Laboratory for Advanced Planning
and simulation project

Tutorial on Rapid Prototyping
manufacturing lumen vessel
by Open Cascade

Fabrizio Murgia, Piero Pili, Gabriella Pusceddu,
Gregorio Franzoni

CRS4, EIP/Geometric Modelling and Monte Carlo Simulations Area

Tutorial on Rapid Prototyping manufacturing
lumen vessel by Open Cascade

Fabrizio Murgia, Gabriella Pusceddu, Gregorio Franzoni, Piero Pili
Geometric Modeling Monte Carlo Simulation Area
Energy and Chemical Processes Dept.
CRS4, Italy

12 Giugno 2003

Abstract

This document is the tutorial program for Splinetor. Using this tutorial a
programmer with basic experience in C++ will be able to use Open Cascade
to build a valid Boundary representation starting from the carotid segmented
lumen, generated by the segmentation tool. Such a BRep solid can be interac-
tively inspected by the program Sample, the visualization tool.

Splinetor is a package able to create valid solid models in Boundary Repre-
sentation (BRep) starting from clouds of points extracted by the segmentation
tool applied on a data set of Computer Tomography (CT) images.

Splinetor final goal is the threedimensional (3D) printing of Brep realized
with a Rapid Prototyping device; therefore Splinetor must be able to export
the final solid model in STereoLitography format (stl), till now the only input
format accepted by Stratasys Rapid Prototyping devices.

Splinetor is based on two Open Source libraries: OpenCascade (©Matra
Datavision for the solid modelling representation and QT (©Trolltech as graph-
ics user interface and visualization tool.

Open Cascade is a set of established 3D modeling components from Matra
Datavision dedicated to the development of trade-specific technical and scien-
tific applications ranging from mechanical CAD/CAM/CAE to metrology and
measuring machines, biomedical software, 3D geological mapping, and optical
simulation.

Qt is a C++ toolkit for multiplatform GUI and application development. In
addition to the C++ class library, Qt includes tools to make writing applications
fast and straightforward.

A short description of the Open Source philosophy can be found in appendix
A. A short description of the structure of Open Cascade can be found in ap-
pendix B. A short description of stl format can be found in appendix C.

This work as been done inside the task activities of the project LAPS (Lab-
oratory for Advanced Planning and Simulation).

Contents

Introduction 4
1 Splinetor 5
1.1 Boundary Representation 5
1.1.1 BRep for lumen vessel reconstruction. 7

1.2 Splinetor. 8
1.2.1 Readingfiles 8
1.2.1.1 OCAS classes: gp Pnt 8

Reading file: Code example (1) 9

1.2.2 Filling arrays o 9
1.2.2.1 OCAS classes: Collection 9

1.2.2.2 OCAS classes: TColgp_ArraylOfPnt 10

Filling arrays: Code example (2) 11

1.23 Scalingarrays oo 11
Scaling arrays: Code example (3) 11

1.2.3.1 OCAS classes: gce_MakeScale2d 12

1.2.3.2 OCAS classes: gp-Trsf2d 12

Scaling arrays: Code example (4) 13

1.2.4 Interpolating curves and surfaces 13
1.2.4.1 B-Spline curves and surfaces. 14

1.2.4.2 OCAS classes: Geom_Geometry 15

1.2.4.3 OCAS classes: Geom_Curve 15

1.2.4.4 OCAS classes: Geom_BoundedCurve 16

1.2.4.5 OCAS classes: Geom_BSplineCurve 16

1.2.4.6 OCAS classes: GeomAPI Interpolate 17
Interpolating curves and surfaces: Code example (5) . . . 18

1.2.5 Connecting contiguous B-Spline Curves 19
1.2.5.1 OCAS classes: Geom_Surface 19

1.2.5.2 OCAS classes: Geom_BoundedSurface 20

1.2.5.3 OCAS classes: Geom_BSplineSurface 20

1.2.5.4 OCAS classes: GeomFill_BSplineCurves 23

Connecting contiguous B-Spline Curves: Code Example (6) 24

126 Creatingshells, 24
1.2.6.1 OCAS classes: BRepBuilderAPI MakeShape . . 25

1.2.6.2 OCAS classes: BRepBuilderAPI MakeShell . . . 25

1.2.6.3 OCAS classes: BRepBuilderAPI_MakeSolid. . . . 26

1.2.6.4 OCAS classes: TopoDS_Shape 28

1.2.6.5 OCAS classes: TopoDS_Shell 28

1.2.7

1.2.8

1.2.9

1.2.6.6 OCAS classes: TopoDS Solid.
1.2.6.7 OCAS classes: TCollection List
Creating shells: Code Example (7)
Lumen bifurcation
1.2.7.1 OCAS classes: Geom2dAPI InterCurveCurve. . .
Lumen bifurcation: Code Example (8)
Joining shells oL
1.2.8.1 OCAS classes: BRepOffsetAPI Sewing
1.2.8.2 OCAS classes: BRepTools
Joining shells: Code example (9)
Exporting tesselled lumen geometry: STLfile
1.2.9.1 OCAS classes: StIAPI_Writer
Exporting tesselled lumen geometry: Code example (10) .

2 Sample: Visualization Tool
2.1 Visualizer Sampleo oo oo
2.2 About Qt

221
2.2.2
223
224
2.2.5
2.2.6
2.2.7

Appendices

Qt Object Model
Object Trees and Object Ownership
Signalsand Slots L.
Signals L
Slots
Meta Object System
Short description

A Open Source Philosophy
B OpenCascade.
C STLformat
D Input File Format

Bibliography

Introduction

Rapid prototyping (RP) refers to the physical modeling of a design using a
special class of machine technology. RP systems quickly produce models and
prototype parts from 3D Computer-Aided Design (CAD) model data, Computer
Tomography (CT) and Magnetic Resonance Imaging (MRI) scan data and data
created from 3D object digitizing systems. Using an additive approach to build-
ing shapes layer-by-layer, RP systems join liquid, powder and sheet materials
to form physical objects [1].

RP is impacting medicine in several important ways, with the goal of de-
signing, developing and manufacturing medical devices and instrumentation [2].

The great advantage of RP technologies is the precise reproduction of objects
from a 3D medical image data-set as a physical model that can be looked at
and touched by the surgeon [3].

More details about RP and its applications in medicine can be found in [4],
[5]-

In our work we use the results of the segmentation tool to extract geometric
data from a set of CT images of a human carotid explanted from a cadaver of
a 32 years old man. Geometric data were the input for splinetor, the package
written for the reconstruction of the solid geometry of the artery; the output
of splinetor is an .stl file. The STL file is the input for the Rapid Prototyping
device, a Stratasys FDM 2000 ((©Stratasys) using Fused Deposition Modelling
(FDM) technique. Further details about LAPS entire pipeline can be found in
[6], details about the work progress can be found in [7] and [8].

This document is the tutorial program for Splinetor. Using this tutorial a
programmer with basic experience in C++ will be able to use Open Cascade
to build a valid Boundary representation starting from the carotid segmented
lumen, generated by the segmentation tool. Such a BRep solid can be interac-
tively inspected by the program Sample, the visualization tool.

Chapter 1

Splinetor

This chapter shows how to use Open-Source software for geometric reconstruc-
tion, OpenCascade (OCAS) library, to build a valid Boundary Representation
(BRep) of a human carotid lumen. Splinetor module is inserted in the lumen
reconstruction and manufacturing software architecture shown in Figure 1.1.

1.1 Boundary Representation

B-Rep models represent a solid indirectly by a representation of its bounding
surface. In BRep an object is represented by a combination of entities of type
point, edge, face, and volume (Figure 1.2).

Faces, edges, and wvertices entities, and the related geometric information
form the basic components of B-Rep models. The geometric information con-
tains the face and edge equations (or data to compute them), and vertex coor-
dinates. The topology description contains the information on the relationship
between the components, i.e. how faces, edges and vertices of the model are
connected together.

Because B-Rep includes such topological information, a solid is represented
as a closed space in 3-D space.

The boundary of a solid separates points inside from points outside of the
solid. An element of B-rep consists of geometric data of the element, an identi-
fication of the code of element categories, and its relationship to other elements
[11].

B-rep models can represent a wide class of objects but the data structure is
complex, and can require a large memory space for a complex object [12].

Normally, a face is a bounded region of a planar, quadratic, toroidal, or
sculptured surface. The bounded region of the surface that forms the face is
represented by a closed curve that lies on the surface. A face can have several
bounding curves to represent holes in a solid. The bounding curves of faces are
represented by edges. The portion of the curve that forms the edge is represented
by two vertices.

A B-Rep model to be valid, has to fulfill the following conditions: the set of
faces forms a complete skin of the solid with no missing parts, and faces must be
closed, orientables, bounded, connected, and do not intersect each other except
at common vertices or edges [13]. Furthermore, the boundaries of faces do

INPUT: CTIMAGES

SEGMENTATION TOOL

CONTOUR
POINTS

SPLINETOR

STL FILE

FDM PRINTER

OUTPUT: 3D OBJECT

Figure 1.1: The pipeline of lumen reconstruction and manufacturing project. The segmentation
tool can be either the software written during VIVA [9] project or the segmentation tool [10]. 3D
printing of the object output from splinetor is realized with FDM technique [2].

not intersect themselves. These conditions disallow self-intersecting and open
objects [14].

Boundary representation can be divided in three classes: facetted, elemen-
tary, and advanced B-Rep. In facetted B-Rep, a solid is bounded by planar
surfaces. Only points, planes and planar polygons are necessary and are im-
plicitly represented by their vertex points. The surfaces included in elementary
B-Rep are planar, quadric, and toroidal surfaces. The bounding curves of the
faces are lines or conics. In advanced B-Rep, the surfaces includes also B-Spline
surfaces in addition to elementary B-Rep. The bounding curves are B-Spline
curves.

In facetted B-Rep, all edges are straight line segments. Therefore faces can
be represented as polygons and each polygon as a set of coordinate values x,
y and z. The data structure in this case is simple and easy to implement.
Facetted approximation of more sophisticated B-Rep models are normally used
for generation of graphical output.

The description of faces can vary. For example, a planar face can be rep-
resented in many different ways: using an analytical equation, a parametric
equation, a normal vector and a point on the surface, etc. In addition, a closed
3D boundary which lies on the surface is needed to define the face. In con-
ventional CAD systems, the use of faces is usually restricted to the quadrics
like cones, cylinders, spheres, etc. Modern CAD systems can use a variety of
functions to describe sculptured (or freeform) faces which cannot be represented
by simple analytical mathematical functions. We use one of the most common,
the B-Spline representation, a category of surfaces employing parametric poly-
nomials.

FACCIA =®Superficie
v

LOOP

v

SPIGOLO =¥ Curva
N4

VERTICE = Punto

Figure 1.2: The structure of a valid Boundary Representation, starting from clouds of points
defining single contours, we can use B-Spline curves to reconstruct the contour of each CT (Com-
puter Tomography) slice, thereafter we can join contiguous slices with B-Spline surfaces, then
sewing all the surfaces we obtain the solid model of the vessel.

1.1.1 BRep for lumen vessel reconstruction

In order to perform numerical analysis of an object, we must have its geometric
description. The complexity of human body is such that anatomical features
makes their mathematical description extremely difficult. In the case of lumen
vessel reconstruction the problem is a little bit simpler because the topology of
the geometric model does not present too much changes (it changes just in the
bifurcation region). Also the lumen geometry is quite smooth. Even though the
presence of these good features the geometric reconstruction and the automatic
manufacturing is a difficult problem The segmentation tool allows the extraction
of the geometry of the structures under consideration giving as output a set of
points describing the object in 3-D space as a set of planar contours (Figure
1.1).

