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Chapter 1

Introduction

In this report we present the results of the analyses performed in the frame of the
contract K777/SL. The object of the work is the study of the mechanical behavior of
beam obstacles due to the interaction with the high energy particle beam of the new
Large Hadron Collider (LHC). This includes several numerical analyses of the mechanical
behavior of the TDI beam stopper under normal operating conditions.

The TDI (Injection Stoppers) for LHC are mobile obstacles intended to be used
during the adjustment of the injection trajectory in order to protect the superconducting
machine elements in the event of a malfunctioning of the injection kicker.

It has been decided together with the SL/BT Group at CERN to investigate this
problem by new numerical simulation techniques developed at CRS4, based on the
spectral element method. This is similar to the well known finite element method,
inheriting its flexibility in dealing with complex geometries and its proved efficiency in the
simulation of structural dynamics phenomena, but is an high order method: it makes use
of a reacher set of functions to describe fields in the computational domain, and provide
accuracies beyond standard methods, especially when simulating wave propagation.

These methods are being developed from several years up to now, and have been ap-
plied with success in different fields including structural dynamics, acoustics and seismic
waves propagation [1][2][3].

The spectral element code ELSE, developed at CRS4, has been modified and further
developed to efficiently treat the problem at hand. Some new features have been added
(e.g. the thermoelastic coupling) and the interface with the Monte Carlo code FLUKA
([4][5]) has been implemented. In the present work we started using ELSE for a 2D
parametric study of the influence of the point of impingement of the particle beam in a
semi infinite plane, simulating a generic graphite absorbing block under standard loading
conditions. Then the TDI design problem has been considered, and several target
configurations with different materials and geometries have been throughly analyzed,
under several loading conditions. It was therefore possible to verify the performance of
the adopted design. A number of simulations both in 2D and with the real 3D model
were performed.

This report is organized as follows. First, a detailed problem formulation of the
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problem at hand is given, followed by the description of the numerical technique adopted
for the simulation. Then, the results for the 2D parametric analyses are presented and
discussed, and finally the results of the simulations performed on the TDI are illustrated.



Chapter 2

Beam dump analysis method

2.1 Problem Formulation

The absorption of high-energy and well focalised proton beams for a duration of a few
microseconds causes a considerable temperature increase in the solid obstacle. During
this short period the thermal expansion is partly prevented by the inertia properties of the
beam obstacle structure. This gives rise to dynamic stresses which propagate through
the material in form of elastic waves [6].

Our attention is focused on the interaction of the beam with the material, and its
possible consequences on the structural integrity of the beam obstacle. The coupled
thermo-elastic problem will be analyzed calculating how the temperature profile varies
in time and how the stress wave propagates in the structure.

First we present a general formulation of a coupled thermoelastic problem [7]. We
consider a body occupying at initial time t = O the finite region Q C R? (with d =
2 or 3, number of space dimensions) with boundary /. The body is subject to the
momentum balance equation and the energy balance equation:

pcl = pQ — q;; — Toye in Q2 x (0, T¢) (2.2)

Where Ty is the final time. The body status is described by the values of the dis-
placements u; and the relative temperature 8 = T — Ty, being Ty the stress free initial
temperature expressed in the Kelvin scale.

In the previous equations a cartesian reference system is assumed and vector and
tensor components are identified by the index. Time derivatives are denoted by overlying
dots, spatial derivatives are denoted by the comma associated with the index of the
spatial direction of derivation; repeated indexes mean summation.

In the momentum balance equation oj; are the coefficients of the Cauchy stress
tensor, f; are the components of external distributed body forces, p is the density, u; is
the displacement component in the /-th direction. In the energy balance equation ¢ is
the specific heat, Q is the external heat source per unit volume, g; are the components
of the heat flux vector.
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The body is supposed to be a linear isotropic elastic solid, and to conduct heat
according to the Fourier's law:

oij = Xdjje + 2ue;; — v6;;0 (2.3)

Equation (2.3) is the Hooke's law expressed by means of the Lamé coefficients A and u,
where ¢;; are the coefficients of the deformations tensor; e is the volumetric expansion
and the modulus -y is related to thermal expansion and elastic coefficients as expressed
in the following. In the equation equation (2.4) k is the heat conductivity. We also
define:

1
e = Ui+ u)
e = div(u)

¥ = a(3x+2u)

The coupling between the standard elastodynamics problem and the thermal problem is
given by the last term in (2.3), representing the stresses due to the thermal expansions,
and by the last term in (2.2) accounting for the internal heat source due to the rate of
elastic volumetric deformation.

