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Abstract

In thispaperwedescribea new systemfor the3D recon-
structionand distribution on the net of modelsfor vessels
structures. Thesystemis specificallydesignedto support
measurementsof medicalinterest.We describe2D and3D
segmentationmethodsimplementedandtheprocedureused
to build interactiveVRML97models.Theexperimentalsec-
tion presentsa comparisonbetweensegmentationmethods,
anda first applicationto surgical planningfor endovascu-
lar repair of AbdominalAortic Aneurysms.

1. Intr oduction

In thenearfuturea largeamountof medicaldatawill be
transmittedacrossInternetfor remotediagnosis,electronic
patientrecordsretrieval, homecare,etc.. Images,annota-
tionsandtexts canbeeasilytransmittedwith standardpro-
tocolsandcanbeviewedby medicaldoctorseverywhereby
usingcommonwebbrowsers.Many examplesof webbased
telemedicinehave beenproposedandpresentedin confer-
encepapers[2, 3, 4]. Moreover, thereare few examples
in literaturerelative to the web distribution of 3D models
of organs,andthey arenot usuallytailoredto real clinical
needsor diagnosticpurposes.Typically, thesemodelsare
usedonly for qualitative studyor to implementsimplesur-
gical simulators[8], albeit current technologylimitations
forcea strongsimplificationof theproceduresbeingsimu-
lated.In thispaper, weshow thatit is possibleto usecurrent
webtechnologystandards,i.e.,VRML, to assemblepatient
specificmodelsof vesselsthat allow surgeonsto measure
inherently3D quantitiesthatareimportant,for example,to
surgicalplanning,e.g.,theanglesbetweenvesselsat theil-
iacbifurcation.Themodelsarereasonablycompactin size,
with an averagesizeof few hundredkilobytes,andcanbe
quickly transferredacrossInternet.Thedatasentis essen-
tially thevesselsurfacegeometryplusembeddedcodeand
pre-computedtablesto supportthe measurements.More-

over, themodelis structuredso thatby selectingany point
on a centerlineit is possibleto require,to a dedicatedweb
server, a slice acrossthe original volumetricdataset(s)or-
thogonalto thelocal directionof thecenterline,thusallow-
ing thedoctorto consultat thesametimetheoriginalmedi-
calimagingdata.Thepaperisorganizedasfollows: Section
2 will describedifferentmethodsfor 3D segmentation,Sec-
tion 3 will describethe VRML generation,Section4 will
presenttheapplicationto AbdominalAortic Aneurysmen-
dovasculartreatment,Section5 will presentexperimental
results.

2 Segmentationand 3D reconstruction

2.1 The arterial tr eedata structur e

In order to perform measurementson vasculargeome-
tries (andalsoto supportothervirtual reality andnumeri-
cal simulationapplications)we designeda specializeddata
structurethatwenamed“Arterial Tree”. An Arterial Treeis
definedastheunionof a completesurfacemeshdescribing
the vesselsinternal surface,and a skeleton joining series
of 1D lines representingthe vesselscenterline. This data
structureallowsusto

� realizeprecisemeasurementsof vessellength;

� simplify the estimateof a planeperpendicularto the
vessel;

� provide a geometricalmodelthatcanbeusedto build
avolumemeshinsidethevesselfor numericalsimula-
tion of bloodflows [1].

We implementedthreemethodsfor the reconstructionof
theAT structureanddevelopedanuserfriendly interfaceto
controltheuseof thesemethodsandotherimageprocessing
tools(seeFig.1).

Methodsare:



� A: Segmentationfrom 2D contours: The datasetis
cut with seriesof planesapproximatelydirectedalong
thevesselbranchesdirections.Contoursareextracted
with snake balloons [13, 14] and joined in simple
tubes. Finally, tubesare glued togetherto build the
completetree. The centerlineis built by generatinga
splinepassingthroughthe centersof massof the ex-
tractedcontours.

� B: Segmentationfrom isosurfacesandautomaticcen-
terline extraction: Thresholdingand marchingcubes
[20] are used to computethe vesselsurface, while
thecenterlineis automaticallyextractedwith analgo-
rithm initialized giving a point inside the vesseland
describedin section2.3.

� C: Segmentationfrom Simplex Balloonandautomatic
centerlineextraction: Simplex balloons[15] area de-
formablesurfacesin the3D space.Initializing surfaces
as small spheresinside the vesselsand choosingthe
correct forcesinflating and driving surfacepoints to
the vesselborder, we canobtaina smoothvesselsur-
face. The samealgorithmasin methodB is usedfor
thecenterlineextraction.