A visual scheme of the reconstruction procedure is shown in Figure 1.2.
The process starts from clouds of points extracted from segmentation of CT
(Computer Tomography) images, then passes through the points interpolation
to obtain BSpline curves and through the curves composition to obtain BSpline
surfaces, and finishes obtaining a valid Brep of the vessel.

In next section we will describe the reconstruction steps, giving some de-
tails about the classes of the software Open Cascade (OCAS) [15] used during
splinetor developement. Open Cascade is a set of established 3D modeling com-
ponents from Matra Datavision dedicated to the development of trade-specific
technical and scientific applications ranging from mechanical CAD/CAM/CAE
to metrology and measuring machines, biomedical software, 3D geological map-

ping, and optical simulation.

1.2 Splinetor

Splinetor program based on OCAS libraries, is used to reconstruct valid 3D mod-
els in Boundary Representation, starting from arrays of points. These arrays of
points are obtained after a segmentation process on CT images of an autoptic
human carotid. The entire process ends with the 3D printing of reconstructed
solid models.

Splinetor is composed by the steps illustrated in Figure 1.3:

INPUT: Contour Points

; OUTPUT:SOLID.stl
Coordinates SPLINETOR

Writing STL file
headugile ? TopoDS_Shape
gp_Pat ¢ Joining Shells
Filling arrays * TopoDS_Shell
Tcolgp_AHayIOanfi Creating Shells
Bifurcation steps
l l Scaling arrays T Geom_BSplineSurface
Verifying arrays Tcolgp7MayIOant¢ Connceting Bapline
intersections Curves

l Teolgp_Array10fPnt| Interpolating arrays | T qoom BSplineCurve

Joining intersecting I

arrays

Figure 1.3: The steps composing splinetor program.

Each module is descripted in a subsection. Each OC class and method used
is shown. An example of thecode implementation is included.

1.2.1 Reading files

This module reads a file.dat, the file containing cartesian coordinates of contour
points. This file is obtained as output of segmentation step. Inside the input file
besides the cartesian coordinates we find also the number of branches composing
the vessel structure, the number of slices composing each branch and the number
of points composing each slice. The data format of the file to be read as input is
specified on Appendix D. The cartesian coordinates read become arguments of
the class gp_Pnt, the class representing points in OCAS. A detailed description
of gp_Pnt class can be found on section 1.2.1.1, with an example of our code.

1.2.1.1 OCAS classes: gp_Pnt

Purpose: Describes a 3D Cartesian point.

constructors:
gp-_Pnt() Constructs an undefined point

gp Pnt (const gp XYZ& Coord) Constructs a point from the
coordinate triple Coord

gp_Pnt (const Standard Real Xp, const Standard Real Yp,
const Standard_Real Zp) Constructs a point with three Cartesian co-
ordinates (Xp, Yp, Zp)

Standard Real Distance (const gp Pnt& Other) const Computes the
distance between this point and the point Other

Standard_Real SquareDistance (const gp_Pnt& Other) const Com-
putes the square distance, between this point and the point Other

void SetX (const Standard_Real X) Assigns the given value to the X
coordinate of this point

void SetY (const Standard_Real Y) Assigns the given value to the Y
coordinate of this point

void SetZ (const Standard Real Z) Assigns the given value to the Z coor-
dinate of this point

Reading file: Code example (1)

LogFile= input53mm286dx
char file[30]= "input33mm286dx";
logFile = fopen(file, "r");
fscanf (logFile,"%f %d %s %s %s %s %s", &z0,&npnt, a, a, a, a, a);
for(n=1;n<=npnt;n++) //For each slide
fscanf (logFile,"%f %f ", &x0, &y0);
gp_Pnt point(x0,y0,20);

1.2.2 Filling arrays

After the acquisition of data from file.dat and the creation of gp_Pnt, we put
them in ordered arrays with the class TColgp_ArraylOfPnt. Each array
contains a number of points equal to npnt, with the same z coordinate. Basic
features of such a class will be illustrated in the section 1.2.2.2 with an example
of our code, and characteristics of abstract mother class collection will be in
section 1.2.2.1;

1.2.2.1 OCAS classes: Collection

The Collections component contains the OCAS classes that handle dynamically
sized aggregates of data. They include a wide range of collections such as arrays,
lists and maps.

Collections classes are generic, that is, they can hold a variety of objects
which do not necessarily inherit from a unique root class. When you need to
use a collection of a given type of object you must instantiate it for this specific

type of element. Once this declaration is compiled all the functions available on
the generic collection are available on your instantiated class.
Note however:

Each collection directly used as an argument in a Open CASCADE
public syntax is instantiated in a Open CASCADE component.

The TColStd package (Collections of Standard Objects component)
provides numerous instantiations of these generic collections with objects
from the package Standard or from the Strings component.

The Collections component provides a wide range of generic collections:

Arrays are generally used for a quick access to the item, however an array
is a fixed sized aggregate.

Sequences are variable sized structures, they avoid the use of large and
quasi-empty arrays. But a sequence item is longer to access than an array
item: only an exploration in sequence is performant (but sequences are
not adapted for numerous explorations).

Arrays and sequences are commonly used as data structures for more com-
plex objects.

On the other hand maps are dynamic structures where the size is con-
stantly adapted to the number of inserted items and the access time for
an item is performant. Maps structures are commonly used in cases of nu-
merous explorations: they are typically internal data structures for com-
plex algorithms. Sets generate the same results as maps but computation
time is considerable.

Lists, queues and stacks are minor structures similar to sequences but with
other exploration algorithms.

Most collections follow value semantics: their instances are the actual collec-
tions, not handles to a collection. Only arrays, sequences and sets may also be
manipulated by handle, and therefore shared.

1.2.2.2 OCAS classes: TColgp_Arrayl1OfPnt

Is a class that inherits from the generic class TCollection_Arrayl, instantiating
it with gp_Pnt.

Purpose: to instantiate unidimensional arrays similar to C arrays, that is,

of fixed size, but dynamically dimensioned at construction time. As with
a C array, the access time for an Arrayl indexed item is constant and is
independent of the array size. Arrays are commonly used as elementary
data structures for more complex objects. Arrayl is a generic class which
depends on Item, the type of element in the array.

TCollection_Arrayl (const Standard_Integer lower, const Standard-

_Integer upper) Constructs an array of the lower and upper bounds.
The size of the array is upper - lower + 1.

10

TCollection HArray1 (const Standard_Integer lower, const Standard-
_Integer upper) HArrayl objects are handles to arrays.

void Init(const Item & Value) This function assigns an initial value to all
the items of the array

void SetValue (const Standard _Integer Index, const Item & Value)
This function assigns a value to the Indexth item of this array.

Standard_Integer Length() const This function returns the number of
items on this array.

Standard_Integer Lower() const Returns the index of the lower bound of
this array.

Standard_Integer Upper() const Returns the index of the upper bound of
this array.

Item& operator() (const Standard_Integer Index) Returns the value of
the item of index Index in this array, or returns a modifiable reference to
the item of index Index in this array, in order to assign a new value to
this item.

Filling arrays: Code example (2)

for (n=1;n<=npnt;n++){
TColgp_Arrayl10fPnt mieipnt(1,npnt+1);
if (n==1)
mieipnt.Init(point);
mieipnt.SetValue(n,point);}

1.2.3 Scaling arrays

First of all, we have to calculate the center point of the array, it will be the
reference point for the scale transformation as shown in the code example (3)
below:

Scaling arrays: Code example (3)

for (n=1;n<=npnt;n++){
xa[n]=x0;
ya[nl=y0;
xam=xam+xa[n];
yam=yam+ya[n];}

xm=xam/npnt ;

ym=yam/npnt ;

zm=z0;

gp_Pnt Med(xm,ym,zm) ;

The operation of scaling arrays is useful to obtain the arrays of points nec-
essary to build a solid parallel to the main solid. With this step is possible to
give a thickness to the solid to be printed.

11

We choose to work with plane slices, so the scale transformation will be 2D
on plane x-y for each point on each slice, i.e. the transformation affects just
x and y coordinates. We give a scale factor of 1.5 as argument of the class
gce_MakeScale2d; the scale operation will be applied to each point by the
method Transforms(...) of the class gp_Trsf2d. Basic characteristics of these
classes with an example of our code will be illustrated in the sections 1.2.3.1
and 1.2.3.2.

1.2.3.1 OCAS classes: gce_MakeScale2d

Purpose:

Implements an elementary construction algorithm for a scaling transfor-
mation in 2D space. The result is a gp_Trsf2d transformation.

A MakeScale2d object provides the framework for:
- defining the construction of the transformation,
- implementing the construction algorithm, and

- consulting the result.
constructor:

gce_MakeScale2d (const gp_Pnt2d& Point, const Standard_Real Scale)
Constructs a scaling transformation with:
- Point as the center of the transformation, and

- Scale as the scale factor.

const gp_Trsf2d& Value() const Returns the constructed transformation.

1.2.3.2 OCAS classes: gp_Trsf2d

Purpose:

Describes a group of geometric transformations performed in the plane
(2D space). These transformations include:

- translations,

- rotations,

- scaling transformations,

- reflections with respect to a point or line, and

- transformations obtained from combinations of the above.

These transformations respect the nature of geometric objects. For exam-
ple, a circle is transformed into a circle by a gp_Trsf2d.

The transformation of point P with coordinates (x,y,z) is the point P’ with
coordinates (x’,y’,z’) where:

' =all.x + al2.y + al3
y' = a2l.x + a22.y + a23

We could also write the above as:

12

P =VxP+T
where:

-V, known as the vectorial part of the transformation, is the 2 * 2 matrix:
all al2
a2l a22

- T, known as the translation part of the transformation, is the vector:

ald
a23

gp-Trsf2d() Constructs an Identity transformation.
void Transforms (Standard_Real& X, Standard_Real& Y) const

Applies this transformation to the coordinates:
-Xand Y.
Modifies Coord or X and Y.

Scaling arrays: Code example (4)

for(i=1;1<=npnt;i++){
gp_Pnt2d med2d(Med.X(),Med.Y());
gce_MakeScale2d sca2d (med2d,1.5);
gp_Trsf2d tra2d = sca2d.Value();
point = mieipnt(i);
tra2d.Transforms (point.X() ,point.Y());
gp_Pnt pundopo (point.X(), point.Y(), point.Z());

1.2.4 Interpolating curves and surfaces

The procedure of interpolation of points of singles arrays (real alone in Figure.
1.4 and real with scaled in Figure. 1.5) is realized with one B-Spline curve for
each slice.

We could interpolate the points with other curves, for instance Bezier Curves,
but starting from the point of view that Bezier Curves are special cases of B-
spline curves we chose B-Spline. B-spline curves satisfy all important properties
that Bezier curves have; B-spline curves provide more control flexibility, we can
use lower degree curves and still maintain a large number of control points. We
can change the position of a control point without globally changing the shape of
the whole curve (local modification property). Since B-spline curves satisfy the
strong convex hull property, they have a finer shape control. More details about
B-Spline theory can be found in section 1.2.4.1. In the subsequent section, i.e.
section 1.2.4.2, section 1.2.4.3, section 1.2.4.4, section 1.2.4.5, section 1.2.4.6, we
will describe the OCAS classes for the interpolation of clouds of points that we
used in our code with an example of the code.

