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Abstract. We recently introduced an efficient technique for out-of-core render-
ing and management of large textured landscapes. The technique, called Batched
Dynamic Adaptive Meshes (BDAM), is based on a paired tree structure: a tiled
quadtree for texture data and a pair of bintrees of small triangular patches for
the geometry. These small patches are TINs that are constructed and optimized
off-line with high quality simplification and tristripping algorithms. Hierarchi-
cal view frustum culling and view-dependendent texture/geometry refinement is
performed at each frame with a stateless traversal algorithm that renders a con-
tinuous adaptive terrain surface by assembling out of core data. Thanks to the
batched CPU/GPU communication model, the proposed technique is not proces-
sor intensive and fully harnesses the power of current graphics hardware. This
paper summarizes the method and discusses the results obtained in a virtual fly-
through over a textured digital landscape derived from aerial imaging.

1 Introduction

Virtual environment technology has been developing over a long period, and offering
presence simulation to users as an interface metaphor to a synthesized world has be-
come the research agenda for a growing community of researchers and industries. The
motivation for such a research direction is twofold. From an evolutionary perspective,
virtual reality is seen as a way to overcome limitations of standard human-computer
interfaces; from a revolutionary perspective, virtual reality technology opens the door
to new types of applications that exploit the additional possibilities offered by presence
simulation.

Our sense of physical reality is a construction derived from the symbolic, geometric,
and dynamic information directly presented to our senses. Sensory simulation is thus
at the heart of virtual reality technology and, since vision is generally considered the
most dominant sense, the development of efficient methods for generating high quality
visual representations of simulated environments is of primary importance.

Real-time 3D exploration of digital elevation models (DEM), which are comput-
erized representations of the Earth’s relief, is now one of the most important features



Fig. 1. Flying over reconstructed terrains at different scales: Left: Global reconstruction of
Mars. Right: City scale exploration (Nice, France); textured terrain and same view with wireframe
showing adaptive rendering tessellation.

in a number of practical applications, that range from scientific simulators, to gaming
systems, to virtual storytelling applications.

Rendering large-scale high resolution terrains with high visual and temporal fidelity
on a graphics PC platform is, however, a very challenging task, since it is necessary to
meet the following requirements on the rendering subsystem:

– high visual and temporal fidelity: at least 30 frames per second, with about 1M
pixels/frame with color defined at 16 to 24 bits per pixels;

– large scale high resolution terrains: texture mapped elevation data (DTM or
DEM/DSM). Typical current database sites are represented by elevation grids of
about 8Kx8K to 40Kx40K (this means up to billions of vertices per model). Color
resolution is generally similar or 2 to 4 times larger;

– graphics PC platform: at the time of this writing, this means a one or two-processor
machine with 32 bit architecture, large local disk, 1GHz or more Pentium class pro-
cessor, DDR memory, and good quality commodity graphics board (AGP4X/8X,
theoretical peak rendering speed in the order of tens or hundreds of millions of
vertices per second).

The above requirements indicate that scene complexity is much larger that what can
be handled by brute force methods. Since there is no upper bound on the complexity
of a scene visible from a specific viewpoint, occlusion and view frustum culling tech-
niques are not sufficient alone for meeting the performance requirements dictated by
the human perceptual system. Achieving this goal requires the ability to trade rendering
quality with speed. Ideally, this time/quality conflict should be handled with adaptive
techniques, to cope with the wide range of viewing conditions while avoiding worst
case assumptions.

Current dynamic multiresolution algorithms are, however, very processor intensive,
and fail to provide adequate performance for large datasets. In particular, multireso-
lution rendering techniques were designed for the previous generation machines, and



are generally too processor intensive. The potential of current GPUs is far from be-
ing fully exploited, and, on current platforms, performance is directly related to CPU
processing power, which grows at a much slower rate than GPU’s one. Current state-
of-the-art techniques, based on hierarchical techniques (e.g., [4]) use only about 10%
to 20% of the available graphics power for large datasets and do not offer efficient
means to preserve sharp features. Moreover, in most applications that need interactive
terrain visualization, managing the terrain multiresolution structure is not the only task
that must be accomplished by the system: dynamics simulation, AI of other agents,
database queries, and other jobs have to be carried out in the same time. For this rea-
son, using current multiresolution solutions, the size of the terrain representation that
can be constructed/updated and rendered for each frame is severely limited by the CPU
processing power and by far smaller than the GPU capabilities.