Figure 1. The user interface allo wing the easy
use and tuning of all the segmentation algo-
rithms implemented.

We now discussin more detail the threesegmentation
methods;their performanceson a specificapplicationwill
bediscussedin theexperimentalsection.

2.2 Method A: Segmentationfr om 2D slices

Thebasicsegmentationprocedureis summarizedin Fig.
2. Seriesof contourswith a fixednumberof pointsareex-
tractedon sliceswith arbitrarypositionandorientationin

the 3D dataset.Imagesarecomputedfrom the 3D dataset
usingtri-linear interpolation.

The user interface include a menu to selectthe slices
from thedatasetandgive thepossibilityof extractingcon-
tourswith a a simpleregion growing, or asdefault choice,
with an elastic contour or “snake”. Snakes are elastic
contoursthat undergoesa ”physical” evolution driven by
”forces” . A contouris definedasa setof connectedpoints
subjectedby externalforcefieldsandinteractingwith their
neighbors. If the forcesarechosencorrectly, the contour
evolution is stoppednearthe desiredimagefeature. The
initial contourcanbechosenas:

� a smallcirclearoundaselectedpoint,

� the contour detectedon the previous slice (useful
choiceto segmentvessels)

� by drawing theapproximatepositionby hand.

Usually the first option is usedfor the startingslice of a
series,thesecondfor theotherslices,andthe third in case
of noiseor problemsin automaticdetection.Theevolution
of our snakesis drivenby standardelasticandrigid forces
dependingon thederivativesof thecontour;by aninflating
force, like in [14]; by anedgeattractionandby a deflating
termthatmakesthecontourshrinkalongthenormalvector
direction if the image brightnessis above (or under) a
local threshold.The thresholdcanbe selectedcloseto the
Hounsfieldvalue(i.e. the materialdensity)corresponding
to the contrastmedium. However, for someof the data
analyzed,the contrastwas not always perfectand in this
caseit canbe a betterchoiceto usean adaptive algorithm
thatsearchesfor strongdiscontinuitiesalongthedirections
perpendicularto thecontourandselectsthe corresponding
“external”valueasthreshold.

The major advantageof the contourbasedapproachis
thatit is immediatelyvisuallyclearif thealgorithmworked
well. Theuserinterfaceprovidesof severalpostprocessing
facilitiesto modify theresultif necessary:

� Somepointscanbemovedto a differentlocation.

� Contourscanbe smoothedwith a centerbasedalgo-
rithm asfollows: first onecomputesthe local average
distanceof thepoint andtwo neighborsfrom thecon-
tourcenterandthenthepoint is shiftedin orderto have
the distancefrom the centerequalto that value. This
canbereally effective if thecontouris not too irregu-
lar.

� Thenumberof pointscanbechangedandcontourscan
bere-sampledmakingthedistancebetweensuccessive
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pointsapproximatelyconstant.This is donecalculat-
ing the lengthof a spline joining the points, the cor-
respondingaveragepointspacingandfinally replacing
thepointsalongtheline.

� Selectedpointscanbe marked as”Fixed”, and these
pointsarenot movedduringfurtherapplicationof the
snakealgorithm.

Thesemanualprocessingaresometimesnecessaryif the
signalto noiseratio in the imagesis low, andfor example
whencalcificationsareclearlyvisible but hardto discrimi-
natewith automaticmethods.

When the segmentationof a contourseriesis finished,
the usersavesall the contourspoints in a file, thenresets
theslicer tool andcanextracta new seriesof contour, cor-
respondingto anothervesselbranch,until all thegeometries
of his interestarereconstructed.

Thesecondstepin thegeometrybuilding is thegenera-
tion of vesselsegments.Beingeachseriescomposedof the
samenumberof contours,evenlyspaced,theprogramauto-
matically finds the correspondencebetweenpointsof suc-
cessive contours,andconnectwith an edgecorresponding
point andeachpoint with a neighborof the corresponding
point, building a triangulatedsurface. If smallertriangles
arerequired,thealgorithmcanaddnodes.Finally theves-
sel centerlineis built asa splineconnectingthe centerof
massof thecontours.

Oncevesselsegmentsarebuilt from the contourseries,
they are finally glued togetherwith an anastomosisoper-
ation, i.e. the insertionof the secondarybranchinto the
largestone. It is important,therefore,that the intersection
of eachsegmentandoneof the othersis a closedcontour,
but thiscanbeobtainedeasilybycheckingthecontourposi-
tionson theslicerwindow. This is doneasfollows: first the
intersectionbetweenthetwo externalsurfacesis found,then
thepartof surfaceinsidethe largestvesselis removedand
anew triangulationis createdneartheintersectioncurve.