13

S [ocument i
[C2icte wiow sandow e =
[[mzlls smeaswn] |

s > 90960385 e

Figure 1.4: Points interpolation of a single array.

Figure 1.5: Points interpolation of a real array and a scaled array.

1.2.4.1 B-Spline curves and surfaces

The B-Spline surface is a collection of B-Spline curves, i.e. the tensor product
of two curves defined by two parameters. The surface is defined as the set of
points obtained by evaluating equation 1 for all parameter values of u and v
between some Up,in and Umas, and Vi, and viges:
x
Su,v)=| y | =3, E;n:1 N (U)N;(U)Pz,]
z

where the k,l are the orders of the B-Spline surface in both directions and
P, ; is the array of n x m control points X;,;,yi,j,Zi,j. The term NF(u) represents
the polynomial B-spline basis functions of degree k-1 in u parameter direction,
and the basis functions of degree 1-1 in v direction [13].

A user creates a B-Spline surface by defining the order and drawing only the
control points. The shape of the surface is modified by moving one or several
control points.

One property of a B-Spline surface is local control which means that when
one control point is moved only a part of the surface is affected. The control

14

points are the actual shape descriptors of the curve. A control point can be either
interpolating, i.e. the surface intersects the control point, or approximating
where the surface does not intersect the points. The orders of the surface also
describes the minimum array of control points required to define it. If more
points are used, each additional point row stands for a new patch. A very
important feature of B-Splines is the convex hull property. This means that the
surface is always included in the convex hull of its control points. The convex hull
is like a skin covered around the control points. The convex hull property is used
to compute B-Spline bounding boxes and preliminary intersection computations

Since the complexity of the construction of the B-Rep models, it is not
trivial for a designer to build correct B-Rep models directly. The designer needs
a sufficient collection of more convenient and efficient solid description methods.
For a B-Rep modeller, it is not easy to implement a textual user interface.

1.2.4.2 OCAS classes: Geom_Geometry

Purpose: The abstract class Geometry for 3D space is the root class of
all geometric objects from the Geom package. It describes the common
behavior of these objects when:

* applying geometric transformations to objects

* constructing objects by geometric transformation (including copy-
ing).

Only transformations which do not modify the nature of the geometry can
be applied to Geom objects: this is the case with translations, rotations, sym-
metries and scales; this is also the case with gp_Trsf composite transformations
which are used to define the geometric transformations applied using the Trans-
form or Transformed functions. Geometry defines the ”prototype” of the
abstract method Transform which is defined for each concrete type of derived
object. All other transformations are implemented using the Transform method.

1.2.4.3 OCAS classes: Geom_Curve

Purpose: The abstract class Curve describes the common behavior of curves
in 3D space. The Geom package provides numerous concrete classes of
derived curves, including lines, circles, conics, Bezier or BSpline curves,
etc.

The main characteristic of these curves is that they are parameterized.
The Geom_Curve class shows:

- how to work with the parametric equation of a curve in order to
calculate the point of parameter u, together with the vector tangent and
the derivative vectors of order 2, 3,..., N at this point;

- how to obtain general information about the curve (for example,
level of continuity, closed characteristics, periodicity, bounds of the pa-
rameter field);

- how the parameter changes when a geometric transformation is ap-
plied to the curve or when the orientation of the curve is inverted.

All curves must have a geometric continuity: a curve is at least ”C0”.
Generally, this property is checked at the time of construction or when

15

the curve is edited. Where this is not the case, the documentation states
so explicitly.

The Geom package does not prevent the construction of curves with null
length or curves which self-intersect.

1.2.4.4 OCAS classes: Geom_BoundedCurve

Purpose: The abstract class BoundedCurve describes the common behavior
of bounded curves in 3D space. A bounded curve is limited by two finite
values of the parameter, termed respectively ”first parameter” and ”last
parameter”. The ”first parameter” gives the ”start point” of the bounded
curve, and the ”last parameter” gives the "end point” of the bounded
curve.

The length of a bounded curve is finite.
The Geom package provides three concrete classes of bounded curves:
- two frequently used mathematical formulations of complex curves:
- Geom_BezierCurve
- Geom _BSplineCurve

- Geom_TrimmedCurve to trim a curve, i.e. to only take part of
the curve limited by two values of the parameter of the basis curve.

1.2.4.5 OCAS classes: Geom_BSplineCurve

Purpose: Describes a BSpline curve.
A BSpline curve can be:
- uniform or non-uniform,
- rational or non-rational,
- periodic or non-periodic.
A BSpline curve is defined by :

- its degree; the degree for a Geom _BSplineCurve is limited to a
value (25) which is defined and controlled by the system. This value is
returned by the function MaxDegree;

- its periodic or non-periodic nature;

- a table of poles (also called control points), with their associated
weights if the BSpline curve is rational. The poles of the curve are ” control
points” used to deform the curve. If the curve is non-periodic, the first
pole is the start point of the curve, and the last pole is the end point of
the curve. The segment which joins the first pole to the second pole is
the tangent to the curve at its start point, and the segment which joins
the last pole to the second-from-last pole is the tangent to the curve at
its end point. If the curve is periodic, these geometric properties are not
verified. It is more difficult to give a geometric signification to the weights
but are useful for providing exact representations of the arcs of a circle or

16

ellipse. Moreover, if the weights of all the poles are equal, the curve has a
polynomial equation; it is therefore a non-rational curve.

- a table of knots with their multiplicities. For a Geom_BSpline-
Curve, the table of knots is an increasing sequence of reals without repeti-
tion; the multiplicities define the repetition of the knots. A BSpline curve
is a piecewise polynomial or rational curve. The knots are the parameters
of junction points between two pieces. The multiplicity Mult(i) of the
knot Knot(i) of the BSpline curve is related to the degree of continuity of
the curve at the knot Knot(i), which is equal to Degree - Mult(i) where
Degree is the degree of the BSpline curve.

If the knots are regularly spaced (i.e. the difference between two consecu-
tive knots is a constant), three specific and frequently used cases of knot
distribution can be identified:

- "uniform” if all multiplicities are equal to 1,

- ”quasi-uniform” if all multiplicities are equal to 1, except the first
and the last knot which have a multiplicity of Degree + 1, where Degree
is the degree of the BSpline curve,

- ”Piecewise Bezier” if all multiplicities are equal to Degree except the
first and last knot which have a multiplicity of Degree + 1, where Degree
is the degree of the BSpline curve. A curve of this type is a concatenation
of arcs of Bezier curves.

If the BSpline curve is not periodic:

- the bounds of the Poles and Weights tables are 1 and NbPoles, where
NbPoles is the number of poles of the BSpline curve,

- the bounds of the Knots and Multiplicities tables are 1 and NbKnots,
where NbKnots is the number of knots of the BSpline curve.

If the BSpline curve is periodic, and if there are k periodic knots and p
periodic poles, the period is:

-period = Knot(k + 1) - Knot(1)
and the poles and knots tables can be considered as infinite tables, veri-
fying:

- Knot(i+k) = Knot(i) + period

- Pole(i+p) = Pole(i)

Data structures of a periodic BSpline curve are more complex than those
of a non-periodic one.

In this class, weight value is considered to be zero if the weight is less than
or equal to gp::Resolution().

1.2.4.6 OCAS classes: GeomAPI Interpolate
Purpose:
Describes functions for building a constrained 3D BSpline curve.

The curve is defined by a table of points through which it passes, and if
required:

17

- by a parallel table of reals which gives the value of the parameter of
each point through which the resulting BSpline curve passes, and

- by vectors tangential to these points.

An Interpolate object provides the framework for:
- defining the constraints of the BSpline curve,
- implementing the interpolation algorithm, and

- consulting the results.

GeomAPI Interpolate (const Handle(TColgp_HArray1OfPnt)& Points,

const Standard _Boolean PeriodicFlag, const Standard_Real Tol-
erance)

Initializes an algorithm for constructing a constrained BSpline curve:
- passing through the points of the table Points, or

If PeriodicFlag is true, the constrained BSpline curve will be periodic and
closed. In this case, the junction point is the first point of the table Points.

The tolerance value Tolerance is used to check that:
- points are not too close to each other, or
- tangential vectors (defined using the function Load) are not too small.

The resulting BSpline curve will be ”C2” continuous, except where a tan-
gency constraint is defined on a point through which the curve passes (by
using the Load function). In this case, it will be only ”C1” continuous.

Once all the constraints are defined, use the function Perform to compute
the curve.

- There must be at least 2 points in the table Points.

- If PeriodicFlag is false, there must be as many parameters in the
array Parameters as there are points in the array Points.

- If PeriodicFlag is true, there must be one more parameter in the
table Parameters : this is used to give the parameter on the resulting
BSpline curve of the junction point of the curve (which is also the first
point of the table Points).

void Perform() Computes the constrained BSpline curve.

Standard_Boolean IsDone() const Returns true if the constrained BSpline

curve is successfully constructed.

const Handle(Geom BSplineCurve)& Curve() const Returns the com-

puted BSpline curve.

Interpolating curves and surfaces: Code example (5)

GeomAPI_Interpolate interpolscaled =

GeomAPI_Interpolate(mieipntscaled, Standard_False,1.0e-3);

interpolscaled.Perform();

18

GeomAPI_Interpolate interpol =
GeomAPI_Interpolate(mieipnt,Standard_False,1.0e-3);
interpol.Perform() ;

Handle(Geom_BSplineCurve) baseOn, baseQff;
if (interpolscala.IsDone()){// if interpolation curve exists
if (interpol.IsDone()){
baseOn=interpol.Curve();
baseOff=interpolscaled.Curve();}

Figure 1.6: Junction shell of 2 contiguous B-Spline curves.

1.2.5 Connecting contiguous B-Spline Curves

For the connection of B-Spline curves obtained during the precedent step we
use B-Spline surfaces, surface properties are similar to curves properties and
are described in section 1. In sections 1.2.5.1, 1.2.5.2, 1.2.5.3, 1.2.5.4, we give
an OCAS classes description, illustrating constructors, methods and possible
arguments choices; we also give an example of the code.

A visualization of the results obtained connecting two contiguous B-Spline
curves using B-Spline surfaces in Figure 1.6 and Figure 1.7.

1.2.5.1 OCAS classes: Geom_Surface

Purpose:

Describes the common behavior of surfaces in 3D space. The Geom pack-
age provides many implementations of concrete derived surfaces, such as
planes, cylinders, cones, spheres and tori, surfaces of linear extrusion, sur-
faces of revolution, Bezier and BSpline surfaces, and so on.

The key characteristic of these surfaces is that they are parameterized.
Geom_Surface demonstrates:

- how to work with the parametric equation of a surface to compute
the point of parameters (u, v), and, at this point, the 1st, 2nd ... Nth
derivative,

19

- how to find global information about a surface in each parametric
direction (for example, level of continuity, whether the surface is closed,
its periodicity, the bounds of the parameters and so on),

- how the parameters change when geometric transformations are
applied to the surface, or the orientation is modified.

Note that all surfaces must have a geometric continuity, and any surface
is at least ”C0”. Generally, continuity is checked at construction time or
when the curve is edited. Where this is not the case, the documentation
makes this explicit.

The Geom package does not prevent the construction of surfaces with null
areas, or surfaces which self-intersect.

