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Abstract

Often, in real applications it is difficult to dispose of a simple, yet, representative kinetic

model because of the complexity of the reactions taking place. To overcome this limitation a

hybrid modelling approach is proposed for the identification of the dynamic behaviour of

chemical reactors. In particular, the tools of neural network modelling have been exploited to

represent the kinetic reaction data. The "neural reaction rate model" is integrated within a

first principles model that constitutes the basis of a nonlinear observer (Extended Kalman

Filter, EKF) for an heterogeneous gas-solid reactor where the catalytic oxidation of carbon

monoxide takes place. The outlined procedure shows that artificial neural networks (ANN)

can be effectively used to formulate lumped reaction rates because of their capability in

capturing the essential characteristics of the functional relationship among the state variables.



1. Introduction

The need for state estimators is particularly strong in chemical processes where, usually,

the most important process variables are intrinsically difficult to measure. This has promoted

the development of several observer applications where the critical primary process variables

are estimated from secondary and more accessible ones. For instance, in polymerisation

reactors the objective is to estimate the polymerisation degree, in biological reactors the

prime aim is to evaluate the time evolution of the biomass composition, while in distillation

columns and chemical reactors the critical problem concerns with the estimate of the outlet

compositions of the relevant streams.

In a previous work (Baratti et al., 1993) it was shown that a good description of the

reaction kinetics is critical for the development of robust and reliable reactor observers used

to infer the outlet compositions of the main chemical species. This is not a trivial task since

the kinetic analysis of complex reacting systems is a challenging problem. Even in presence

of elementary reaction networks, the use of an unique global reaction rate law can be

impossible because the rate determining steps may change by varying the operating

conditions. A typical example is the carbon monoxide oxidation over Pt-alumina supported

catalysts, where the rate determining step shifts from a surface reaction to an adsorption term

depending on the temperature and carbon monoxide concentration (c.f., Herz and Marin,

1980; Goodman et al., 1982). For this system a conventional Langmuir-Hinshelwood rate law

cannot describe the reaction kinetics over a wide range of operating conditions.

Often, detailed kinetic models are not suitable for on-line states/parameters estimation

applications because of their numerical stiff characteristics. Thus, the development of

concentration estimators must rely on the adoption of simple but representative lumped

kinetic rate laws.

Starting from the earlier 90's the use of Artificial Neural Modelling (ANM) has been

extensively exploited to describe chemical processes (c.f., Baht et al., 1990) because of their

ability to approximate arbitrary complex functional relationships (Cybenko, 1989). Recently,

ANM has been used to formulate approximate kinetic models for biological as well as

conventional chemical reactors (c.f., Galvan et al., 1996; Thibault et al., 1997). Often the

neural kinetic models are integrated within hybrid models (c.f., Thompson and Kramer,

1994), also called grey models, that have been proven to be effective for the development of

reactor observers (c.f., Zorzetto and Wilson, 1996; Baratti and Servida, 1997).

In the present work, the use of first principles and neural modelling approaches is

discussed for the development of a model-based estimator applied to a catalytic reactor where

the catalytic oxidation of carbon monoxide over Pt-alumina supported catalysts takes place.

This reaction was selected as test case since it exhibits, depending on the operating

conditions, regions of extinction and ignition, and thus, it represents a reaction benchmark to

evaluate the reliability and robustness of any adopted reactor model.



The prime aim of this work is to assess the feasibility of using neural network modelling

to represent lumped reaction rates capable to describe the steady-state behaviour of the

catalytic reactor over the ignition and extinction regions. Indeed, for the oxidation of carbon

monoxide, preliminary results have shown that it is not possible to use an unique Langmuir-

Hinshelwood reaction rate expression to predict the performance of the catalytic reactor in

both the regions of high and low reactivity (Aragonese, 1996).

The goal is to outline a procedure to integrate the reactor hybrid model within an

observer to estimate the outlet reactor compositions. The observer, based on an Extended

Kalman Filter (EKF), is driven by the available on-line temperature measurements.

Furthermore, the "neural reaction rate law" used in the dynamic reactor model is calibrated

by simply using steady-state kinetic data.

The reliability of the proposed approach has been validated by comparison with

experimental data acquired in a laboratory-scale reactor system.