We recently introduced a technique, named Batched Dynamic Adaptive Meshes
(BDAM), that is based on the idea to move the grain of the multiresolution models up
from triangles to small contiguous portions of mesh in order to alleviate the process-
ing load and to better exploit current graphics hardware. The technique is based on a
paired tree structure: a tiled quadtree for texture data and a pair of bintrees of small
triangular patches for the geometry. These small patches are TINs that are constructed
and optimized off-line with high quality simplification and tristripping algorithms. A
hierarchical view frustum culling and view-dependendent texture/geometry refinement
can be performed, at each frame, with a stateless traversal algorithm that renders a
continuous adaptive terrain surface by assembling these small patches. An out-of-core
technique has been designed and tested for constructing BDAMs using a generic high
quality simplification.

Thanks to the batched CPU/GPU communication model, the proposed technique is
not processor intensive and fully harnesses the power of current graphics hardware. The
remainder of this paper summarizes the method and discusses the results obtained in a
virtual flythrough over a textured digital terrain model of the city of Nice, France.

2 Methods and tools

Most of current multiresolution algorithms are designed to use the triangle as the small-
est primitive entity. The main idea behind our approch is to adopt a more complex
primitive: small surface patches composed of a batch of a few hundreds of triangles.
The benefits of this approach are that the per-triangle workload to extract a multiresolu-
tion model is highly reduced and the small patches can be preprocessed and optimized
off-line for a more efficient rendering. We summarize here the main concepts behind
BDAM. Please refer to the original papers for further details [1, 2].

In BDAM, the small patches form a hierarchy of right triangles (HRT) that is coded
as a binary tree. This representation can be used to easily extract a consistent set of
contiguous triangles which cover a particular region with given error thresholds. These
small triangular patches can be batched (hence the name) to the graphics hardware in
the most efficient way. Therefore, each bintree node contains a small chunk (in the
range of 256..8K) of contiguous well packed tri-stripped triangles. To ensure the cor-
rect matching between triangular patches, BDAM exploits the right triangle hierarchy



property that each triangle can correctly connect to: triangles of its same level; triangles
of the next coarser level through the longest edge; and triangles of the next finer level
through the two shortest edges.

To guarantee the correct connectivity along borders of different simplification lev-
els, triangular patches are built so that the error is distributed as shown in figure 2: each
triangle of the bintree represents a small mesh patch with error ek inside and error ek+1

(the error corresponding to the next more refined level in the bintree) along the two
shortest edges. In this way, each mesh composed by a collection of small patches ar-
ranged as a correct bintree triangulation still generates a globally correct triangulation.
This simple edge error property is exploited, as explained in the original paper [2], to
design a distributed out-of-core high quality simplification algorithm that concurrently
builds all patches.

In Fig. 2 we show an example of these properties. In the upper part of the figure we
show the various levels of a HRT and each triangle represents a terrain patch composed
by many graphics primitives. Colors correspond to different errors; the blending of the
colors inside each triangular patch corresponds to the smooth error variation inside
each patch. When composing these triangular patches using the HRT consistency rules,
the color variation is always smooth: the triangulation of adjacent patches correctly
matches.

Fig. 2. An example of a BDAM: each triangle represents a terrain patch composed by many
triangles. Colors correspond to different errors; the blending of the color inside each triangle
corresponds to the smooth error variation inside each patch.

Texture and geometry trees. To efficiently manage large textures, the BDAM approach
partitions them into tiles before rendering and arranges them in a multiresolution struc-



ture as a tiled texture quadtree. Each texture quadtree element corresponds to a pair of
adjacent geometry bintree elements. The roots of the trees cover the entire dataset, and
both trees are maintained off-core using a pointerless structure that is mapped at run
time to a virtual memory address range. During rendering, the two trees are processed
together. Descending one level in the texture quadtree corresponds to descending two
levels in the associated pair of geometry bintrees. This correspondence can be exploited
in the preprocessing step to associate object-space representation errors to the quadtree
levels, and in the rendering step to implement view-dependent multiresolution texture
and geometry extraction in a single top-down refinement strategy.