1.2.5.2 OCAS classes: Geom_BoundedSurface
Purpose: The root class for bounded surfaces in 3D space. A bounded surface
is defined by a rectangle in its 2D parametric space, i.e.

- its u parameter, which ranges between two finite values u0 and u1,
referred to as "First u parameter” and ”Last u parameter” respectively,
and

- its v parameter, which ranges between two finite values v0 and v1,
referred to as ”First v parameter” and the ”Last v parameter” respectively.

The surface is limited by four curves which are the boundaries of the
surface:

- its u0 and ul isoparametric curves in the u parametric direction
- its v0 and v1 isoparametric curves in the v parametric direction.
A bounded surface is finite.

The common behavior of all bounded surfaces is described by the Geom-
_Surface class.

The Geom package provides three concrete implementations of bounded
surfaces:

- Geom_BezierSurface
- Geom_BSplineSurface
- Geom_RectangularTrimmedSurface

The first two of these implement well known mathematical definitions of
complex surfaces, the third trims a surface using four isoparametric curves,
i.e. it limits the variation of its parameters to a rectangle in 2D parametric
space.

1.2.5.3 OCAS classes: Geom_BSplineSurface

Purpose: Describes a BSpline surface.
In each parametric direction, a BSpline surface can be:

- uniform or non-uniform,

20

- rational or non-rational,
- periodic or non-periodic.
A BSpline surface is defined by:
- its degrees, in the u and v parametric directions,
- its periodic characteristic, in the u and v parametric directions,

- a table of poles, also called control points (together with the asso-
ciated weights if the surface is rational),

- a table of knots, together with the associated multiplicities.

The degree of a Geom_BSplineSurface is limited to a value (25) which
is defined and controlled by the system. This value is returned by the
function MaxDegree.

Poles and Weights
Poles and Weights are manipulated using two associative double arrays:
- the poles table, which is a double array of gp_Pnt points,
- the weights table, which is a double array of reals.
The bounds of the poles and weights arrays are:

- 1 and NbUPoles for the row bounds (provided that the BSpline
surface is not periodic in the u parametric direction), where NbUPoles is
the number of poles of the surface in the u parametric direction, and

- 1 and NbVPoles for the column bounds (provided that the BSpline
surface is not periodic in the v parametric direction), where NbVPoles is
the number of poles of the surface in the v parametric direction.

The poles of the surface are the points used to shape and reshape the
surface. They comprise a rectangular network.

If the surface is not periodic:

- The points (1, 1), (NbUPoles, 1), (1, NbVPoles), and (NbUPoles,
NbVPoles) are the four parametric ”corners” of the surface.

- The first column of poles and the last column of poles define two
BSpline curves which delimit the surface in the v parametric direction.
These are the v isoparametric curves corresponding to the two bounds of
the v parameter.

- The first row of poles and the last row of poles define two BSpline
curves which delimit the surface in the u parametric direction. These
are the u isoparametric curves corresponding to the two bounds of the u
parameter.

If the surface is periodic, these geometric properties are not verified.

It is more difficult to define a geometrical significance for the weights.
However they are useful for representing a quadric surface precisely. More-
over, if the weights of all the poles are equal, the surface has a polynomial
equation, and hence is a ”non-rational surface”.

The non-rational surface is a special, but frequently used, case, where all
poles have identical weights. The weights are defined and used only in

21

the case of a rational surface. The rational characteristic is defined in
each parametric direction. A surface can be rational in the u parametric
direction, and non-rational in the v parametric direction.

Knots and Multiplicities

For a Geom_BSplineSurface the table of knots is made up of two in-
creasing sequences of reals, without repetition, one for each parametric
direction. The multiplicities define the repetition of the knots.

A BSpline surface comprises multiple contiguous patches, which are them-
selves polynomial or rational surfaces. The knots are the parameters of
the isoparametric curves which limit these contiguous patches. The mul-
tiplicity of a knot on a BSpline surface (in a given parametric direction)
is related to the degree of continuity of the surface at that knot in that
parametric direction:

Degree of continuity at
knot(i) = Degree — Multi(i)
where:

- Degree is the degree of the BSpline surface in the given parametric
direction, and

- Multi(i) is the multiplicity of knot number i in the given parametric
direction.

There are some special cases, where the knots are regularly spaced in one
parametric direction (i.e. the difference between two consecutive knots is
a constant).

- 7Uniform”: all the multiplicities are equal to 1.

- "Quasi-uniform”: all the multiplicities are equal to 1, except for the
first and last knots in this parametric direction, and these are equal to
Degree + 1.

- "Piecewise Bezier”: all the multiplicities are equal to Degree except
for the first and last knots, which are equal to Degree + 1. This surface
is a concatenation of Bezier patches in the given parametric direction.

If the BSpline surface is not periodic in a given parametric direction, the
bounds of the knots and multiplicities tables are 1 and NbKnots, where
NbKnots is the number of knots of the BSpline surface in that parametric
direction.

If the BSpline surface is periodic in a given parametric direction, and there
are k periodic knots and p periodic poles in that parametric direction:

- the period is such that:
period = Knot(k + 1) — Knot(1)

- the poles and knots tables in that parametric direction can be considered as
infinite tables, such that:
Knot(i + k) = Knot(i) + period
Pole(i + p) = Pole(i)

22

The data structure tables for a periodic BSpline surface are more complex
than those of a non-periodic one.

1.2.5.4 OCAS classes: GeomFill BSplineCurves

Purpose: An algorithm for constructing a BSpline surface filled from contigu-
ous BSpline curves which form its boundaries.

The algorithm accepts two, three or four BSpline curves as the target
surface’s boundaries.

A range of filling styles - more or less rounded, more or less flat - is
available.

A BSplineCurves object provides the framework for:
- defining the boundaries, and the filling style of the surface
- implementing the construction algorithm
- consulting the result.

Some problems may show up with rational curves.

constructors:

GeomFill BSplineCurves()
Constructs a default BSpline surface framework.

GeomFill BSplineCurves (const Handle(Geom BSplineCurve)&
C1,
const Handle(Geom_BSplineCurve)& C2,
const Handle(Geom_BSplineCurve)& C3,
const Handle(Geom_BSplineCurve)& C4,
const GeomFill FillingStyle Type)
Constructs a framework for building a BSpline surface from the four con-
tiguous BSpline curves, C1, C2, C3 and C4

GeomFill BSplineCurves (const Handle(Geom BSplineCurve)&
C1,
const Handle(Geom _BSplineCurve)& C2,
const Handle(Geom_BSplineCurve)& C3,
const GeomFill FillingStyle Type)
Constructs a framework for building a BSpline surface from the three
contiguous BSpline curves, C1, C2 and C3

GeomFill BSplineCurves (const Handle(Geom BSplineCurve)&
C1,
const Handle(Geom _BSplineCurve)& C2,
const GeomFill FillingStyle Type)
Constructs a framework for building a BSpline surface from the two con-
tiguous BSpline curves, C1 and C2

const Handle_Geom_BSplineSurface& Surface() const

Returns the BSpline surface Surface resulting from the computation per-
formed by this algorithm.

23

GeomPFill FillingStyle
enum GeomFill FillingStyle (GeomFill Coons, GeomFill Curved, Ge-
omFill Stretch)
Defines the three filling styles used in this package:
- GeomFill Stretch - the style with the flattest patches

- GeomFill_Coons - a rounded style of patch with less depth than
those of Curved

- GeomFill_Curved - the style with the most rounded patches.

Connecting contiguous B-Spline Curves: Code Example (6)

GeomFill_BSplineCurves surfgenOff;

GeomFill_FillingStyle Type=GeomFill_CoonsStyle;

surfgen0ff = GeomFill_BSplineCurves (baseOn,base0ff,Type);
Handle(Geom_BSplineSurface) supfOff=surfgen0ff.Surface();

Figure 1.7: Shell for the inner and for the outer curves.

1.2.6 Creating shells

Geometry definition of surfaces ends with the section 5, and now starts the
topological construction of the object.

Geometry is representation of simple shapes which have a mathematical de-
scription (Cylinder, Planes, Bezier and BSpline surfaces...)

Topology Defines relations between simple geometric entities and involves
structuring geometry in order to:
Delimit a geometric region limited by boundaries

Group regions together to define complex shapes

24

In sections 1.2.6.1,1.2.6.2,1.2.6.3, 1.2.6.4, 1.2.6.5, 1.2.6.6 we describe classes and
methods utilized during the development of the code and we give an example of
the developed code. After the creation of TopoDS _Shell from union B-Spline
surfaces we put them in a list (see section 7) useful in the future to create
TopoDS_Shape valid objects; after the last shell is realized, we scan the list
and compose the surfaces to realize the entire object, as can be seen in (Figure
1.8).

1.2.6.1 OCAS classes: BRepBuilderAPI_MakeShape

Root class of all shape construction algorithms.
A MakeShape object provides the framework for consulting and storing the
result of a shape construction.

virtual Standard_Boolean IsDone() const Returns true if the object was
correctly built by the shape construction algorithm.

If at the construction time of the shape, the algorithm cannot be com-
pleted, or the original data is corrupted, IsDone returns false and there-
fore protects the use of functions to access the result of the construction
(typically the Shape function).

const TopoDS _Shape& Shape() const Returns the shape built by the
shape construction algorithm

1.2.6.2 OCAS classes: BRepBuilderAPI MakeShell

Purpose: Describes functions to build a shape corresponding to the skin of a
surface.

Note that the term shell in the class name has the same definition as a
shell in STEP, in other words the skin of a shape, and not a solid model
defined by a surface and a thickness. If you want to build the second sort
of shell, you must use BRepAPI _MakeOffsetShape.

A shell is made of a series of faces connected by their common edges.

If the surface is C2 continuous, the shell will contain only 1 face. If the
surface is not C2 continuous, MakeShell breaks down the surface into
several faces which are all C2 continuous and which are connected along
the non-regular curves on the surface. The resulting shell contains all
these faces.

Construction of a Shell from a non-C2 continuous Surface
A MakeShell object provides the framework for:

- defining the construction of a shell,

- implementing the construction algorithm,

- consulting the result.

The connected C2 faces in the shell resulting from a decompositon of the
surface are not sewn.

25

Constructors:

BRepBuilderAPI_MakeShell(const Handle(Geom Surface)&
S, const Standard_Boolean Segment)

Constructs a shell from the surface S.

1.2.6.3 OCAS classes: BRepBuilder API_MakeSolid

Purpose:
Describes functions to build a solid from shells.

A solid is made of one shell, or a series of shells which do not intersect
each other. One of these shells constitutes the outside skin of the solid.
It may be closed (a finite solid) or open (an infinite solid). Other shells
make holes in the previous ones. Each must bound a closed volume.

A MakeSolid object provides the framework for:
- defining and implementing the construction of a solid, and

- consulting the result.

Constructors:

BRepBuilderAPI_MakeSolid() Initializes the construction of a
solid. An empty solid is considered to cover the full space. The Add
function is used to define shells to bound it.

BRepBuilderAPI_MakeSolid(const TopoDS_Shell& S) Con-
structs a solid from the shell S

BRepBuilderAPI MakeSolid(const TopoDS_Shell& S1, const
TopoDS_Shell& S2) Constructs a solid from two shells S1 and S2

BRepBuilderAPI_MakeSolid(const TopoDS_Shell& S1, const
TopoDS_Shell& S2, const TopoDS_Shell& S3) Constructs a solid
from three shells S1, S2 and S3

No check is done to verify conditions of coherence of the resulting solid.
In particular, S1, S2 (and S3) must not intersect each other.