The boundary I is subjected to mechanical and thermal boundary conditions. In
general we have

r=rgfurfur =rfurirurg (2.5)

where the elastic sub-boundaries do not overlay on each other, as well as the thermal
ones.

On I} Dirichlet boundary conditions are applied and the temperature value is im-
posed; i is a Neumann boundary, where a fixed value for heat flux across the boundary
is assigned; I_C”’ represents an heat convection surface, where heat flux depends from an
external medium temperature, from an heat exchange coefficient, but also from the sur-
face temperature value. Thermal radiation is not included in this formulation: it would
determine a nonlinear boundary condition and may be approximated with an equivalent
heat convection. In the following only the Dirichlet and Neumann boundary conditions
will be discussed, for the sake of simplicity:

0=06p on A" x (0, Ty)
gini = qn on [Hhx(0,T¢;) Vi=1,...,d
It is also necessary to specify the initial conditions for the temperature in €2:
6(t =0) =0 in Q (2.6)
The boundary is also subjected to elastic boundary conditions, expressed in the form:
u = ¢; on g x(0,T¢) i=1,...,d

O','J'nj:t,' on/_,‘\’}’X(O,Tf) i=1,...,d
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On FE,’ prescribed values of the i component of displacements are imposed, on I‘,ﬁ’
known tractions are applied. Apart from these, an absorbing boundary condition has
been implemented to approximate the infinite media behavior; this will not be discussed
here and the interested reader may refer to [1][2][3]. The initial conditions for the
elastodynamics problem should be provided as well:

u(t=0)= u,-(o) in Q

b;(t =0) = o in Q
Through the principle of virtual work, the dynamic equilibrium problem can be stated in
the following weak or variational form [8]:

if v is generic function candidate to represent a possible solution and vanishing on g/,
find u = u(x, t) such that u; = ¢; on g x (0, T¢) and, Vt € (0, T¢):

/pv,-L'i,- dQ+/ Vi jOij dQZ/ vif; dQ-l—/ vit; dlr Vv (27)
Q Q Q re

Similarly, for the thermal problem, we denote by 6 a generic function candidate to
represent a possible solution and vanishing on I}, and we look for & = (x, t) such that
0= GD on I_[l;h X (O, Tf) and Vt € (0, Tf)I

/ Gpch d2+ / 0.k0,; dQ) = / 6pQ dQ1— / 6Tyye dQ— / Ggy dIr V6(2.8)
Q Q Q Q

th
I_N

If we split the thermal component of the stress:

_ * th
O';-;- = )\66,‘1' + 2/J'€ij
th  _ .
o; = 765

then the we can formulate the thermoelastic problem as follows: y
Find u = u(x, t) and 6 = 6(x, t) such that Vt € (0, T¢) and Vv, V0 :

/pViUi dQ-l—/V,',J'O'Z- a2 /V,'f;' dQ-l—/V,',J'O'E-h dQ+/ Vi t; dr
Q Q Q Q rfl

/épce' dQ+/§,,-k,-9,,- aQ = /épo dQ—/é‘Toqe dQ—/ Oqy dIr
Q Q Q Q rin

This is the weak form expression of the fully coupled thermoelastic problem, in which not
only the deformations and the stresses depend on the solution of the thermal problem
but the latter also depends on the rate of volumetric deformation and hence on the
solution of the elastic problem. Anyway, due to the characteristics of the problem under
exam and to the common properties of the materials adopted for these equipments,
several simplifications of the general form of this problem are possible.



CHAPTER 2. BEAM DUMP ANALYSIS METHQOD 10

2.2 Problem simplification

The thermal problem, in particular, may be simplified. First of all, it is a common
practice to discard the coupling term in the heat balance equation, to obtain

pch = pQ — q;; in Q x (0, T¢) (2.9)

By means of this decoupling, the thermal problem is no longer influenced by the elastic
problem: it can be solved independently and its results may be used as input when simu-
lating the wave propagation. This popular approach brings negligible approximations in
the final result, at least for the most common thermal load characteristics and structural
materials.