Errors and bounding volumes. To easily maintain the triangulation coherence BDAM
exploits the concept of nested/saturated errors, introduced by Pajarola[6], that supports
the extraction of a correct set of triangular patches with a simple stateless refinement
visit of the hierarchy [6, 4] that starts at the top-level of the texture and geometry trees
and recursively visits the nodes until the screen space texture error becomes acceptable.
The object-space errors of the patches are computed directly during the preprocessing
construction of the BDAM. Once these errors have been computed, a hierarchy of errors
that respect nesting conditions is constructed bottom up. Texture errors are computed
from texture features, and, similarly, are embedded in a corresponding hierarchy. For
the rendering purpose, BDAM adopts a tree of nested volumes that is also built during
the preprocessing, with properties very similar to the two error rules: 1) bounding vol-
ume of a patch include all children bounding volumes; 2) two patches adjacent along
hypotenuse must share the same bounding volume which encloses both. These bound-
ing volumes are used to compute screen space errors and also for view frustum culling.

Large dataset partitioning. In order to handle the size and accuracy problems related
to large dataset management, we partition input data in a number of square tiles, there-
fore managing a forest of BDAM hierarchies instead of a single tree. This effectively
decomposes the original dataset into terrain tiles. It should be noted, however, that the
tiles are only used to circumvent address space and accuracy limitations and do not
affect other parts of the system. In particular, errors and bounding volumes are propa-
gated to neighboring tiles through the common edges in order to ensure continuity for
the entire dataset. The tiles have an associated (u, v) parameterization, which is used
for texture coordinates and to construct the geometry subdivision hierarchy. The num-
ber and size of the tiles is arbitrary and depends only on the size of the original dataset.
In particular, we make sure that the following constraints are met: (a) a single precision
floating point representation is accurate enough for representing local coordinates (i.e.
there are less than 223 texels/positions along each coordinate axis); (b) the size of the
generated multiresolution structure is within the data size limitations imposed by the
operating system (i.e. less than the largest possible memory mapped segment).

Top-down view-dependent refinement and rendering. For each of the partitions that
compose the dataset, we map its data structure into the process address space, render
the structure using a stateless top-down refinement procedure, then delete the mapping
for the specified address range. The refinement procedure starts at the top level of the
texture and geometry trees of a given tile and recursively visits their nodes until the



screen space texture error becomes acceptable or the visited node bounding sphere is
proved off the viewing frustum. While descending the texture quadtree, corresponding
displaced triangle patches in the two geometry bintree are identified and selected for
processing. Once the texture is considered detailed enough, texture refinement stops.
At this point, the texture is bound and the algorithm continues by refining the two ge-
ometry bintrees until the screen space geometry error becomes acceptable or the visited
node is culled out. Patch rendering is done by converting the corner vertices to camera
coordinates and binding them along with associated normals and texture coordinates to
the appropriate uniform parameters, prior to binding varying vertex data and drawing
an indexed triangle strip. With this method, each required texture is bound only once,
and all the geometry data covered by it is then drawn, avoiding unnecessary context
switches and minimizing host to graphics bandwidth requirement.

Memory management. Time-critical rendering large terrain datasets requires real-time
management of huge amounts of data. Moving data from the storage unit to main mem-
ory and to the graphics board is often the major bottleneck. We use both a data layout
aimed at optimizing memory coherence and a cache managed using a LRU strategy for
caching the most recent textures and patches directly in graphics memory. Since the disk
is, by far, the slowest component of the system, we have further optimized the external
memory management component with mesh compression and speculative prefetching
(see [2] for details).

3 Results

An experimental software library and a terrain rendering application supporting the
BDAM technique has been implemented and tested on Linux and Win32 platforms.
The results were collected on a Linux PC with dual Intel Xeon 2.4 Ghz, 2GB RAM,
two Seagate ST373453LW 70 GB ULTRA SCSI 320 hard drives, AGP 8x and NVIDIA
GeForce Fx Ultra graphics.

The test case discussed in this paper concerns the preprocessing and interactive
exploration of a terrain dataset of the Nice metropolitan area 1. We used a 8K x 8K
elevation grid with 100 centimeter horizontal resolution. On this terrain, we mapped a
16K x 16K RGB texture with 50 centimeter resolution.