Errorsintroducedin thegeometrydependonthenumber
of slicesusedfor the segmentation,if the slicesaresuffi-
ciently closeeachother, the error canbe consideredequal
to the voxel dimension. The computedcenterlinecan be
exploited for an iterative refinementof the geometry:first
new cutting planesorthogonalto the centerlinearegener-
ated,thennew contoursareextracted(Fig 3). Geometrical
operationsarerealizedwith thesupportof theXOX Shapes
MicroTopologylibraries[19]. Thechoiceof thegeometri-
calengine,however, is not critical, andwe aretestingother
methodsto obtaintheresults.

2.3 Automatic centerline extraction

MethodsB andC arebasedon surfaceextractionwith
MarchingCubesor deformablesurfaces.In bothcases,to

Figure 2. Ar terial Tree building from contour s
and centerlines. Several contour series can
be extracted and several vessel segments,
with an external surface and a center line are
consequentl y built. Finall y they are joined
in an unique tree , with onl y one triangulated
surface and a tree-shaped centerline .

Figure 3. Ar terial segments can be refined
adding new planes or thogonal to the com-
puted centerline .

build the AT structure,we have alsoto find the centerline
of thevessel.We thereforehave implementedanalgorithm
for the centerlineextractiondirectly working on the voxel
data,that requirethe userjust to selecton the first slice a
pixel insidethe vessellumenanda thresholdvalue. Then
thealgorithm,derivedfrom thevoxel codingtechniquein-
troducedin [16], worksasfollows:

� Computea “distance”of eachinternalpoint from the
connectedregion boundaries(Boundaryseededdis-
tance,BSD).

� Computea “distance” of each internal point from
the startingpoint of the segmentationor “seedpoint”
(SSD).

� Findmaximumof theSSD.

� Starting from the point correspondingto this maxi-
mum,createachainconnectingateachstepthelastde-
tectedpointwith theneighboringvoxelwith thelowest
valueof SSD.Thechainmustendat theseedpoint.
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� For eachpoint of the chainfind the connectedregion
with thesameSSD.Find themaximumof theBSD in
theregion andmove thechainpoint there.Put to zero
the SSDvalueof the region. The resultingchainis a
vesselcenterlinebranch.

� Findthemaximumof thechangedSSDmapandrepeat
thesameprocedure,stoppingthechaindetectionwhen
a voxel with zeroSSDis found. The result is a new
vesselbranch. Repeatthe procedureuntil the SSDis
not cleared.

� Branchesarefinally smoothedandconnected.

Figure 4. Balloon segmentation of an iliac bi-
fur cation with the corresponding skeleton ex-
tracted inside .

2.4 Method B: isosurfaceextraction

Thesecondoptionavailableto theuseris theextraction
of an isosurface. After a Gaussianor mediansmoothing,
the datasetis binarizedanda region growing algorithmis
startedfromtheseedgivenby theuser. Finally themarching
cubesalgorithm[20] is applied.

2.5 Method C: 3D balloon reconstruction

Deformablesurfacescannow be usedfor 3D segmen-
tation due to the improved computationalpower of PC’s
andworkstations. A survey on their usecan be found in
[21]. Specificapplicationsof have alreadybepresentedby
otherauthors[22], who usedalsosomemodelbasedcon-
straintto segmentthe correctstructures.The methodhere
usedis basedon thesimplex meshgeometryintroducedby
Delingette[15]. As definedin the paper, the genericSim-
plex Meshis a N dimensionalmeshwith N+1 connectivity.
Thesimplex meshweuseis thereforeaclosedsurfacemesh
composedby nodeseachconnectedwith threeneighbors.

Figure 5. A simple x mesh (black nodes) and
its dual triangulation (white nodes)

Wemakethenodesmoveundertheinfluenceof aninflating
forcedirectedalongthesurfacenormal,anelasticsmooth-
ing force (“surfaceorientationcontinuity constraint”)and
two imageforces: the deflatingonecompensatingthe in-
flating onewherethelocal averageof thegraylevel differs
from the internalvaluemorethana fixed thresholdandan
edgeattraction.Controlsonmaximumandminimumof the
facesizehavebeenintroducedto have thedesiredmeshre-
finement. We usedalso the methodsto collapseor divide
facesof themeshwell describedin [15]. Thefinal meshis
convertedin the “Dual” form (i.e. a new meshwith nodes
in the centerof the simplex facesand connectionscorre-
spondingto thesimplex edges,seeFig5), in orderto havea
smoothtriangulationto berendered.