Also, after all shells have been added using the Add function, one of these
shells should constitute the outside skin of the solid, it may be closed (a
finite solid) or open (an infinite solid). Other shells make holes in the
previous ones. Each must bound a closed volume.

BRepBuilderAPI_MakeSolid(const TopoDS_Solid& So) Con-
structs a solid from the solid So, to which shells can be added

BRepBuilderAPI_MakeSolid(const TopoDS_Solid& So, const
TopoDS_Shell& S) Constructs a solid by adding the shell S to the solid
So

No check is done to verify conditions of coherence of the resulting solid.
In particular S must not intersect the solid SO.

Also, after all shells have been added using the Add function, one of these
shells should constitute the outside skin of the solid. It may be closed (
a finite solid) or open (an infinite solid). Other shells make holes in the
previous ones. Each must bound a closed volume.

26

void Add(const TopoDS _Shell& S) Adds the shell S to the solid under
construction

OCAS classes: TopAbs_ShapeEnum Enumeration

enum TopAbs_ShapeEnum
(TopAbs_COMPOUND,
TopAbs_COMPSOLID,
TopAbs_SOLID,
TopAbs_SHELL,
TopAbs_FACE,
TopAbs_WIRE,
TopAbs_ EDGE,
TopAbs_VERTEX,
TopAbs_ SHAPE)

Purpose:

Identifies the various topological shapes. This enumeration allows you to
use dynamic typing of shapes.

The values are listed in order of complexity, from the most complex to the
most simple i.e.

COMPOUND > COMPSOLID > SOLID > SHELL > FACE > WIRE >
EDGE > VERTEX > SHAPE.

Any shape can contain simpler shapes in its definition.

Abstract topological data structure describes a basic entity, the shape
(present in this enumeration as the SHAPE value), which can be divided
into the following component topologies:

COMPOUND: A group of any of the shapes below.

COMPSOLID: A set of solids connected by their faces. This ex-
pands the notions of WIRE and SHELL to solids.

SOLID: A part of 3D space bounded by shells.

SHELL: A set of faces connected by some of the edges of their wire
boundaries. A shell can be open or closed.

FACE: Part of a plane (in 2D geometry) or a surface (in 3D geome-
try) bounded by a closed wire. Its geometry is constrained (trimmed) by
contours.

WIRE: A sequence of edges connected by their vertices. It can be
open or closed depending on whether the edges are linked or not.

EDGE: A single dimensional shape corresponding to a curve, and
bound by a vertex at each extremity.

VERTEX: A zero-dimensional shape corresponding to a point in
geometry.

27

1.2.6.4 OCAS classes: TopoDS_Shape

Purpose: Describes a shape which:

- references an underlying shape with the potential to be given a
location and an orientation

- has a location for the underlying shape, giving its placement in the
local coordinate system

- has an orientation for the underlying shape, in terms of its geometry
(as opposed to orientation in relation to other shapes).

TopoDS_Shape() Constructs an empty shape.

1.2.6.5 OCAS classes: TopoDS_Shell
Purpose: Describes a shell which:

- references an underlying shell with the potential to be given a location and
an orientation

- has a location for the underlying shell, giving its placement in the local
coordinate system

- has an orientation for the underlying shell, in terms of its geometry (as
opposed to orientation in relation to other shapes).

TopoDS_Shell() Constructs an empty shell.

1.2.6.6 OCAS classes: TopoDS_Solid
Purpose: Describes a solid shape which:

- references an underlying solid shape with the potential to be given a location
and an orientation

- has a location for the underlying shape, giving its placement in the local
coordinate system

- has an orientation for the underlying shape, in terms of its geometry (as
opposed to orientation in relation to other shapes).

TopoDS_Solid() Constructs an undefined solid.

1.2.6.7 OCAS classes: TCollection_List

Purpose:

Ordered lists of non-unique objects which can be accessed sequentially
using an iterator.

Item insertion in a list is very fast at any position. But searching for items
by value may be slow if the list is long, because it requires a sequential
search.

28

List is a generic class which depends on Item, the type of element in the
structure.

Use a ListIterator iterator to explore a List structure.

- An iterator class is automatically instantiated from the TCollec-
tion_ListIterator class at the time of instantiation of a List structure.

- A sequence is a better structure when searching for items by value
is an important goal for a data structure.

- Queues and stacks are other kinds of list with a different access to
data.
void Append (const Item& thing) Inserts the item thing:
- at the end of this list

void Prepend (const Item& thing) Inserts the item thing:
- at the beginning of this list

void Remove (TCollection ListIterator& pos) Removes from this list the
current item of the list iterator pos.
This operation moves the list iterator pos to the next item of this list, if
it exists.

Item& First() const Returns the first item in this list

Item& Last() const Returns the last item in this list

Standard_Boolean IsEmpty() const Returns true if this list is empty

OCAS classes: TopTools ListOfShape
Instantiates TCollection List with TopoDS_Shape

Creating shells: Code Example (7)

BRepBuilderAPI_MakeShell shellgenoff (supf0ff, Standard_False);
TopTools_List0OfShape lista;
lista.Prepend(shellgenoff);

1.2.7 Lumen bifurcation

During the reconstruction of bifurcation we have to add some steps to the pro-
cedure of reconstruction illustrated above. First of all we have to verify the
intersections of B-Spline curves with same z (see Figure 1.9) using the class
Geom2dAPI InterCurveCurve; for further details on this class and for a
code example see section 1.2.7.1; between class methods there is one that gives
us the number of intersections and another one that gives us intersection carte-
sian coordinates. If there is an intersection we fuse two intersecting arrays to
compose a single array as shown in Figure 1.10; then we divide the single array
in two open arrays. We need open arrays as supports to overcome the difficul-
ties given by the topological change passing from slices with just one contour

29

Figure 1.8: Main branch of carotid in Boundary Representation (BRep).

to slices with two different contours. With open arrays we can create different
open B-Spline Curves, joining them with B-Spline surfaces we obtain three
patches (Figure 1.11) and joining them is possible to create a single surface of
bifurcation (Figure 1.12).

Figure 1.9: Intersection of contours.

1.2.7.1 OCAS classes: Geom2dAPI _InterCurveCurve

Purpose:

Describes functions for computing the intersections between two 2D curves,
or the self-intersections of a 2D curve.

An InterCurveCurve algorithm computes both:

- intersection points in the case of cross intersections, and

- intersection segments in the case of tangential intersections.
An InterCurveCurve object provides the framework for:

- defining the construction of the intersections,

30

- implementing the intersection algorithm, and

- consulting the results.

dow Lielp,

2[[ecomaem|

Figure 1.10: Single contour generation from two intersecting contours.

Geom2dAPI InterCurveCurve (const Handle(Geom2d_Curve)& C1,
const Handle(Geom2d_Curve)& C2, const Standard_Real Tol =
1.0e-6)

Computes the intersections between the curves C1 and C2

The tolerance value Tol, defaulted to 1.0exp~, defines the precision with
which an intersection point is computed. In the case of a tangential inter-
section, Tol also enables the size of an intersection segment to be limited
to a portion of the curve where the distance between the points and the
other curve is less than Tol.

Standard _Integer NbPoints() const Returns the number of in-
tersection points computed by this algorithm.

Standard_Integer NbSegments() const Returns the number of
tangential intersections computed by this algorithm.

If this algorithm fails, NbPoints and NbSegments return 0.

gp_Pnt2d Point (const Standard_Integer Index) const Returns
the intersection point of index Index computed by this algorithm.

An intersection point is computed in the case of a free intersection (i.e.
non-tangential intersection). The solution is defined with a precision equal
to the tolerance value assigned to this algorithm at the time of construction
(this value is defaulted to 1.0exp9).

Lumen bifurcation: Code Example (8)

Geom2dAPI_InterCurveCurve inters(baseln,base0ff,1.0e-5);
Standard_Real fix,fly;

fix=inters.Point (1) .X();

fly=inters.Point(1).Y();

31

Figure 1.11: Generation of three patch-shells for bifurcation.

Figure 1.12: Union of patches to obtain the bifurcation shell.

GeomAPI_Interpolate in_arl= GeomAPI_Interpolate(arl,Seg,AngTol);
GeomAPI_Interpolate in_ar2= GeomAPI_Interpolate(ar2,Seg,AngTol);
curl=in_arl.Curve();

cur2=in_ar2.Curve();

GeomFill_BSplineCurves surfgreg;

surfgreg = GeomFill_BSplineCurves (curl, cur2, Type);
Handle(Geom_BSplineSurface) supfgreg=surfgreg.Surface();
BRepBuilderAPI_MakeShell shellgreg(supfgreg, Seg);

BRepOffsetAPI_Sewing union(RealTol,Sewer) ;
union.Add(shelll);
union.Add(shell?2);

union.Perform();
TopoDS_Shape bifurcation=union.SewedShape();

32

1.2.8 Joining shells

We have just to join the shells of each branch to obtain a single solid (Figure
1.13). Each TopoDS_Shape object can be exported in a file .brep format using
the tools described on section 1.2.8.2 with a code sample.

1.2.8.1 OCAS classes: BRepOffsetAPI Sewing

Purpose:

Describes functions to assemble shapes by sewing them along common
edges or sections of edges.

The edges of the initial shapes are broken down by the algorithm into
contiguous and non-contiguous sections, and copies of the initial shapes
are modified accordingly.

A Sewing object provides the framework for:
- initializing a sewing algorithm,
- defining the shapes to be sewn,
- implementing the sewing algorithm, and
- consulting the results.
BRepOffset API_Sewing (const Standard_Real tolerance = 1.0exp %,
const Standard_Boolean option = Standard_True)

Initializes a sewing algorithm with tolerance as the tolerance of contiguity.

The default value is 1.0 exp~5.

This tolerance value is used to determine whether two edges or two por-
tions of edges are coincident.

If an analysis of degenerate shapes is required, you should keep the default
value of option: true; if not, you should set this argument to false.

void Add(const TopoDS_Shape& shape)
Adds the shape shape to the list of shapes to be sewn by this algorithm.

Once all the shapes to be sewn have been added, use the function Perform
to build the sewn shape and the function SewedShape to return the sewn
shape.

void Perform()

Finds the coincident parts of edges on two or more shapes added to this al-
gorithm and breaks these edges down into contiguous and non-contiguous
sections on copies of the initial shapes.

This function also checks for multiple edges, i.e. edges common to three
or more shapes. If there are no multiple edges, the sewn shape is then
built.

The function SewedShape returns the resulting sewn shape. The function
MultipleEdge can be used to return the multiple edges.

The function Modified can be used to return modified copies of the initial
shapes where one or more edges has been broken down into contiguous
and non-contiguous sections.

33

This function is to be used once all the shapes to be sewn have been added.

You cannot then add any more shapes and repeat the call to Perform.
const TopoDS_Shape& SewedShape() const

Returns the sewn shape built by this algorithm.

A null shape is returned if the sewn shape is not constructed.

1.2.8.2 OCAS classes: BRepTools
Group of global functions for manipulation of BRep data structures.

static Standard_Boolean Write(const TopoDS_Shape& Sh, const Stan-
dard_CString File)

Saves the shape Sh in ASCII format in the file File.

File is in the Open CASCADE .brep format. This format is designed for
saving shapes.