2. Experimental Apparatus

The experimental apparatus consists of a catalytic tubular reactor (with recycle) equipped

with an inlet flow control section, an analytical unit on the outlet stream, and a control

section, as shown in the schematic layout reported in Figure 1.

Mass flow meters (Brooks, model 5850TR) are used to keep the carbon monoxide and

the oxygen flowrates constant in time and to set the overall flow rate and composition of the

feed stream to the desired specifications. The mass flow meters are operated through the

control section.

The tubular reactor (ID = 0.012 m; L = 0.356 m) is jacketed with two resistances (2 x

360W) connected to a digital controller (independent loop). A layer of insulating material

(0.03 m in thickness) is used to minimise heat losses. The reactor is packed with glass pellets

to enhance heat transfer and turbulence. Only a thin layer (0.01 m) is packed with catalytic

particles. In this way the conversion inside the tubular reactor is low enough to prevent

significant temperature gradients along the reactor. The catalytic bed is equipped with a

thermocouple located in the middle. The high flow rate avoids radial temperature gradients.

The entering flow is preheated by a 320W resistance to minimise longitudinal temperature

gradient. The fluid exiting from the tubular reactor in cooled down to preserve the

recirculation pump (Thomas, mod. 107-CD-18-TFEL-A). This is a membrane alternative

pump equipped with an additional teflon membrane to maintain high purity, oil-free and dust-

free gas. A stainless steel filter was inserted downstream to avoid, in the case of the pump

failure, catalyst contamination. The reactor recirculation rate was set to an high value (R >

50) to make the reactor system to perform, from the fluid-dynamic point of view, as close as

possible to a CSTR reactor.



The reactor is equipped with a control unit constituted of a dedicated computer (µmac

5000 from Analog Device) connected to a PC that controlled the operating conditions and

supervised the real-time acquisition of all the experimental data coming from the reactor and

its analytical section.

The on-line analytical measurements were carried out through an IR analyser (Leybold-

Heraeus BINOS mod. 4.1) connected to the reactor outlet. The on-line response was used to

evaluate the estimator performance. The IR analyser signal was periodically checked off-line

by GC analyses to verify its calibration.

The catalyst (platinum) is supported on γ-alumina (HARSHAW, type A1-0104T1/8, lot

M-292) that provides an high surface-to-volume ratio and exhibits good mechanical

properties. An egg-shell active site distribution was selected to reduce the platinum

distribution density and to prevent the detrimental effects of diffusion phenomena. The

catalyst was prepared by mono component impregnation as described elsewhere (Aragonese,

1996).

3. The Mathematical Model

To successfully develop a reliable and robust estimator, the adopted mathematical model

has to be simple but capable to capture the main features of the plant dynamics. The model

has to satisfy two conflicting requirements: the first is the on-line integrability, i.e. a simple

enough model; the second is the need for the correct description of the functional relationship

between state variables. The latter is critical because the estimation algorithm must rely on

enough information to correctly infer the system state vector. In the following, we briefly

illustrate the procedure that led to the formulation of a simple reactor model suitable for the

integration within the estimator algorithm. A more detailed discussion on the identification of

the concentration and temperature dynamics can be found in a previous work (Aragonese,

1996).

3.1 Dynamics identification

The dynamic behaviour of the reactor was investigated through a standard step response

analysis performed in absence of reaction.

For the concentration dynamics, the reactor, operated at 433 K, was initially flushed with

a pure nitrogen stream (0.037 x 10-6 Nm3 s -1), then a step change in the inlet concentration

was induced by adding a new stream of carbon dioxide. The results, shown in Figure 2a,

indicate that the overall fluid-dynamic of the system can be well described through a first

order system with delay. Because the delay time, 32 s, is due to the piping between the

reactor and the on-line analyser, the reactor behaviour resembles that of a first-order system,



and thus the concentration time evolution can be simply described through a conventional

CSTR model:

τc 
d c

d t
 + c =  b c ci

(1)

where τc (equal to 238.2 s) is the characteristic time and bc = 1 is the gain constant.