The simplex mesh,in fact, due to its definition, is in
generalcomposedby polygons that are not necessarily
planar, andthereforecannotbeeasilyrepresented.

In orderto usethismethod,theusermustclick onapoint
insidethevessellumen.Thesurfaceis theninitialized asa
smallsphereandis inflateduntil thesurfaceis not blocked
by edgesor changedimagevalue.Theusercancontrol the
maximumnumberof iterationsto be performed,force pa-
rametersandthemaximumandminimumsizeof thepoly-
gons.

3 VRML97 measurablemodelsof vessel

VRML97 is a powerful languageto describe3D scenes
and it is the standardlanguagefor Virtual Reality on the
web. VRML97 plug-insfor InternetExplorerandNetscape
Communicator(i.e. CosmoPlayer(www.cai.com/cosmo)
or Cortona(www.parallelgraphics.com))are available on
thenetandcanbedownloadedat no charge. We testedour
codewith CosmoPlayer2.1for MicrosoftWindows98/NT
both with Netscapeand Internet Explorer. Using a perl
scriptdevelopedfor thepurpose,we automaticallyconvert
models of arterial trees representingabdominal aortic
aneurysmsinto VRML97 files with hidden ECMAScript
code enabling the user to use the browser to perform

4



quantitativemeasurements.

3.1 VRML97 translation of Arterial Trees

Here are some details about our data conversion:
VRML97 worlds are generatedautomatically from the
Arterial Treesstructure. Different “nodes” of VRML97
have beenused to representthe geometryof the vessel
surface (IndexedFaceSet) and the vessel centerline
(IndexedLineSet); The centerlineis also duplicated
alone in anotherpart of the scenealone to make easier
the measurementof anglesanddistances(Fig. 7,8). The
Viewpoint nodeis usedto definea setof privilegedpoints
of view (at the endof eachvesselbranchandan external
global view). The TouchSensor nodehave beenused
to let the user interactwith the geometries;we exploited
it not only to get the coordinatesof the vessel,but also
to createbuttonsto selectthe possibleactionsto be done.
TheTimer nodehave beenalsousedto createanimations
becauseit changesthe value of an output variable as
definedby theprogrammer. Routingtheoutputof aTimer
to other nodes called PositionInterpolator and
OrientationInterpolator that give, as suggested
by thename,a seriesof valuesof coordinateanddirection,
we can control the the motion of the point of view in
orderto createa drivennavigationalonga fixedpath. Our
conversionscriptcreatesautomaticallya guidednavigation
alongeachbranchof thetreealongthevesselcenterline.

3.2 Support for measurements

The VRML97 languagespecificationincludes a par-
ticular node,calledScript, that is extremely powerful.
It makes possibleto call a customECMAScript or Java
routinehiddenin thefile or savedin a known locationafter
aneventon thescene.Theroutinecantake asinput values
dependingon thesceneandon theuseractionsandoutput
valuescanberoutedto theothernodes.

Using ECMA scriptingwe implementedthreemethods
to measureparametersusefulfor medicalapplications.
Thefirst consistsof printingthe3D coordinatesandthedis-
tancefrom thecenterlinefor eachpointof thesurfacewhen
the mouseis clicked on it. A planeperpendicularto the
centerlineis alsoshown for aneasycontrolof thedistance
direction(Fig. 6).
Thesecondconsistsof measuringthedistanceof two points
on the centerlinefollowing the line itself (Fig. 7). This
is very important,becauseusualmeasurementsof vessel
lengthdonewith 2D imagingor endoscopy areoftenwrong
dueto theeffectof vesselcurvature[17, 11].

Figure 6. The VRML97 model can be in-
spected, navigated and measured from any
PC with a web browser and a plug-in. Here
a “vir tual endoscop y” with radius measure-
ment is sho wn.

Figure 7. Measurement of centerline distance:
the user just clic ks on two points on the cen-
terline , and on the browser are automaticall y
displa yed the distance between the points
and the distance between the points follo w-
ing the centerline , that can be extremel y dif-
ferent and it is the reall y impor tant parameter
to evaluate for aneur ysm measurements.