N

Figure 1.13: The final result of the reconstruction process, as it appears on the visualization
tool

Joining shells: Code example (9)

BRepBuilderAPI_MakeSolid SOLID;
SOLID.Add(shellgen.Shell());

TopoDS_Solid final=SOLID.Solid();
const Standard_CString filebrep ="final.brep";
BRepTools: :Write(final, filebrep);

1.2.9 Exporting tesselled lumen geometry: STL file

Splinetor ends its work exporting the obtained shape in a file written in stl
format; for details about stl see appendix C. STL is the input format accepted
by FDM 2000 device, our 3D printer. A global description of OCAS class can
be found on section 1.2.9.1 with a code example. Changing values of deflection
and coeflicient we can affect the number of triangles of the resulting mesh.

34

1.2.9.1 OCAS classes: StIAPI_Writer
Purpose: Writing shapes to stereolithography format.

void SetDeflection(const Standard_Real aDeflection) Sets the deflection
for meshing algorithm. Deflection is used, only if relative mode is false.
Default value = 0.01.

void SetCoefficient(const Standard_Real aCoefficient) Sets the coeffi-
cient for computation of deflection through relative size of shape. Default
value = 0.001.

Standard_Boolean RelativeMode() Returns (modifiable) the flag which
defines relative mode, if true (default),then the value of the deflection is
to be evaluated with the Shape bounding box method.

Standard_Boolean ASCIIMode() Returns (modifiable) the flag which de-
fines mode for writing file, if true (default),then the file is ascii, else file is
binary.

void Write(const TopoDS_Shape& aShape,const Standard_CString
aFileNameme) Convert given shape to STL format and write it to file
with given filename.

Figure 1.14: a) Visualization of file.stl obtained. b) Detail of the mesh.

Exporting tesselled lumen geometry: Code example (10)

St1API_Writer stlwriter;

stlwriter = St1API_Writer();

const Standard_CString filestl ="final.stl";
stlwriter.Write(final,filestl);

35

Chapter 2

Sample: Visualization Tool

2.1 Visualizer Sample

We developed with Qt libraries an “ad hoc” tool for visualization of vessel
geometry realized with OCAS library. This tool is able to visualize 3D carotid
lumen reconstruction (see Figure 2.1) . This section describes how to use Qt
to develop an interactive 3D visualizer tool able to handle OpenCascade BRep
models.

2.2 About Qt

Qt [16] is a multiplatform C+4++ GUI application framework. It provides
application developers with all the functionality needed to build applications
with state-of-the-art graphical user interfaces. Qt is fully object-oriented,
easily extensible, and allows true component programming.

Qt is also the basis of the popular KDE Linux desktop environment, a
standard component of all major Linux distributions.

Qt is supported on the following platforms:

e MS/Windows — 95, 98, NT 4.0, ME, 2000, and XP

e Unix/X11 — Linux, Sun Solaris, HP-UX, Compaq Tru64 UNIX, IBM AIX,
SGI IRIX and a wide range of others

Figure 2.1: Reconstructed carotid visualization with developed QT-visualizer

36

e Macintosh — Mac OS X

e Embedded — Linux platforms with framebuffer support.

2.2.1 Qt Object Model

The standard C++ Object Model provides very efficient runtime support for
the object paradigm. But the C++ Object Model’s static nature is inflexibile
in certain problem domains. Graphical User Interface programming is a domain
that requires both runtime efficiency and a high level of flexibility. Qt provides
this, by combining the speed of C++ with the flexibility of the Qt Object
Model.

Qt adds these features to C++-:

* a very powerful mechanism for seamless object communication called signals
and slots;

* queryable and designable object properties;
* powerful events and event filters,
* contextual string translation for internationalization;

* sophisticated interval driven timers that make it possible to elegantly inte-
grate many tasks in an event-driven GUI;

* hierarchical and queryable object trees that organize object ownership in a
natural way;

* guarded pointers, QGuardedPtr, that are automatically set to 0 when the
referenced object is destroyed, unlike normal C++ pointers which become
”dangling pointers” when their objects are destroyed.

Many of these Qt features are implemented with standard C++ techniques,
based on inheritance from QObject. Others, like the object communication
mechanism and the dynamic property system, require the Meta Object System
provided by Qt’s own Meta Object Compiler (moc).

The Meta Object System is a C++ extension that makes the language better
suited to true component GUI programming. Although templates can be used
to extend C++, the Meta Object System provides benefits using standard C++
that cannot be achieved with templates.

2.2.2 Object Trees and Object Ownership

QObjects organize themselves in object trees. When you create a QObject
with another object as parent, it’s added to the parent’s children() list, and
is deleted when the parent is. It turns out that this approach fits the needs of
GUI objects very well. For example, a QAccel (keyboard accelerator) is a child
of the relevant window, so when the user closes that window, the accelerator is
deleted too.

The static function QObject::objectTrees() provides access to all the root
objects that currently exist.

37

QWidget, the base class of everything that appears on the screen, extends
the parent-child relationship. A child normally also becomes a child widget,
i.e. it is displayed in its parent’s coordinate system and is graphically clipped
by its parent’s boundaries. For example, when the an application deletes a
message box after it has been closed, the message box’s buttons and label are
also deleted, just as we’d want, because the buttons and label are children of
the message box.

You can also delete child objects yourself, and they will remove themselves
from their parents. For example, when the user removes a toolbar it may lead
to the application deleting one of its QToolBar objects, in which case the tool
bar’s QMainWindow parent would detect the change and reconfigure its screen
space accordingly.

The debugging functions QObject::dumpObjectTree() and QObject-
::dumpObjectInfo() are often useful when an application looks or acts strange-

ly.

2.2.3 Signals and Slots

Signals and slots are used for communication between objects. The signal/slot
mechanism is a central feature of Qt and probably the part that differs most
from other toolkits.

In GUI programming we often want a change in one widget to be notified
to another widget. More generally, we want objects of any kind to be able to
communicate with one another. For example if we were parsing an XML file
we might want to notify a list view that we’re using to represent the XML file’s
structure whenever we encounter a new tag.

Older toolkits achieve this kind of communication using callbacks. A call-
back is a pointer to a function, so if you want a processing function to notify
you about some event you pass a pointer to another function (the callback) to
the processing function. The processing function then calls the callback when
appropriate. Callbacks have two fundamental flaws. Firstly they are not type
safe. We can never be certain that the processing function will call the callback
with the correct arguments. Secondly the callback is strongly coupled to the
processing function since the processing function must know which callback to
call.

In Qt we have an alternative to the callback technique. We use signals and
slots. A signal is emitted when a particular event occurs. Qt’s widgets have
many pre-defined signals, but we can always subclass to add our own. A slot
is a function that is called in reponse to a particular signal. Qt’s widgets have
many pre-defined slots, but it is common practice to add your own slots so that
you can handle the signals that you are interested in.

The signals and slots mechanism is type safe: the signature of a signal must
match the signature of the receiving slot. (In fact a slot may have a shorter sig-
nature than the signal it receives because it can ignore extra arguments). Since
the signatures are compatible, the compiler can help us detect type mismatches.
Signals and slots are loosely coupled: a class which emits a signal neither knows
nor cares which slots receive the signal. Qt’s signals and slots mechanism en-
sures that if you connect a signal to a slot, the slot will be called with the
signal’s parameters at the right time. Signals and slots can take any number of

38

arguments of any type. They are completely typesafe: no more callback core
dumps!

All classes that inherit from QObject or one of its subclasses (e.g. QWid-
get) can contain signals and slots. Signals are emitted by objects when they
change their state in a way that may be interesting to the outside world. This is
all the object does to communicate. It does not know or care whether anything
is receiving the signals it emits. This is true information encapsulation, and
ensures that the object can be used as a software component.

Slots can be used for receiving signals, but they are also normal member
functions. Just as an object does not know if anything receives its signals, a
slot does not know if it has any signals connected to it. This ensures that truly
independent components can be created with Qt.

You can connect as many signals as you want to a single slot, and a signal
can be connected to as many slots as you desire. It is even possible to connect a
signal directly to another signal. (This will emit the second signal immediately
whenever the first is emitted.)

Together, signals and slots make up a powerful component programming
mechanism.

2.2.4 Signals

Signals are emitted by an object when its internal state has changed in some
way that might be interesting to the object’s client or owner. Only the class
that defines a signal and its subclasses can emit the signal.

A list box, for example, emits both clicked() and currentChanged() signals.
Most objects will probably only be interested in currentChanged() which gives
the current list item whether the user clicked it or used the arrow keys to move
to it. But some objects may only want to know which item was clicked. If the
signal is interesting to two different objects you just connect the signal to slots
in both objects.

When a signal is emitted, the slots connected to it are executed immedi-
ately, just like a normal function call. The signal/slot mechanism is totally
independent of any GUI event loop. The emit will return when all slots have
returned.

If several slots are connected to one signal, the slots will be executed one
after the other, in an arbitrary order, when the signal is emitted.

Signals are automatically generated by the moc and must not be imple-
mented in the .cpp file. They can never have return types (i.e. use void).

2.2.5 Slots

A slot is called when a signal connected to it is emitted. Slots are normal C+-+
functions and can be called normally; their only special feature is that signals
can be connected to them. A slot’s arguments cannot have default values, and,
like signals, it is rarely wise to use your own custom types for slot arguments.

Since slots are normal member functions with just a little extra spice, they
have access rights like ordinary member functions. A slot’s access right deter-
mines who can connect to it:

A public slots section contains slots that anyone can connect signals to.
This is very useful for component programming: you create objects that know

39

nothing about each other, connect their signals and slots so that information is
passed correctly, and, like a model railway, turn it on and leave it running.

A protected slots section contains slots that this class and its subclasses
may connect signals to. This is intended for slots that are part of the class’s
implementation rather than its interface to the rest of the world.

A private slots section contains slots that only the class itself may connect
signals to. This is intended for very tightly connected classes, where even sub-
classes aren’t trusted to get the connections right.

You can also define slots to be virtual, which we have found quite useful in
practice.

The signals and slots mechanism is efficient, but not quite as fast as “real”
callbacks. Signals and slots are slightly slower because of the increased flexibility
they provide, although the difference for real applications is insignificant. In
general, emitting a signal that is connected to some slots, is approximately ten
times slower than calling the receivers directly, with non-virtual function calls.
This is the overhead required to locate the connection object, to safely iterate
over all connections (i.e. checking that subsequent receivers have not been
destroyed during the emission) and to marshall any parameters in a generic
fashion. While ten non-virtual function calls may sound like a lot, it’s much
less overhead than any 'new’ or ’delete’ operation, for example. As soon as
you perform a string, vector or list operation that behind the scene requires
'new’ or ’delete’, the signals and slots overhead is only responsible for a very
small proportion of the complete function call costs. The same is true whenever
you do a system call in a slot; or indirectly call more than ten functions. On
an 1586-500, you can emit around 2,000,000 signals per second connected to
one receiver, or around 1,200,000 per second connected to two receivers. The
simplicity and flexibility of the signals and slots mechanism is well worth the
overhead, which your users won’t even notice.

2.2.6 Meta Object System

Qt’s Meta Object System provides the signals and slots mechanism for inter-
object communication, runtime type information, and the dynamic property
system.

The Meta Object System is based on three things:

1. 1. the QObject class;

2. 2. the Q_.OBJECT macro inside the private section of the class declara-
tion;

3. 3. the Meta Object Compiler (moc).

The moc reads a C++ source file. If it finds one or more class declara-
tions that contain the Q_OBJECT macro, it produces another C++ source file
which contains the meta object code for the classes that contain the Q_OBJECT
macro. This generated source file is either #included into the class’s source file
or compiled and linked with the class’s implementation.

