where i ∈ IN.The variable C is piecewise constant in time and Q is the pressure
deriving from the fluid computation. We have used δ for the Dirac measure.
From (4) and integrating (2), it follows that:

[η′]n+
n− = γ.S(n) (5)
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with the preceding left-hand-side standing for the jump of velocity at time n.Dt.
The application of the compatibility condition

∫

Γ u.n = 0 at “time” tn+ pro-
duces:

S(n).

∫

Γ2(n−)

γ +

∫

Γ1

[u.n]n+
n− = 0 (6)

which defines S(n) one way:

S(n) = −

∫

Γ1
[u.n]n+

n−
∫

Γ2(n−)
γ

. (7)

We now have to determine the value of C. While it should be related in some
way to S(n), we must stress the fact that it reflects also the evolution of the fluid
over the entire time step and so has also a mean value signification. That is why
we disconnect the two computations. The idea under the determination of C is
the following: the moving wall evolving over the time step (n.Dt, (n + 1).Dt)
following the equation (2) should move in such a way that the compatibility

condition should be satisfied at “time” t(n+1)− .
It turns out that the equation verified by C is highly related to the way we
discretized the structure equation, as we show in the next section.

5 Structure equation and its resolution

We choose to discretize (2) with finite differences (only for simplicity). We do
the time discretizetion in the following way:

1. η′′ = η′n+1
−η′n

Dt

2. η = β1η
n+1 + (1 − β1)η

n

3. η′ = β3η
′n+1 + (1 − β3)η

′n

4. ηn+1 = ηn + Dt(β2η
′n+1 + (1 − β2)η

′n)

The data are: ηn and η′n. The unknown are: ηn+1 and η′n+1. The constants
βi, i ∈ {1, 2, 3} have value in [0, 1].
With this discretization, we obtain the following explicit formula:

η′n+1 =
Dt.(γ.P − κ.ηn) + η′n.[1 − α(1 − β3).Dt − κ.β1.(1 − β2).Dt2]

1 + Dt.α.β3 + Dt2.κ.β1.β2
(8)

ηn+1 = ηn +
Dt.η′n + Dt2.β2.(γ.P − κ.ηn) + Dt2.α.(β3 − β2).η

′n

1 + Dt.α.β3 + Dt2.κ.β1.β2
(9)

We will note by η̃′ the right-hand-side of (8) with the pressure P changed by
its component coming from the fluid discretization Q. We write “D” for the
quantity under the bar-fraction:

D = 1 + Dt.α.β3 + Dt2.κ.β1.β2.
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Then, applying the compatibility condition at time t(n+1)− and ricording that
P (n+1)− = Q + C(n+ 1

2
), it comes:

∫

Γ1

un+1−.n +

∫

Γ2(n+1)

η̃′ + C(n+ 1
2
).

∫

Γ2(n+1)

Dt.γ

D
= 0 (10)

or

C(n+ 1
2
) = −[

∫

Γ2(n+1)

Dt.γ

D
]−1.(

∫

Γ1

un+1−.n +

∫

Γ2(n+1)

η̃) (11)

Unfortunately, this formulae is not sufficient to calculate C because the right-
hand-side of (11) depends itself of C. Nevertheless, it can be inferred from (8)
and (9) that the position and velocity of the boundary are affine functions of C

with relative slopes showing a ratio of Dt. This mean that for small time steps,
the velocity of the boundary is much more sensitive to C than its position. So it
can be expected that in normal circumstances the integrals in (11) are not very
sensitive to C. This quantity should then be easy to find using a fixed point
based on (11) with η̃′ converging to η′.
While this way of proceeding could seem reasonable, it should be stressed the
fact that the normal velocity of the boundary is not equal to the domain velocity.
In the following we rewrite the equations (8) and (9) for all βi parameters equal
to one, which is fully time implicit:











η′n+1 =
Dt.(γ.P − κ.ηn) + η′n

1 + Dt.α + Dt2.κ

ηn+1 = ηn +
Dt.η′n + Dt2.(γ.P − κ.ηn)

1 + Dt.α + Dt2.κ

(12)

In fact the second formulae of (12), can be rewritten in a more simple fashion:

ηn+1 = ηn + Dt.η′n+1 (13)

6 Priminary results

This algorithm has been implemented for the simulation of the aortic arch.
It was made necessary because the simulation shown an explosive instability
at the change of curvature of the inlet fluid velocity time evolution. More
precisely the instability developed when the fluid acceleration in inlet started
to decrease. This kind of instability was first reported by I.Heude ([1])in a
quite similar context. The result was optimum and no more instability appears.
Nevertheless, the external model, ie the modeling of the external part of the fluid
computational domain, was no more satisfying. It was modeled as a solid tube
with friction boundary effects. Because the (assimilated) solid boundary parts
react with their relative mass to the jump of velocity, this modeling strongly
underestimate the outflow. An alterate external boundary model which takes
into account the three-parts-structure of the pressure is now under study.
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7 conclusion

Fluid-structure interactions show strong instabilities when the fluid is considered
incompressible and solved by a projection plus splitting method. This arises as
soon has the time steps goes smaller to the structure elastic characteristic time,
which is around one millisecond for the aortic arch. While a first instability due
to boundary acceleration was stabilized by a separation of time step procedure
(see [2]), we have stabilized another instability due to the decreasing of the inlet
boundary acceleration. The stabilization relies upon physical considerations
about the fluid algorithm. It should be interesting to discover the mathematical
causes of these instabilities, and to justify theoretically the consistency of the
algorithm.

8 Appendice: the external model

As already said, we are using an external simplified model for our simulation
of the aortic arch. The key point is to determine for a given input flow, what
proportion in going in outflow ant what proportion is used to modify the inside
volume via the boundary position evolution. Six variables are thought to be
taken into consideration:

1. viscous dissipation,

2. compliance of the arteries,

3. fluid inertia,

4. fluid velocity,

5. pressure drop,

6. topology of the arterial system.

Simplified models can be done using an electrical analogy. To the six points just
given, we associate the following quantities:

1. resistance in series,

2. capacity in derivation,

3. self-inductance in series,

4. intensity,

5. electrical potential,

6. electrical net.
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By adding elements, arbitrarily complicated and accurate external models can
be simulated.

We present now a simple external model more fluid oriented.
We think the outlet part of the aorta as a compliant tube Wext of length L

with the same properties of the aorta near the Neumann boundary condition.
We suppose that the wall velocity evolve linearly along the tube and that the
pressure drop is such that the distal pressure is constant (at zero). We also make
the assumption that the outlet flow is constant, this constant being the mean
temporal value of the inlet flow. By continuity of the pressure, the integral of
the normal wall velocity is given by its mean values at the two-points interface
Mini,ext, Mini,int, with the fully simulated arterial wall.

∫

Wext

η′ = L{̇η′(ini) + η′(fin)} (14)

In this modeling, the space-constant correction is in fact decreasing linearly to
zero in the external domain, because the pressure at the final outlet is always
considered to be zero, even after correction. We can then adapt the computing
of (11). Splitting the boundary Γ2 in two parts: the one effectively discretized
called Γdis and the external part Γext, it comes:

C(n +
1

2
) = −[L

˙Dt.γ

D
+

∫

Γdis(n+1)

Dt.γ

D
]−1.(L{̇η′(ini) + η′(fin)} +

∫

Γ1

un+1−.n +

∫

Γdis(n+1)

η̃) (15)
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