Figure 8. Measurement of centerline angles:
the user can place the three reference points
just by clic king with the mouse on the center -
line , and the angle is automaticall y sho wn.
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Thelastoneis themeasurementsof anglesdefinedby click-
ing on threepointson thecenterline(Fig. 8). Furthermore,
weaddedto thesceneanimageviewersothatwhenapoint
on the surfaceor on the centerlineis clicked for measure-
ment,theimagedefinedby theintersectionof theplaneper-
pendicularto the centerlineandpassingthroughthe point
clickedandthedatasetis automaticallyshown. Imagesare
createdoff-line, compressedadstoredin a commondirec-
tory on theserverside.Beingverysmallthey canbedown-
loadedquickly. However, it is possiblealsoto changethe
codeto have thempre-loadedon the client side. Another
useful tool introducedin the modelsis an automatictest
aimedat checkingif a probe of fixed diametercan pass
throughthe lumen, relevant to investigateif a catheterof
known sizecanbeintroducedin thevessel.

4 Application: Abdominal Aortic
Aneurysmsevaluation

In order to verify the quality andthe usefulnessof our
model reconstructions,we have appliedour systemto the
analysisand the endovascularsurgical planning for Ab-
dominalAortic Aneurysms.An abdominalaorticaneurysm
(AAA) is a bulge in the aorta in the abdomen[17, 18].
AAA is a vasculardiseasewith life-threateningimplica-
tions,thatis becomingincreasinglycommonin agingpopu-
lations.Whentherisk of ruptureis high,asurgicalinterven-
tion is requiredto repairtheaorta.Thestandardapproachis
thearterialgraftingin opensurgery, but themortalityof this
kind of interventionis high. A recentlydevelopedalterna-
tive to opensurgery, is the endovascularrepair, consisting
in the introductionof a prosthesiswith a catheterpassing
throughthe iliac artery. This procedurecanbe performed
in a surgical or a radiologicalsuite, but it requiresa pre-
liminary accurateassessmentof patient’s specificanatomy.
Themeasurementsof thegeometryof theaortais therefore
extremely important. Measurementsare usually doneon
printed2D slides[25, 18, 23], andthis fact can introduce
largeerrors[17, 11].

Using patient specific VRML97 modelsreconstructed
with our method,any usercanmeasurethe geometricpa-
rametersof interestwith goodaccuracy.

This is particularly interesting: in fact, othercomputer
assistedvolumetric approacheshave been proposedand
testedfor thesamepurpose[17], but they requirecomplex
andproprietarysoftwareonvisualizationworkstations.Our
modelsallow asimpleandfastmeasurementof therequired
valueswithout theneedof particularhardwareor software
and the measurementof aortic aneurysmsseemeda good
test-bedto show the usefulnessof the approachchosen.
Moreover, this technologyis ideally suitedto supportdis-
tributedservicesthatimprovethemeasurementquality (us-
ing the3D reconstruction)andallow alsocollaborativesur-

Figure 9. Errors intr oduced by estimating ves-
sel length and diameter from 2D slices or
catheter trajector y. A: the diameter measured
from a CT slice can be superestimated is
the vessel direction is not perpendicular to
the slice plane . B: The vessel length mea-
sured from the catheter trajector y is underes-
timated.

gicalplanningbetweenremotesites.

5 Experimental results

5.1 Comparisonof segmentationtechniques

We testedthe threesegmentationmethodsdescribedin
Section2 ondifferentCT datasetscomingfrom theRadiol-
ogydept.of theUniversityof Pisaandfrom theHospitalof
Ravenna.On datasetsobtainedfollowing thestandardpro-
tocolsfor abdominalaorticaneurysmrepairplanning(reso-
lution is lessthan2 mm. in thez directionandcontrastliq-
uid is injectedbeforetheacquisitionsothatsignalto noise
ratio is high) all threemethodsperformwell andthe mea-
surementsareconsistent(seeFig. 11).
To testtherobustnessof thealgorithm,wetestedthesystem
alsoon imageswith poorcontrastandlowervaluesof z res-
olution. For the isosurfaceextraction,a largeslicespacing
makesdifficult to haveasmoothsurfaceandevenanunique
surfacefor smallvessels.A poorsignalto noiseratiocauses
a difficult thresholdsettingfor discriminatingthevessellu-
menfrom the backgroundandit makesoften not possible
to distinguishautomaticallycalcium from contrast. This
meansthat,evenusingmedianfiltering andmorphological
closing, we cannotget automaticallya good detectionof
thelumenand,in somecases,weobtainalsodiscontinuous
surfacesandfalsedetectionsof borders.