In addition to providing the signals and slots mechanism for communication
between objects (the main reason for introducing the system), the meta object
code provides additional features in QObject:

40

e the className() function that returns the class name as a string at run-
time, without requiring native runtime type information (RTTT) support
through the C++ compiler.

e the inherits() function that returns whether an object is an instance of
a class that inherits a specified class within the QObject inheritance tree.

e the tr() and trUtf8() functions for string translation as used for interna-
tionalization.

o the setProperty() and property() functions for dynamically setting and
getting object properties by name.

e the metaObject() function that returns the associated meta object for
the class.

While it is possible to use QObject as a base class without the Q_OBJECT
macro and without meta object code, neither signals and slots nor the other
features described here will be available if the Q_OBJECT macro is not used.
From the meta object system’s point of view, a QObject subclass without meta
code is equivalent to its closest ancestor with meta object code. This means for
example, that className() will not return the actual name of your class, but
the class name of this ancestor.

2.2.7 Short description

T =+ Sample ImportExport - [Document 2:1]

5 Miew Window Help
|1 bew Crrlen 8 %|

s a8 @ g

% Close Ctl+w

Import 4

Export 3

it Cirl+Q

Figure 2.2: Detail of File menu.

Sample interface has 3 options menus:
File
Choosing New we open a new graphic window with 5 options menus and
2 toolbars.
File menu fig. 2.2 has 2 important options:

Import: In one of its submenus we find the abbreviations for the
formats we can import. Accepted input formats are:

- BRep

41

void Translate::importBREP(const Handle(AIS_InteractiveContext)
theContext, const QString& filter)

{
QString file = selectFileName(filter, TRUE);
if (!'file.isNull()) {
QApplication: :setOverrideCursor(Qt: :waitCursor);
if (! importBREP (theContext,
(const Standard_CString) file.latinl()))
{
QApplication: :restoreOverrideCursor();
(QMessageBox: :information
(qApp->mainWidget () ,tr ("TIT_ERROR"),
tr ("INF_TRANSLATE_ERROR"), tr("BTN_OK"),
QString::null, QString::null, 0, 0);
gApp->processEvents() ; /* update desktop */
}
else
QApplication: :restorelverrideCursor();
}
}
- Csfdb
- Iges
- Step

Export: In addition to import formats there are these possible out-
put formats fig. 2.3:

- Stl

- Vrml
- bmp

- gif

- xwd

View
View menu has two visualizatin possibilities:
Tiled: with more than one window on the screen

Cascade: with just a window on the screen and the others minimized

toolbar
The toolbar holds the icons indicating the points of view.

Front: front view

Back: back view

Top: top view

Bottom: bottom view

Left: left view

Right: right view

42

< -~ Sample ImportExport - [Document 2:1
[File View Window Help
[iBuew cn g g

wg@ 8ns@o ¢fen

Import
Brep

Quit Ctil+Q Csfib
lges

Figure 2.3: View of export options.

Axo: axonometric view

Other option-buttons on the toolbar are:
Fit_All: the fitting of the object regarding to the window
Zoom _Window: zoom about a mouse-selected region

Dynamic_Zooming: dynamic zoom with mouse, going left the ob-
ject decrease, going right the object increase

Dynamic_Panning: object translation with mouse
Global_Panning: close-up positioning of the object
Dynamic_Rotation: object rotation with mouse
Reset: restore the original situation after import step
Hidden Off: hides the edges at the object back
Hidden_On: shows the edges behind the object

void MDIWindow: :createViewActions()
{

// populate a tool bar with some actions

QToolBar* aToolBar = new QToolBar(this,"view operations");
aToolBar->setLabel(tr("View Operations"));

QList<QAction>* alist = myOperations->getViewActions();

for(QAction* a = alList->first();a;a = alList->next())
a->addTo(aToolBar) ;

connect (myOperations,SIGNAL (fitA11()) ,myView,SLOT(£itA11()));
connect (myOperations,SIGNAL (fitArea()) ,myView,SLOT (fitArea()));
connect (myOperations, SIGNAL (zoom()) ,myView,SLOT (zoom()));

connect (myOperations,SIGNAL (pan()) ,myView,SLOT(pan()));

connect (myOperations, SIGNAL (rotation()) ,myView,SLOT (rotation()));

43

connect (myOperations,SIGNAL (globalPan()) ,myView,SLOT(globalPan()));
connect (myOperations,SIGNAL (front()) ,myView,SLOT (front()));
connect (myOperations,SIGNAL (back()) ,myView,SLOT (back()));
connect (myOperations,SIGNAL (top()) ,myView,SLOT(top()));
connect (myOperations, SIGNAL (bottom()) ,myView,SLOT(bottom())) ;
connect (myOperations,SIGNAL (left()) ,myView,SLOT(left()));
connect (myOperations,SIGNAL (right ()) ,myView,SLOT (right()));
connect (myOperations,SIGNAL (axo()) ,myView,SLOT(ax0()));
connect (myOperations,SIGNAL (reset()) ,myView,SLOT(reset()));
connect (myOperations,SIGNAL (hlrOn()) ,myView,SLOT (hlrOn()));
connect (myOperations, SIGNAL (h1r0ff ()) ,myView,SLOT(hlr0f£()));

alist->at(ViewDOperations::ViewHlr0ffId)->set0On(TRUE);
}

It is possible to visualize another pop-up menu clicking on the object with
the mouse right button. The options are in fig. 2.4:

Figure 2.4: Materials options.

Delete: Deletes the object

Color: Changes the color of the object

Shading: Shades the object

Wireframe: Visualizates the wireframe of the object (default)

Material: Indicates the material properties of the object, we can
choose between:

plaster

brass

b = new QPushButton(tr ("BTN_BRASS") ,this);
sm->setMapping(b, (int) Graphic3d_NOM_BRASS) ;
connect (b,SIGNAL(clicked()),sm,SLOT (map()));
b->setToggleButton (TRUE);

44

connect (b, SIGNAL (toggled (bool)) ,this,SLOT (updateButtons(bool)));
myButtons.append (b) ;

bronze
copper
gold
pewter
plastic
silver

Trasparency: Adjusts the object transparency
Help

45

Appendices

A Open Source Philosophy

Science is ultimately an Open Source enterprise [17]. The scientific method rests
on a process of discovery, and a process of justification. For scientific results
to be justified, they must be replicable. Replication is not possible unless the
source is shared: the hypothesis, the test conditions, and the results.

The process of discovery can follow many paths, and at times scientific dis-
coveries do occur in isolation. But ultimately the process of discovery must be
served by sharing information: enabling other scientists to go forward where
one cannot; pollinating the ideas of others so that something new may grow
that otherwise would not have been born.

Where scientists talk of replication, Open Source programmers talk of de-
bugging. Where scientists talk of discovering, Open Source programmers talk of
creating. Ultimately, the Open Source movement is an extension of the scientific
method, because at the heart of the computer industry lies computer science.

Computer science, though, differs fundamentally from all other sciences.
Computer science has only one means of enabling peers to replicate results:
share the source code. To demonstrate the validity of a program to someone,
you must provide them with the means to compile and run the program.

Replication makes scientific results robust. One scientist cannot expect to
account for all possible test conditions, nor necessarily have the test environment
to fully test every aspect of a hypothesis. By sharing hypotheses and results
with a community of peers, the scientist enables many eyes to see what one pair
of eyes might miss.

In the Open Source development model, this same principle is expressed
as “Given enough eyes, all bugs are shallow”. By sharing source code, Open
Source developers make software more robust. Programs get used and tested in
a wider variety of contexts than one programmer could generate, and bugs get
uncovered that otherwise would not be found. Because source code is provided,
bugs can often be removed, not just discovered, by someone who otherwise
would be outside the development process.

Open Source Software can be studied, altered and distributed freely without
restriction other than the guarantee that those freedoms will never change. In
contrast, proprietary software is usually not free. Users have to pay for a license,
but cannot see how the software works and cannot change what it does without
the permission of the owner. In fact, because the source code is not available to
users, they cannot make any change even with the owner’s permission. Users
are tied to the owner’s upgrade schedule, or they may find that their version
is no longer supported. The most important benefits using open source can be
resumed in:

e Benefits for Businesses: Companies that use Open Source software can
customize and distribute the software without the need to acquire new
licenses or permission. Regardless of where they obtained the software,
businesses can find programmers and developers to provide them with
support. Businesses can use Open Source software to expand or link to
other services with a freedom that is often impossible with proprietary
software. As an example, a company can create Open Source software

46

that connects and interfaces with a service. The software can be altered
and improved upon and ported to various other operating systems creating
more business.

Benefits for Developers: Developers of Open Source software have the
access and the right to alter the source code to make the changes and
improvements their business needs, whenever they need them. Security
fixes are one of the best examples of this. Security holes, when found, have
fixes quickly published and shared freely by other developers for the benefit
of all. Additionally, Open Source Software broadens the potential of jobs
for programmers and developers since most of them work on customized
software systems for businesses.

Benefits for Users: Open Source software is often available for free, or
at a minimal cost. If a user pays for Open Source software, it usually
comes with support and printed documentation. If a user installs a free
copy, then the user can often get the documentation for free online. Like
users of proprietary software, users have the benefit of upgrades. But
unlike proprietary software, users can get support even if the originator
no longer provides for the service. The user can modify the software
according its needs.

47

B Open Cascade

Open Cascade, or simply OCAS, by MATRA is a general-purpose CAD (Com-
puter Aided Design) software. This system gives a complete application de-
velopment environment, made up of about 10.000 classes written in C++ and
organized in about 400 project files. In particular, an OCAS project” is a
collection of classes that share common functionality in some semantic area of
geometry and/or graphics.

The classes of Open Cascade offers the infrastructure (Rapid Application
Framework) for rapid development of geometric computing applications oriented
or ”design” in some specific areas of interest, say in advanced CAD tools, design
databases, simulation systems or graphics rendering of complex assemblies.

CAS.Cade project (this name derives by the anagram of the words CASE
and CAD) started in 1990 when Matra Datavision, which was at that time
the producer of another traditional CAD called Euclid, wanted to develop one
totally new modelling software.

It was decided to adopt the latest technology of the moment: all the appli-
cation would have been based on the object oriented approach; in the specific
it was adopted the C++ programming language. All geometric (and not only
geometric) algorithms were completely rewritten.

In 1995 the modelling kernel was finished and Matra started the first debug-
ging and testing session.

In 1999 the Matra decided to completely change its policy of software dis-
tribution: from software house it became a vendor of services (training courses,
phone assistance etc.) and CAS.CADE was freely distributed under the Open
Source licence (therefore it is now possible to use freely in the contest of the
development of non commercial software).

Open Cascade Architecture

Ocas internal code organization is quite simple: all C++ classes are grouped
under packages; every package belongs to an Ocas library; finally a group of
libraries forms a module. The main reason of this structure is to link together
services and algorithms which operate in the same semantic domain.

Ocas geometric services are divided into 6 categories :

[Foundation Class] Foundation Classes provide a variety of general-purpose
services such as: primitive types, strings and various types of quantities,
automated management of heap memory, exception handling, classes for
manipulating aggregates of data, math tools etc.

[Modelling Data] Modelling Data supplies data structures to represent 2D and
3D geometric models. These services are organized in the following li-
braries: 2D geometry, 3D geometry, geometry Utilities, topology.