To characterise the temperature dynamics, a temperature ramp was imposed because of

the physical impossibility to produce an instantaneous temperature change. The system

exhibited a response with overshoot, see Figure 2b, which is typical of interacting dynamic

systems. Being our prime goal the formulation of a simple (but representative) dynamic

model, the temperature time evolution has been approximated through a first order system:

τT 
d T

d t
 + T =  bi  T i  + b w Tw  + T pre

(2)

where τT (= 48.5 s) is the characteristic time, bi (= 0.1738) and bw (= 0.8262) are the gain

constants with respect to the inlet and wall temperatures, respectively. The term Tpre

accounts, in an effective fashion, for: a) the heat exchanges that take place in the preheater

and in the cooling systems ; b) the heat dispersion occurring through the piping (not

thermally insulated). These contributions have been lumped in an effective parametric model

through the use of the term Tpre, in the attempt to keep the dynamic model of the system as

simple as possible. Indeed, the approach has proved to be able to capture the essential

dynamic features of the systems as the identification run reported in Figure 2b shows. In

actuality, the results indicate that even though the simple model well recovers the time

response of the system it doesn’t describe properly the interactions between the reactor itself

and the auxiliary equipment (preheater, cooling system, and connecting piping). This is the

reason why the model is not capable to predict the overshoot in the reactor temperature as

shown in Figure 2b that, indeed, refers to a critical test in which the wall temperature was

forced to change of about 30°C over a ramp lasting only 3 min.

3.2 The reaction kinetic model

The neural kinetic model was calibrated making use of steady-state kinetic data. These

were obtained through a set of experiments carried out at three different temperatures for

various values of the inlet CO concentration. The results are shown in Figure 3, where the

observed reaction rate, Robs, is plotted as a function of the bulk CO concentration for the

three temperatures.

As mentioned in the Introduction, ANM has been applied to formulate a lumped kinetic

reaction rate for the oxidation of carbon monoxide over Pt-alumina supported catalyst. As

pointed out in previous studies (c.f., Goodman et al., 1982; Aragonese, 1996), the

development of classical models is particularly hard because of the strong non-linearity of the



functional relationship between state variables (carbon monoxide bulk concentration and bulk

temperature) and the reaction rate, and because of the shift in the rate determining step. Our

intent is to develop an unique kinetic expression, valid over the entire region of the input

space of interest, suitable for the integration within an observer structure.

An Artificial Neural Network (ANN) is a mathematical structure consisting of

independent computational elements called nodes or neurones. Each neurone performs a

weighted sum of its inputs and transforms the sum in the output signal through an activation

function. In a Multilayered Feed Forward Artificial Neural Network (MFFANN) neurones

are arranged in a layered structure. Neurones take inputs from every node of the previous

layer and produce an output signal that serves as input to the nodes of the next layer. There is

a one-way flow of information: from the input to the output nodes. The input and hidden

layers are augmented with an extra neurone, the bias, that provides a constant output signal

equal to one. A MFFANN has been used, and the common sigmoidal activation function has

been adopted for the neurones of the hidden and of output layers:

f (x) =
1

1 + e −x

Many studies have demonstrated the ability of ANN's to represent complex kinetic data

(Galvan et al., 1996; Kito et al., 1994; Sasaki et al., 1995). Neural network modelling is

usually considered a black box approach, since, in principle, no a priori knowledge of the

process is needed. It is sufficient to provide the network with the set of input data (bulk

carbon monoxide concentration and bulk temperature) and the corresponding output

outcomes (reaction rate, corresponding to the input values): the network calculates its own

outputs from the given set of input data and, by a training algorithm, the weights of the

connections between neurones are modified so as to minimise the difference between the

desired output outcomes and the calculated ones. During the training procedure, the neural

network learns the relationship between the inputs and the outputs, builds an internal model,

and then, given a new set of input data, can calculate the corresponding unknown outputs. In

the present work the training was driven using the Osborn's modification of Levenberg-

Marquardt algorithm.

Our goal is not a mere optimal fit of the steady-state experimental data, but the

development of a neural kinetic model that captures, as well as possible, the essential

characteristics of the functional relationships between inputs (concentration and temperature)

and outputs (reaction rate). In other words, the neural kinetic model must also provide

consistent derivatives of the reaction rate with respect to the concentration and temperature.