It mustbealsoconsideredthat local errorsarelikely to
bepresentin reconstructions.For thecontour-basedrecon-
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Figure 10. A large number of measurements
are necessar y, inc luding the length and di-
ameter of the proximal aor tic "nec k", the
length and diameter of the distal "cuffs", and
the length of the two graft limbs. Measure-
ments for an endo vascular tube graft are onl y
slightl y less comple x.

structions,errorscanbe presentnearbifurcations,even if
the imagequality is good, due to possibleapproximation
in triangulationmethods.3D balloonsareaffectedby the
necessityof finding equilibrium betweenimagebasedand
elastic forces, and can fail in regions wherecurvature is
quitehighandsignalto noiseratio is nothigh. Theseerrors
donotaffect,usually, themeasurementof theparametersof
surgical interest.

Measure A (mm.) B (mm.) C (mm.)
Neckr. 11.8 � 0.7 11.9 � 0.7 11.4 � 0.7
Max r. 15.4 � 0.7 16.0 � 0.7 16.2 � 0.7
Length 115 � 2 115 � 2 115 � 2

Table 1. If the image quality is good, measures
of parameter s perf ormed on the three models
with methods A, B and C are compatib le. Here
are, for example the results of corresponding
measurements on the three models of Fig. 11.

5.2 Sensitivity to initialization and parameters
change

Onething to be considered,whenanalyzingthe results
is our methods,asall the segmentationtechniques,arein-
fluencedby the thresholdschosenand by the parameters

Figure 11. Comparison of the three recon-
struction methods on a sufficientl y good
acquisition. Left: Reconstruction per-
formed thr ough 2D contour extraction. Cen-
ter: Reconstruction perf ormed using Sim-
plex balloon and automatic centerline extrac-
tion. Right: Reconstruction perf ormed using
marching cubes and automatic centerline ex-
traction.

usedandthereforeareuserdependent.Theresultsobtained
with our methodsarestronglydependenton the threshold
choiceandon thevalueof elasticparameters.They arenot
stronglydependenton the initialization point, both for 2D
and3D methods.Differentgrayor edgethresholdor a dif-
ferentelasticconstantcanchangethe segmentationresult
andthustheseparametersshouldbeselectedunderthesu-
pervisionof anexpert radiologistwith a nontrivial experi-
encein segmentation,becauseevenif many of theprogram
optionsareautomaticor semi-automatic,theuserneedsto
have a feeling of the algorithmsandof imagesfeaturesin
orderto performa betterreconstruction.This factsuggests
thatourapproachwherethe3D reconstructionisoutsourced
to thecentralizedreconstructioncenteris useful.

5.2.1 Sensitivity issuesfor 2D methods

Region growing result dependsonly on the choiceof the
threshold,so the selectionof a reasonableprotocol is suf-
ficient to guaranteeuserindependence.The behavior of a
snake canbe changedin many ways,actingon elasticpa-
rameters,forceconstants,thenumberof pointschosen,and
soon. This meansthat thesegmentationresultdependson
the user’s choices. This is not a drawback: it makespos-
sible,actingon thatparameters,to segmentdifferentstruc-
turesondifferentkind of images.Theuserdependency can
be,however, controlled,by using,for eachkind of taskre-
quired,a detailedprotocolgiving a parametersset for the
contourextraction.Theonewe arecurrentlyusingis:

� Perform3x3medianfiltering.

� Selecta correctwindowing to show thedesiredstruc-
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tures.

� Choosea sufficient numberof pointsin orderto have
apoint spacingof a few pixels.

� Usean imageforce selectinga bright region in dark
backgroundwith a fixedthresholdandtheelasticand
forceconstantssavedaftertuningfor thesekind of seg-
mentation.

� Initialize thecontourinsidetheregion letting it evolve
until thecontourmotionis stopped.

� Re-samplethe contourto have the desirednumberof
pointsequallyspaced.

Oncetheprotocolis defined,ourgoalis to provethatthat
the result do not dependon the contourinitialization, i.e.
oncetheparametersareset,themethodis user-independent.
We selectedsomesliceswith differentlyshapedvesselsec-
tions and measuredthe differencesbetweenseveral con-
tours extractedwith different initial contour positioning.
Results(seeTable 2) show clearly that when the contour
is well defined,thecontourextractionis user-independent,
and the differencesbetweenthe segmentationtechniques
arenot relevant.

Only if the imagequality is bad,for examplewhenthe
contrastis low (Fig. 12) thereis no way to usethestandard
parametersobtaininga user-independentresult. The user,
in this case,mustdraw the contourby handor correctthe
resultwherenot reliable (for examplenearplaquesor ar-
tifacts). This fact underlinesthe importanceof having an
experiencedpersondoing the segmentationwork, andthis
shouldbe considereda specializedtaskeven if performed
with userfriendly software.