Considering that typical durations of the particle bursts available from accelerators
have order of magnitude of microseconds or even shorter, during the heating of the
irradiated material heat conduction may be neglected and the temperature rise is gov-
erned by the thermal capacity only. This approximation is usually accepted in numerical
analysis of beam obstacles [6][9].

Both approximations introduced have the effect to increase safety: in fact, in com-
mon problems they increase the steepness of thermal and displacement gradients, there-
fore increasing the resulting stresses in the material, the most crucial quantity in these
simulations [10].

So the heat equation reduces to:

pch = pQ in Q x (0, T¢) (2.10)

The problem is now greatly simplified: the temperature is easily calculated, by integrating
in time the thermal power supplied, and does not depend by the temperature of the
surrounding points, or by the thermal boundary conditions.

The momentum and thermal energy balance equation may be rewritten as:

p[ii:crj;,j+pﬁ inQX(O,Tf) Vi=1,...,d (2.11)
pch = pQ in Q x (0, T¢) (2.12)
The solid obeys to Hooke's law and is here considered isotropic for simplicity; moreover
it is subjected to mechanical boundary conditions only:
U,':d),' OHFBIX(O,Tf) I:1,,d
O','J'nJ':t,' On/_,f,IX(O,Tf) i=1,...,d

Initial conditions are specified in terms of temperature, displacement and velocity:

6(t =0) =6©
u(t =0) = u® inQ,i=1,....d (2.13)
it =0) = 4@
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Finally the variational form reads:
Find u = u(x,t) and 8 = 6(x,t) such that u; = ¢; on I'g x (0,T¢), 6 = 6p on
/_Bh X (O, Tf), and Vt € (O, Tf) .

{ fQ pvii; dS2 + fQ v;,joj dS2 = fQ vif; dQ + frﬁ’ vit; dI” v (2.14)

[o0pc0 dQ= [,00Q dQ VO

Traditionally, this problem has been solved using different numerical techniques, including
the well known finite differences and finite element method. We are using a spectral
element approach. The reason for our choice is the following: spectral elements are
more suited the treatment of large scale problems (such as beam obstacles analysis) than
traditional techniques. In the following the spectral element method as implemented in
the ELSE code will be briefly discussed.

2.3 Spectral Element Method

The Spectral Element Method (SEM) may be considered as a generalization of standard
finite elements, using high order piecewise polynomial functions [1][2][3].

It is an h-p method, since the accuracy of the numerical solution may be increased
through a mesh refinement, reducing element mean size as in a standard finite element
method, or enhancing the algebraic degree of the piecewise polynomial functions used
to approximate the solution. This latter opportunity results very useful to the final
user who simply has to set the desired spectral degree at runtime to obtain the needed
accuracy, whereas no time consuming meshing or re-meshing process is required.

To obtain an approximate numerical solution for the thermal and elastic problems we
divide the computational domain €2 in a number of subdomains, the spectral elements,
namely quadrilaterals in 2D problems and hexahedra in 3D, denoted by €21,$2,, ..., Qk.

Each element Q is obtained mapping a reference (or “master”) domain Q =
[-1,1]¢, (d = 2, 3) with a transformation x = F,(X) where x and X refer to Q, and €,
respectively.

The simplest transformation is the Q; mapping that associates the vertex of €2,
with those of § and is linear in each space coordinate. The transformation is sub-
parametric, but this does not affect the convergence behavior, and positively reduces
the grid generation effort.

Nodes on each local axis of the reference domain are defined as the cartesian product
of the roots of the one dimensional polynomial (1 — &)(1 + &)L, (&), where Ly is the
Legendre polynomial of degree N and £ is the coordinate in the reference domain [-1,1].
Figure 2.1 illustrates the procedure.

Defining:

Qn(u) = {v="00F1 7€ Qu(Q)} (2.15)

the mapping Qu(2) of the space of polynomials with degree less than or equal to N,
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Figure 2.1: Spectral grid construction
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Internal point Interface point Cross—paoint

Figure 2.2: Spectral basis functions

with respect to each variable, then the space of admissible displacement components
and temperature (v; and 6 in section 2.1) is

Xn(Q) = {vw € C°(Q) | vnla, € Qn(Qu), Y%} (2.16)
along with its subset Vjy which is a finite dimensional approximation of H(Q):
Ww={w € Xn(Q) | vw=0o0n Np} (2.17)
Functions vy may be expressed as
Nnodes
(X £) = > Te(t)he(x) (2.18)
g=1

where ¥,(t) are the actual unknowns of our problem, being either a component of
the displacement vector or the temperature value at any node g. The restrictions of
the 1,'s on the element €2, is a subparametric mapping of the Lagrange polynomials
of degree N which are equal to one at the g-th node and vanish at all other nodes
(Vq(t) = vn(xg, 1)).