This additional requirement has been imposed because the kinetic model is part of an hybrid

model whose Jacobian matrix is used to estimate the prediction error covariance within the

observer structure. The observer can apply right corrections only if the Jacobian is correctly

computed, that is, the trend predicted by the neural kinetic model must be as close as possible



to the actual one. To achieve this result, we have tested different MFFANN structures with

different numbers of hidden layers and neurones. Various network architectures have been

trained, always maintaining the same pair of input and output data. Every time we tested the

extrapolation capabilities of the neural model into input space regions different from those

used for the training. The consistency test on the derivatives of the reaction rate with respect

to the bulk concentration and temperature has been used as additional criterion to assess the

"goodness" of the neural kinetic model.

The results of this analysis led to select a MFFANN with two nodes (+ bias) in the

input layer, four nodes (+ bias) in the hidden layer, and one node in the output layer.

Because large changes in the input values can cause numerical problems (Psichogis and

Ungar, 1992), we have used, as inputs to the network, dimensionless carbon monoxide bulk

concentration: x1 = CCO / Cr and dimensionless bulk temperature: x2 = 2 (T - Tav) / ∆Tmax.

With these scaling laws, the temperature ranged between -1 and 1, while the CO

concentration varied between 0 and 3. This configuration has proven to provide the best

results.

Since the network's output ranges from 0 to +1, we have defined a dimensionless

reaction rate as follows:

  
R

ANN
=
R

obs

cr
 fs .

The scaling factor, fs, is necessary because the dimensionless reaction rate varies from 10 -6 to

10-5 and using a sigmoidal function it is impossible to appreciate the differences between

them.

Figure 3 shows the measured and estimated reaction rate at three different temperatures.

As we can see, the reaction rate prediction is rather good in both the ignition and extinction

regions. It is a remarkable result considering that the reaction rate undergoes changes of over

one order of magnitude in the transition from the ignition to the extinction zone, and that,

contrary to conventional kinetic models, an unique simple neural kinetic model is capable to

describe the complete set of experimental data.

3.3 The reactor mathematical model

The adopted reactor model is constituted of a simplified reactor description augmented

with a “neural reaction rate”. The reactor model relies on the following assumptions: a) the

reacting system is a well mixed tank reactor, b) negligible intraphase mass and heat transport

resistances, c) negligible accumulation of: reactants and products within the catalyst pellets

and of heat within the gaseous mixture, d) all the physicochemical properties do not depend

on temperature and composition. The relevant model equations  are:
d u

d t
 =  θ v i u i - v u( )  -  ℜ u, v( ) (3)



d v

d t
 =  θ κ vi  -  v( ) -  δ v - v w( ) + ω ℜ u, v( ) +  Q pre  

(4)

with I.C's
u 0( ) =  u0     ;     v 0( ) =  v0

(5)

where:

u = 
C

C r

   ;   v =  
T

Tr

θ =  
q

V
   ;   ω = 

-∆H( ) cr

ρ Cp Tr

   ;   δ =  
U S

ρ Cp V
   ;   κ =  

ρg Cpg

ρ Cp

(6)

R(c, T) is the modified neural reaction rate, q is the volumetric flow rate evaluated at the

reference temperature Tr (= 433 K), V is the reactor volume, ui and vi represent the

dimensionless CO concentration and temperature of the feed stream, respectively. The above

dimensionless parameters are related to τT, τc, b i and bw through the relationships reported in

a previous paper (Baratti et al., 1993).

A more detailed discussion on Qpre is needed. As mentioned in the previous section Qpre

accounts for the net heat contribution given by the piping, preheater and cooling system.

Now, being the reactor, from a heat point of view, an interactive system this contribution will

change depending if we operate the reactor in absence on in presence of reaction. To simplify

the analysis, the description of all the experimental runs has been done by adopting the

average value of Qpre calculated from the data corresponding to the reactor operated in the

ignition region. Even though this value (equal to 1.45 x 10-4 s-1) is significantly different

from that calculated in absence of reaction (equal to 8.58 x 10-4 s-1) a reasonable description

of all the experimental runs has been achieved.