3.1 Preprocessing

The input dataset was transformed to multiresolution by our texture and geometry pro-
cessing tools. For textures, we used a tile size of 256x256 pixels, which produced a 7
level quadtree and compressed colors using the DXT1 format. Texture preprocessing,
including error propagation, took roughly two hours and produced a structure occu-
pying 132 MB on disk. Processing time is dominated by texture compression. For
geometry, we generated two 17 levels bintrees, with leaf nodes containing triangular
patches of 32x32 vertex side at full resolution and interior nodes with a constant vertex

1 dataset: courtesy of ISTAR high resolution cartographic database.



count of 600. Geometry preprocessing, that included optimized tristrip generation and
data compression, has been performed roughly in 3.5 hours, producing a multiresolu-
tion structure which occupies 321 MB. Size has been reduced by compression to about
60 % of the size of the original model. The full resolution model is made of 46M trian-
gles. For the sake of comparison, Hoppe’s view dependent progressive meshes [3], that,
like BDAMs, support unconstrained triangulation of terrains, need roughly 380MB of
RAM and uses 190MB of disk space to build a multiresolution model of a simplified
version of 7.9M triangles of the Puget Sound dataset 2. Preprocessing times are similar
to BDAM times. By contrast, SOAR [5] geometry data structure, which is based on a
hierarchy of right triangles, takes roughly 3.4 GB3 on disk for the processed data set,
but is much faster to compute since the subdivision structure is data independent.

3.2 View-dependent Refinement

Fig. 3. Performance Evaluation.Rendering rates per frame with and without data prefetching.
Note how the prefetch version presents a smoother behaviour.

2 The dataset at various resolution is freely available from
http://www.cc.gatech.edu/projects/large models/ps.html

3 The version of SOAR used in this comparison is v1.11, available from
http://www.cc.gatech.edu/∼lindstro/software/soar/



Fig. 4. Complexity evaluation.Rendered complexity per frame.

We evaluated the performance of the BDAM technique on a number of flythrough
sequences. The quantitative results presented here were collected during a 100 seconds
high speed fly-over of the data set with a window size of 800x600 pixels and a screen
tolerance of 1.0 pixel. The qualitative performance of our view-dependent refinement
is further illustrated in an accompanying video4, that shows the live recording of the
analyzed flythrough sequence (Fig. 5).

Figure 3 illustrates the rendering performance of the application. We were able to
sustain an average rendering rate of roughly 60 millions of textured triangles per sec-
ond, with peaks exceeding 71 millions, which are close to the peak performance of
the rendering board (Fig. 3 left). By comparison, on the same machine, SOAR peak
performance was measured at roughly 5.5 millions of triangles per second, even though
SOAR was using a smaller single resolution texture of 2Kx2K texels. The increased per-
formance of the BDAM approach is due to the larger granularity of the structure, that
amortizes structure traversal costs over many graphics primitives, reduces AGP data
transfers through on-board memory management and fully exploits the post-transform-
and-lighting cache with optimized indexed triangle strips.

Rendered scene granularity is illustrated in figure 4 with the peak complexity of
the rendered scenes reaching 1.7M triangles and 9.6M texels per frame. Since we are

4 The videos are available from http://www.crs4.it/vic/multimedia/.



(a) Frame 1800 (b) Frame 2800

(c) Frame 1800 wireframe (d) Frame 2800 wireframe

Fig. 5. Selected flythrough frames. Screen space error tolerance set to 3.0 pixels.

able to render such complex scenes at high frame rates (30 to 210 Hz for the entire
test path, Fig. 4), it is possible to use very small pixel threshold, virtually eliminating
popping artifacts, without the need to resort to costly geomorphing features. Moreover,
since TINs are used as basic building blocks, the triangulation can more easily adapt to
high frequency variations of the terrain, such as house walls, than techniques based on
regular subdivision meshes.

4 Conclusions

We have presented an efficient technique for out-of-core management and interactive
rendering of large scale textured terrain surfaces. The main idea behind the method is
to move the grain of the multiresolution models up from triangles to small contiguous
portions of mesh in order to alleviate the processing load and to better exploit current
graphics hardware. The results demonstrate that, thanks to the batched host-to-graphics



communication model, performance is limited by graphics processor speed. The tech-
nique is thus well suited for a range of interactive applications, including virtual story-
telling systems requiring the interactive rendering of massive outdoor sets.
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