Different 1,'s for simple four element mesh of 2D elements of spectral degree 4,
are shown in Figure 2.2

Integration is performed element-wise, the integrals being evaluated numerically by
an accurate quadrature formula, namely the Gauss-Lobatto (GL) one:

/ F a0~ S F(x)u (2.19)
(o} p
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where x;(k) is the vector of coordinates of the Legendre-Gauss-Lobatto (LGL) nodes
in Q4 and the w, are the corresponding weights (see [11]).

According to the well known strategy of the standard finite elements, integrations
are performed over the reference domain Q, thus:

/ fFdQ~ ) FRY)I(Rq)ig (2.20)
Qx q

where x, are the images of X, through Fy and Jx is the determinant of the Jacobian of
Fk.

Such approach provides a property known in literature as spectral accuracy: being u
the “exact” regular solution, then the numerical solution up, n will converge to the exact
one according to the following law:

| u—upn ||< ChVexp(=N) (2.21)

where || - || is th H! norm and the constant C is independent from element size h
and spectral degree N, exhibiting an exponential decay of the error with respect to
the spectral degree. Moreover the computational effort in evaluating the integrals and
solving the resulting system is minimized, since matrices for inertia and heat capacity
terms are naturally diagonal and no lumping procedure is required.

2.4 Matrix formulation

Equations (2.14) are the weak formulation of the thermal and elastic problem. There,
the test displacement v; and temperature 6 may be chosen arbitrarily in the functional
space V. Taking v¥,’'s as test functions for the displacement and temperature, the
thermoelastic problem may be formulated in a matrix form:

Mii + Ku = f+ f
Co=q

where u is the vector of nodal displacements and 6 the vector of nodal temperature (the
actual unknowns of the problem), and i1 is the vector of nodal accelerations. Mechanical
loads are described by the vector f that includes contributions form the body forces and
Neumann boundary condition, and the vector f taking into account the effect of the
thermal expansion as an equivalent internal pressure; thermal power is applied by the
nodal vector q.

The inertia or mass matrix is denoted by M and the stiffness matrix by K, for the
elastic problem; for the thermal problem only the thermal capacity matrix C is necessary.

Vectors and matrices in the previous system of equations refer to the whole model,
nodal unknowns are shared by the different elements and assure the continuity of dis-
placement and temperature throughout the model and across element interfaces. Ma-
trices are assembled adopting the standard technique of the finite element by summing
the contributions coming from the element matrices.

M = Ay m*) K= AN K® f= ANe §0 (2.23)

(2.22)
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C = Ay c® q= A q® (2.24)

where N, is the total number of elements. The assembly procedure is extended to
all the elements €2, and the element matrices are defined as follows, where p and
g are nodal indexes (p,qg = 1,..., Npoges), I, j, | and m denote vector component
(i,j,,m=1,...,d):

k
M s G 1) W a = O /Q YpptqdS2 (2.25)
k
K((ik—)l)Nnodeerp (j—1)Npodes+0 :/Q T1m(Va&))eim(Ppe:)d2 (2.26)
k

f (k) = [ f4,dQ ! dr 2.2

(i_l)Nnodes+p - j’lljp + tiwp ( ’ 7)
Qy I'n

o in = / PY0dQ  i=1,...,d (2.28)
Qy

where &; is the i-th unit base vector. The thermal problem has similar expressions for
element thermal capacity matrix and element internal heat:

) = /Q VYp0CPqdQ (2.29)
k

gt = /Q Y,QdQ (2.30)

Alternative orderings of indexes /,j,/,m are possible. Integrals (2.25) - (2.30) are actually
evaluated by means of formula (2.20).