Figure 12. Left: One of the slices use to test
the user independence of the system when
the image acquisition is correct. Right: One
of the slices where the contrast is too poor
to have user independent results due to bad
image acquisition

Methods avg.diff. max.diff.
snake/snake 0.11mm. 0.36mm.

reg. grow/snake 0.14 0.44
manual/snake 0.17 1.11

simplex section/snake 0.23 0.64
isosurfacesec./snake 0.33 0.97

Table 2. Comparison of segmentation results
obtained by diff erent user s with diff erent
techniques: the table sho ws the average and
maxim um distance between points belonging
to diff erent snakes segmentation, distances
between a contour obtained with region grow-
ing and one obtained with snakes, between
a contour drawn by hand and a snake seg-
mentation, between snake points and a sim-
plex mesh and between snake points and an
extracted isosurface . The pix el size was 0.7
mm. and this means that diff erences are neg-
ligib le compared with quantization error.

5.2.2 Sensitivity issuesfor 3D methods

If afixedthresholdis chosen,acomparisonbetweenballoon
isosurfaceandmanuallyselectedcontoursor 2D snakesis
possible.Fig. 13, for example,shows the nodesof a sim-
plex balloonlying on a CT slice,superimposedto the cor-
respondinggrayvaluesandthecorresponding2D snake.

We performedthis comparisonon all the datasetsand
wehavefoundthatfor imagesacquiredusingstandardpro-
tocols the two reconstructionsare consistentat the voxel
level.

5.3 Parameter estimation form VRML models

We have finally taken12 modelsof aorticaneurysmre-
constructedfrom CT dataprovided us by the Radiology
dept. of the University of Pisaand from the Hospital of
Ravenna,and chosenselectedparametersto be measured
with a standard2D techniquecurrently usedby surgeons
andwith oursystem.Theparametersare:

� Diameterof theaorticneck

� Lengthof theaneurysm

� Intra-aorticangle

� Diameterof thebifurcation

Thedataselectionincludesa few acquisitionswith poor
contrastor resolution. Thereforewe decidedto adoptas
standardsegmentationmethodfor theVRML97 generation
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Figure 13. If image quality is good and vessel
structure is simple , points from contour seg-
mentation and from a 3d model (in this case
Simple x based) sections are correctl y super -
imposed: no relevant diff erences are visib le
between the two contour s printed over the im-
age

the 2D contourbasedsegmentation. The comparisonhas
beenrealizedin thefollowing way: for thevesseldiameter,
thedoctorworking usingthestandardmeasurementproto-
col on the CT slicesmeasuredthe minimum of the local
vesselradius,theotherworking on theVRML measuredin
four selectedvesselpointsat thesamez location,thesmall-
estdistancebetweenthepoint andthecenterline.We con-
sideredmeasurementerrorsequalto the voxel size in x,y
directions.

Theresultsaregood,exceptfor somecaseswith incon-
sistenciesat thebifurcation(case2, 11). In thesecasesthis
is probablydueto incorrectestimatesmadewith the“clas-
sical” method,dueto varying vesseltortuosity. Errorsap-
pearto dependnot only on the vertical resolutionbut also
on vesseltortuosity. By looking at the reformattedimage
displayedon the browser it is possibleto checkthe local
qualityof thereconstruction(seeFig.14).

6 Discussion

Computervision, virtual reality and Web technologies
canreally have clinically relevantapplications.In this pa-
perwe presenteda novel applicationusingcustomizedim-
ageprocessingtechniqueandwebtechnologiesto helpsur-
geonsin diagnosisandpre-operative measurementsof 3D
structures.Theapplicationis simply to beconsideredasan
exampleshowing that theaccuracy requestedby theappli-
cationis achievablewith thesemethods,but otherapplica-
tionscanbeobtainedeasily.

n. Rad(mm.) VRML rad.(mm.)
1 10.6 � 0.7 10.6 � 0.7
2 10.4 � 0.7 8.9 � 0.7
3 16.8 � 0.7 17.8 � 0.7
4 9.9 � 0.7 9.9 � 0.7
5 12.5 � 0.7 11.8 � 0.7
6 11.0 � 0.7 11.0 � 0.7
7 10.3 � 0.7 9.2 � 0.7
8 12.3 � 0.7 12.5 � 0.7
9 10.3 � 0.7 9.7 � 0.7
10 10.6 � 0.7 9.3 � 0.7
11 9.7 � 0.7 8.9 � 0.7
12 10.3 � 0.7 10.3 � 0.7

Table 3. Minim um radius of aor tic neck (mea-
sured carefull y at the same z location using a
standar d 2d method, and working directl y on
the 3D model.

n. Z distance(mm.) Length(VRML) (mm.)
1 106 � 2 115 � 2
2 88 � 2 94 � 2
3 88 � 8 101 � 8
4 110 � 2 120 � 2
5 120 � 2 137 � 2
6 129 � 5 166 � 5
7 164 � 3 170 � 3
8 129 � 3 146 � 3
9 125 � 5 148 � 5
10 120 � 3 133 � 3
11 110 � 3 133 � 3
12 120 � 3 127 � 3

Table 4. Z component of aneur ysm length and
real length measured on the VRML models.