4. Extended Kalman Filter

The extended Kalman filter was developed on the basis of the approximate reactor model

defined by eqs. (3) - (4); the procedure is extensively discussed in the previous paper by

Baratti et al.(1993). Here, it is enough to outline the basic concepts on which EKF relies,

while for the details on the governing EKF equations we refer to Gelb (1974, pg. 188). The

extended Kalman filter is an approximate optimal estimator that infers the vector state

variable, x, at a given time, on the basis of the predictions of an approximate process model

and of secondary measurements available up to that time. In short, the inferential procedure

developed within the Kalman frame is as follows:



xk+1/k+1 =  xk+1/k + Kk+1 zk+1 -  hk+1( )
(7)

where xk+1/k+1 represents the estimated vector of state variables at the time step (k+1), xk+1/k

is the prediction vector of the approximate dynamic process model, zk+1 is the vector of the

secondary measurements, hk+1/k is the vector of the observed state variables as predicted by

the process model, and Kk+1 is the filter gain matrix that weights the relative importance

given to the model predictions and to the actual measurements. The filter gain matrix is

constructed on the basis of the error covariance matrices of the measurements (r) and of the

model (Q).

Actually, the entries of the matrices Q and r can be regarded as the tuning parameters of

the Kalman filter and have been computed through a minimum least-square criterion, where

the function to be minimised was the square of the deviations between the estimated and the

measured values of the product composition i.e., the outlet carbon dioxide composition.

It is worth to point out that the only real-time dynamic information supplied to the EKF

is the actual reactor bulk temperature, while the neural kinetic model only provides the

steady-state reaction rate at the actual conditions.

5. Results and Discussion

The performance of the nonlinear observer was evaluated, for different inlet CO

concentrations, by performing transient kinetic experiments driven by externally forcing the

reactor wall temperature.

In a previous work (Baratti et al., 1993), it was shown that the numerical method adopted

to integrate the EKF equations is not critical, thus, a simple Euler method has been used. The

integration time, equal to the sampling time, has been set equal to 6 s.

As previously discussed, the entries of the error covariance matrices, Q and r, are

regarded as tuning parameters and have been evaluated once for all by using the data of a

reference run. In the reference run, the wall temperature (dashed line) was changed externally

as shown in Figure 4a, while the total flow rate (0.037 x 10-6 Nm3 s -1) and the inlet CO mole

fraction (0.011) were kept constant. In Figure 4b, the predicted estimates (dashed line) are

compared with the actual measurements (continuous line) in terms of the outlet CO2 mole

fraction as a function of time. The computed values of the error covariance matrices have

been kept constant for all the successive experimental runs.

In the first experiment, the reactor wall temperature (dashed line) was forced as shown in

Figure 5a where the reactor temperature (continuous line) is also reported. The inlet flow rate

(0.037 x 10-6 Nm3 s-1) and the inlet  CO mole fraction (0.012) were kept constant throughout



the entire experiment. The selected operating conditions made the reactor to operate in the

ignited regime.

To better illustrate the advantage of using an estimator, the performance of the model

alone was assessed by simply using eqs. (3)-(5). The comparison between the experimental

results (continuous line) and the predictions (dotted line) is shown in Figure 5b, in terms of

the outlet CO2 mole fraction. The agreement is only qualitative and this is due to the

inaccuracy of the approximate model.  In the same Figure the prediction of the outlet CO2

mole fraction obtained with the EKF (dashed line) is also shown. The improvement is clear,

and the use of the observer allowed to achieve an average error of 2 % with a maximum error

of 5%. It is worth pointing out that in this experiment the interaction phenomena seem to play

a minor role since no overshoot in the reactor temperature is observed. This is also the reason

why the simplified hybrid model well recovers the experimental wall temperature.

The second experiment has been carried out in the spent zone in order to test the

feasibility of using the same neural kinetic model, the same covariance matrices and

parameters adopted for the ignition zone. The prescribed wall temperature profile (dashed

line) and the corresponding reactor temperatures (continuous line) are reported in Figure 6a.

The inlet carbon monoxide mole fraction (0.03) and the total flow-rate (0.037 x 10-6 Nm3 s-1)

were kept constant.

Let us examine the results obtained by only integrating the reactor model. In the

extinction region, the predictions of the temperature (dotted line in Figure 6a) and of the
outlet CO2 mole fraction (dotted line in Figure 6b) appear to be poorer than those obtained in

the ignition region. This could be due to the fact that for Qpre the average value

corresponding to the ignition zone has been selected, and this, as previously discussed, is
significantly lower than that calculated in absence of reaction. Decreasing the value of Qpre

the model predicts a lower reactor temperature, and consequently, the predicted outlet CO2

mole fraction decreases.