[Modelling Algorithms] The Modelling Algorithms module groups together a
range of topological algorithms used in modelling. Along with these tools,
it is possible to find the geometric algorithms which they call.

[Data Exchange Processor] The Data Exchange classes provide services that
allow Open CASCADE applications to exchange data with other software

48

applications using the following interfaces: STEP AP203 AP214, IGES
(it is also possible to import and export using some simpler vector data
format such as VRML and BRep boundary representation).

[Visualization] For visualizing data structures, Open CASCADE provides ready-
to-use algorithms which create graphic presentations from geometric mod-
els. These data structures may be used with the viewers supplied, and can
be customized to take into account the specificity of your application.

[OCAF] The Open Cascade Application Framework provides modelling ser-
vices, aiming to connect user data, even non-geometric, to parametric
geometric models. It also provides further functionalities for storing and
editing the history of a work session, and not only its results. This ap-
proach is embedded into an automatic mechanism for document and ap-
plication generation, called application template.

Non Geometric Services

Whereas Open Cascade is a software environment specifically oriented for geo-
metric modeling, it also gives other non-geometric services, aiming to support
the application programmer along all the life-cycle of his application.

The non-geometric services may be classified in three main subsystems:

CDL The Component Definition Language (CDL) is the Open Cascade lan-
guage for defining the interface of software components. A CDL file es-
tablishes the internal structure of C++ programs and data. For example
a CDL class describes class constructors, instance or static methods and
state variables. The following CDL link details important features about
this language.

WOK The Workshop Organization Kit is the set of tools for the develop-
ment of CDL based applications. In particular it contains: a system shell
for command invocations; some tools for code generation through suit-
able program extractors; commands for automatic generation of project
Makefile and for library compilation. This link explains how to get WOK
working under Windows.

EDL The Open Cascade EDL language supports automatic generation of tex-
tual files from textual template to which we apply variable bindings. It
is the main tools that permit extractors (CPPExtractor and SchemeEx-
tractor) working. The following EDL link details important feature about
this language.

Handles

Open CASCADE provide a smart pointer mechanism called handle which al-
lows automatic memory management.

Handle definition

There are two types of classes:

49

e (lasses of objectsused with handles
e (lasses of objects used with values

The type of a C++ object determines the class category to which it belongs.
A C++ object from a class manipulated by value contains an instance of that
class. However, a C++ object from a class type manipulated by handle contains
the identifier of the instance it references. In this case, the C++ object is called
handle.

A handle can be compared with a C++ pointer. Several handles can refer-
ence the same object. Also, a single handle may reference several objects, but
only one at a time. To have access to the object which it refers to, the handle
must be dereferenced just as with C++ pointer.

Declaring a handle creates a null handle. To initialize it, either create a new
object or assign the value of another handle to it, on condition that they are
compatible.

50

C STL format

An Stl ”StereoLithography” file is a triangular representation of a 3-dimensional
surface geometry. The surface is tessellated or broken down logically into a
series of small triangles (facets). Each facet is described by a perpendicular
direction and three points representing the vertices (corners) of the triangle.
These data are used by a slicing algorithm to determine the cross sections of
the 3-dimensional shape to be built by the fabber.

Format Specifications

An StL file consists of a list of facet data. Each facet is uniquely identified by a
unit normal (a line perpendicular to the triangle and with a length of 1.0) and
by three vertices (corners). The normal and each vertex are specified by three
coordinates each, so there is a total of 12 numbers stored for each facet.

The facets define the surface of a 3-dimensional object. As such, each facet
is part of the boundary between the interior and the exterior of the object. The
orientation of the facets (which way is ”out” and which way is ”in”) is specified
redundantly in two ways which must be consistent. First, the direction of the
normal is outward. Second, the vertices are listed in counterclockwise order
when looking at the object from the outside (right-hand rule).

Each triangle must share two vertices with each of its adjacent triangles. In
other words, a vertex of one triangle cannot lie on the side of another. [Vertex-
to-vertex rule in an StL file] The object represented must be located in the
all-positive octant. In other words, all vertex coordinates must be positive-
definite (nonnegative and nonzero) numbers. The StL file does not contain any
scale information; the coordinates are in arbitrary units.

The official 3D Systems StL specification document states that there is a
provision for inclusion of ”special attributes for building parameters”, but does
not give the format for including such attributes. Also, the document specifies
data for the "minimum length of triangle side” and ”maximum triangle size”,
but these numbers are of dubious meaning.

Sorting the triangles in ascending z-value order is recommended, but not
required, in order to optimize performance of the slice program.

Typically, an StL file is saved with the extension ”.stl” case-insensitive. The
slice program may require this extension or it may allow a different extension
to be specified.

The stl standard includes two data formats, ASCII and binary. These are
described separately below.

StL ASCII Format

The ASCII format is primarily intended for testing new CAD interfaces. The
large size of its files makes it impractical for general use.
The syntax for an ASCII StL file is as follows:

facet normal -9.710413e-01 -1.289588e-01 -2.011177e-01
outer loop
vertex 1.679896e+01 2.067231e+01 0.000000e+00
vertex 1.688584e+01 2.001808e+01 0.000000e+00
vertex 1.663303e+01 2.036216e+01 1.000000e+00

51

endloop
endfacet

Words as vertex, face, loop, etc indicate a keyword; these must appear in
lower case. Note that there is a space in ”facet normal” and in ”outer loop”,
while there is no space in any of the keywords beginning with ”end.” Indentation
must be with spaces; tabs are not allowed.

The numerical data in the facet normal and vertex lines are single precision
floats, for example, 1.23456E+789. A facet normal coordinate may have a
leading minus sign; a vertex coordinate may not.

StL Binary Format

Binary (.STL) files are organized as an 84 byte header followed by 50-byte
records each of which describes one triangle facet. The syntax for a binary StL
file is as follows:

80 Any text such as the creator’s name
4 int equal to the number of facets in file
facet 1

O N N N N Y NN

4

2 float normal x
float normal y
float normal z
float vertexl
float vertexl
float vertexl
float vertex?2
float vertex2
float vertex2
float vertex3
float vertex3
float vertex3 z

unused (padding to make 50-bytes)
facet 2

<M NS KNS M

N NN NS

52

NG NN NN

4
2 float normal x
float normal y

float normal =z

float vertexl x
float vertexl
float vertexl
float vertex2
float vertex2
float vertex2
float vertex3
float vertex3

<M NS M NS

float vertex3 z
unused (padding to make 50-bytes)
facet 3

A facet entry begins with the x,y,z components of the triangle’s face normal
vector. The normal vector points in a direction away from the surface and it
should be normalized to unit length. The x,y,z coordinates of the triangle’s
three vertices come next. They are stored in CCW order when viewing the
facet from outside the surface. The direction of the normal vector follows the
?right-hand-rule” when traversing the triangle vertices from 1 to 3, i.e., with
the fingers of your right hand curled in the direction of vertex 1 to 2 to 3, your
thumb points in the direction of the surface normal.

Notice that each facet entry is 50 bytes. So adding the 84 bytes in the
header space, a binary file should have a size in bytes = 84 + (number of facets)
* 50. Notice the 2 extra bytes thrown in at the end of each entry to make
it a nice even 50. 50 is a nice number for people, but not for most 32-bit
computers because they store values on 4-byte boundaries. Therefore, when
writing programs to read and write .STL files the programmer has to take care
to design data structures that accommodate this problem.

53

D

Input File Format

Splinetor can read files that are in this format

3
24

0.
16.
16.
16.
16.
16.
16.
16.

16.
16.
16.
.00000000
16.
.46913256

16

13.
13.
13.
69.
13.
13.

13.
13.
13.

number of cylinders
number of slices, main trunk

00000000
67968154
67968155
68181197
72706759
78892233
83589675
83769052

70328323
68424170
67968155

46913256

63566729
62010135
60646260
00000000
22942174
23854038

27043231
25098770
23617172

128
21
21
21

20

22.
21.

21
128

21.
21.

19.
.45360257
19.

19

128

19.
18.

19.
19.
19.

z position, number of points

.69347531
.49954080
21.

26728675

.00147134
20.
.43246458
20.

71793090

22031165

13026914
99628725

.85144776

z position, number of points
67202869
50906235

51861262

39261272

z position, number of points
01031766
93086623

27580277
18016276
09329077

54

Bibliography

[1] T. Wohlers. Wohlers Report 2001, Rapid Prototyping and Tooling State of
the Industry Annual Worldwide Progress Report. Wohlers associates, 2003.

[2] A. Gatto and L. Iuliano. Prototipazione Rapida. Tecniche Nuove, 1998.

[3] R. Petzold, H. F. Zeilhofer, and W. A. Kalender. Rapid prototyping tech-
nology in medicine - basics and applications. Computerized Medical Imaging
and Graphics, 23:277-284, 1999.

[4] M. Marongiu, M. Camba, and P. Pili. La prototipazione rapida in italia
e nel mondo: stato dell’arte. Technical Report 01/20, CRS4, Center for
Advanced Studies, Research and Development in Sardinia, Cagliari, Italy,
2001.

[5] F. Murgia, P. Pili, and G. Pusceddu. Computer assisted surgery and rapid
prototyping in medicine. Technical Report 02/08, CRS4, Center for Ad-
vanced Studies, Research and Development in Sardinia, Cagliari, Italy,
2002.

[6] G. Franzoni, R. de Leo, F. Murgia, P. Pili, G. Pusceddu, A. Scheinine,
and M. Tuveri. Realizzazione di un prototipo di carotide con tecnica fused
deposition modelling. Technical Report 02/07, CRS4, Center for Advanced
Studies, Research and Development in Sardinia, Cagliari, Italy, 2002.

[7] F. Murgia, G. Pusceddu, and G. Franzoni. Open cascade and rapid proto-
typing in human carotid lumen reconstruction. Proceedings of Euro Graph-
ics 2002 - Italian Chapter, 2002.

[8] P. Pili, F. Murgia, G. Pusceddu, G. Franzoni, and M. Tuveri. Physical
human lumen reconstruction: Life-size models by rapid prototyping. Med-
ical Imaging 2003: Physiology and Function - Proceedings of SPIE 2003,
5031:504-514, 2003.

[9] G. ABDULAEEV et al. Viva: the virtual vascular project. Information
Technology in Biomedicine, pages 268-273, December 1988.

[10] Piero Pili Alan Scheinine and Fabrizio Murgia. Lumen carotid segmentation
software: Programming user manual. Technical Report 03/09, CRS4, Cen-
ter for Advanced Studies, Research and Development in Sardinia, Cagliari,
Ttaly, 2003.

[11] R. Li. Data structures and application issues in 3d gis. Geomatica, 48
(3):111-130, 1994.

95

[12] Vuoskoski J. Sulkimo J. Particle tracking in sophisticated cad models
for simulation purposes. Nucl. Instr. Meth. Phys.Res.A., 371 (3):434-438,
1996.

[13] M. MORTENSON. Geometric Modeling. Wiley and Sons, 1997.
[14] M. MANTYLA. Solid Modelling. Computer Science Press, 1995.

[15] AA. VV. Open Cascade, Foundation classes. User’s Guide. EADS Matra
Datavision, 2001.

[16] M. K. Dalheimer. Programming with Qt. O’Reilly, 1999.

[17] AA. VV. Open Sources: Voices from the Open Source Revolution. Chris
DiBona, Sam Ockman, Mark Stone, 1999.

56