9



n. Min rad.(mm.) VRML min (mm.)
1 9.9 � 0.7 10.4 � 0.7
2 6.5 � 0.7 6.3 � 0.7
3 12.1 � 0.7 11.3 � 0.7
4 15.7 � 0.7 15.0 � 0.7
5 12.1 � 0.7 11.8 � 0.7
6 14.0 � 0.7 13.5 � 0.7
7 22.6 � 0.7 21.4 � 0.7
8 14.0 � 0.7 14.2 � 0.7
9 10.3 � 0.7 8.6 � 0.7
10 6.9 � 0.7 7.3 � 0.7
11 4.5 � 0.7 7.6 � 0.7
12 13.4 � 0.7 12.6 � 0.7

Table 5. Minim um radius of aor tic bifur cation
(measured at the same z location) using a
standar d 2d method, and working directl y on
the 3D model.

n. Angle (grad) VRML estimation
1 139 � 12 155 � 12
2 127 � 12 163 � 12
3 128 � 12 135 � 12
4 145 � 12 141 � 12
5 135 � 12 139 � 12
6 117 � 12 125 � 12
7 124 � 12 130 � 12
8 140 � 12 157 � 12
9 131 � 12 130 � 12
10 136 � 12 148 � 12
11 139 � 12 143 � 12
12 132 � 12 139 � 12

Table 6. Estimation of intra-aor tic angle from
2D slices (left) and from the VRML browser.

Figure 14. The pre-computed image displa yed
on the top left represents the reformatted
slice (i.e. perpendicular to the vessel cen-
terline), passing near the clic ked point.

While the creationof interactive modelsis something
new, the imageprocessingmethodsarecustomversionsof
well known techniques.We comparedtheresultsobtained
with different methods,like contourbasedsegmentation,
isosurface extraction and 3D simplex balloon inflation.
Theresultssuggestthatfor imagesacquiredusingstandard
protocol,resultsareequivalent. However, if the quality of
imagesis not perfectit is betterto usethemoreinteractive
and robust method,like the contour-based,with a strong
control by experiencedradiologists. Our contour-based
approachoffers, however, someadvantagesif compared
with other found in literature, for examplein [10] where
segmentationof contourswasusedto build tubes,but only
on theoriginal MR slicesandnot on arbitraryslicesof the
3D dataset.

The remoteanalysisof the3D modelsseemsextremely
promising:in fact,thesystemallows inspectionsandmea-
surementnecessaryfor the planningof surgical interven-
tionsandit is:

� Fast:TheVRML measurablemodelscanbepublished
on thenetwithin a few hoursfrom theacquisition,in-
dependentlyfrom thelocationof thediagnosticandre-
constructingcenters.Model downloadis not usuallya
problem,beingour VRML files sufficiently small: a
geometrywith 10.000nodesis storedin afile of about
1MB, thatcanbegzip compressedto about300K, the
sizeof acommonimage.

� Reliable: almostall the imageprocessingtechniques
usedhavebeentestedin differentcontextsandapplica-
tions;thepreliminarytestsshowsalsoagoodaccuracy
of themeasurementsif comparedwith othermethods.
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� Easyto use:measuringdiametersanddistancesis just
doneby clicking with themouseonabrowserwindow
anddonotrequireoff line calculationsor postprocess-
ing.

We think alsothatan approachwherethe segmentation
is performedcarefullyin acontrolledenvironmentcangive
betterresultsthan the useof a simple algorithm as those
introducedin theCT consolesby personnelnot trainedfor
thespecifictask.

We plan now to test extensively the reconstruction
methodandto apply a similar approachto differentsurgi-
calapplications.Colonoscopy is, for example,anotherfield
of applicationwherethis kind of modelscanbe extremely
usefulfor collaborativestudyor diagnosis.
In order to have a better validation it will be also nec-
essaryto test the measurementsresultson known phan-
toms, and w plan to do this in the future. A gallery of
demo3D measurablemodelsis availableon our web site
( �����	��
����������� ��������� �������! "�$#"�%� ).
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