When the estimator is used to compute the outlet CO2 mole fraction the agreement is

improved as shown in Figure 6b, where the estimated mole fraction (dashed line) is reported

as a function of time.

The results show that neural modelling can provide a useful framework to represent

lumped reaction rate laws, and that it is viable to pursue this strategy by examining more

complex applications.

6. Conclusions

The feasibility of using grey models, based on first principles and neural modelling

approaches, has been discussed and demonstrated for the case of a catalytic reactor where the

catalytic oxidation of carbon monoxide over Pt-alumina supported catalysts takes place. The



reaction case study has also provided the opportunity to outline a generalized procedure for

the development and integration of hybrid modelling within a Kalman filter.

The use of Artificial Neural Networks has proven to be very effective in describing the

kinetics of a reacting system that exhibits ignition and extinction phenomena. Furthermore,

while the neural kinetic model was capable to describe the system kinetics over the entire

range of investigated operating conditions, a conventional Langmuir-Hinshelwood rate law

failed to provide a correct representation.

The formulated estimator based on hybrid modelling well describes the reactor dynamics

in both the ignition and extinction regions, even though, the neural reaction rate model was

developed on the basis of steady-state data.
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Notation

bc concentration gain constant

bi inlet temperature gain constant

bw wall temperature gain constant

c concentration, mol m-3

cr reference concentration (= 0.281 mol m-3)

Cp specific heat capacity, J kg-1 K-1

fs scaling factor (= 10-5)

K Kalman filter gain matrix
q volumetric flow rate evaluated at T = Tr, m3 s-1

Qpre net heat =  Tpre / Tr (θ κ + δ) =  1.454 10-4 s-1

R = RANN / fs / V

RANN neural reaction rate, m3 s-1

Robs neural reaction rate, mol s-1

S heat exchange surface, m2

t time, s

T temperature, K

Tr reference temperature (= 433 K)

Tpre net temperature increases, K

u dimensionless concentration, c / cr

U heat transfer coefficient, J m-2 s-1 K-1

v dimensionless temperature, T / Tr

V estimated reactor volume (= 1.182 10-3 m3)

x state vector

z measurement vector

Greek letters

δ = U S / ρ Cp V =  0.017 s-1

∆H reaction heat = 282000 J mol-1

θ = q / V = 4.189 10-3 s-1

κ = ρg Cpg / ρ Cp = 0.880

ρ density, kg m-3

ω = (-∆H) cr / ρ Cp Tr = 149.434 s-1

Subscript

av average value

i reactor inlet

g gas state

w wall temperature
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Captions for Figures

Figure 1. Sketch of the experimental apparatus.

Figure 2. (a) Response to a step change in the inlet CO2 concentration equal to 0.83 %

(flow rate equal to 0.037 x 10-6 Nm3 s -1; reactor temperature equal to 423 K. (b)

Reactor temperature response to a change in the wall temperature as a function of

time (flow rate equal to 0.037 x 10-6 Nm3 s-1).

Figure 3. Reaction rate as a function of carbon monoxide bulk concentration at three

different temperatures: 423, 433 and 443 K.

Figure 4. Observer performance (reference run): (a) wall (dashed line) and reactor

(continuous line) temperature as a function of time; (b) comparison between
experimental (continuous line) and estimated (dashed line) outlet CO2 mole

fraction. Inlet CO fraction equal to 0.011.

Figure 5. Observer performance (first run): (a) wall (dashed line), model (dotted line) and

reactor (continuous line) temperature as a function of time; (b) comparison

between experimental (continuous line), model (dotted line) and estimated
(dashed line) outlet CO2 mole fraction. Inlet CO fraction equal to 0.012.

Figure 6. Observer performance (second run): (a) wall (dashed line), model (dotted line)

and reactor (continuous line) temperature as a function of time; (b) comparison

between experimental (continuous line), model (dotted line) and estimated
(dashed line) outlet CO2 mole fraction. Inlet CO fraction equal to 0.03.
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