In addition to space discretization, it is necessary to specify a time advancing al-
gorithm to allow the solution of the coupled system. Several approaches have been
proposed in literature based on implicit and explicit schemes; most of them require the
assembly and subsequent solution of the composite system of equations, with both the
elastic and thermal terms, to allow the correct calculation of the coupling effects. This
approach, anyway, may lead to ill-conditioned linear systems, with poor results and low
computational efficiency.

We found more suitable to treat the elastic and the thermal system separately, with
different approaches for time integration. The thermal problem has to be solved first,
since its results, in terms of nodal temperatures are an input for the mechanical problem.
A simple first order forward Euler scheme may be adopted to time-advance the second
equation of (2.22), thus enjoying stability thanks to the lack of the conductivity terms.

Then the elastic problem is solved by an explicit second order leap-frog scheme, a
well known central difference method commonly used for wave propagation and fast
transient mechanical problems.
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This method must satisfy the Courant-Friedrichs-Levy (CFL) condition on the time
step:

(2.31)

where Axni, is the minimum spacing in the spectral grid and ¢,y is the maximum wave
propagation velocity; finally ¢ € (0, 1) is a stability parameter. The Axpmi, in the LGL
points distribution corresponds to the nodes near the border of the sub-domain, where
the grid spacing is proportional to L/N?, L being the characteristic element size and N
the polynomial order.

The interval (0, T¢) is divided in a finite number nr of time steps At, with T; = ntAt
and At satisfying the stability condition for the elastic problem. The solution of the
thermal and elastic problem is calculated at times t, = nAt.

For the heat transfer problem, knowing the temperature vector 6, and the external
heat source q, at time t, = nAt, it is possible to calculate the vector of the temperature
0,+1 at time t,,; by solving:

0,11 =0, + AtC 'q, (2.32)

For the elastodynamics problem, knowing the displacements u, and u,,,; and the external
forces f,.1, from the results of the thermal problem it is possible to calculate the load
vector due to the thermal expansion f(,’,H, and finally to calculate the nodal displacements

Upi2:
Uppo = APM Y (Foy + 5, — Kugya) +2u,40 — u, (2.33)

Since both matrices C and M are diagonal, their inversion is straightforward, no system
solving is required and the computation may be very quick for each time step. The
drawback is that the number of time steps may become exceedingly large because of
the limitation to the time step due to the stability requirements (2.31). Anyway, for
this class of problems the value of time step that has to be chosen to obtain a good
approximation has the same order of magnitude of that imposed by the stability limit:
if the mesh is sufficiently regular the CFL condition does not bring a severe limit.

It is worth here to remind a difference from standard finite element methods: no
lumping process is required to diagonalize inertia and heat capacity matrices, they are
naturally diagonal due to the choice of the integration rule and of the functional space.

2.5 Temperature dependent properties

Apart from a gain in CPU-time, the use of the explicit time stepping procedure previously
described may reduce memory occupation, thanks to the fact that the stiffness matrix (or
better the elastic reaction term in the dynamic equilibrium equation) may be calculated
at each time step without assembly. This allows a straightforward treatment of the non
linearities due to material properties depending on the temperature value, a key aspect
for this kind of problems.
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The elastic problem may be formulated again in matrix form as follows:
Mii = f<* — £ (2.34)
and the time advancing scheme may be rewritten as:
Upio = APM TS — £70) + 2u,, — U, (2.35)

Here ' is the vector of external nodal forces, including body loads and tractions on
the boundary; ft is the vector of nodal elastic reaction forces, and merges the stiffness
term and the thermal expansion forcing term: f"* = Ku — f°.

This vector is calculated and assembled on an element by element basis at each time
step. Knowing the displacement configuration at a given time step, say u,. 1, and the
temperature distribution at the same time 6,1, it is possible to compute the internal
stresses for each spectral element from the thermoelastic constitutive law.

1
€ij = E(U,‘J + UJ',,') e=V-u (236)

gjj = 6,‘j>\6‘ + 2,U,€,'J' - 6,_,(3)\ + 2,11:)€th (2'37)

Here the elastic moduli and the thermal expansion € may be a property of the local
temperature:

A=X06)  w=u0) =€)

and their values may be calculated on the basis of the nodal temperature configuration.

Once the stress distribution in each element has been determined, each component
of the stress tensor has been calculated on the spectral node position, the vector of
internal reaction forces may be assembled as follows:

£t = A (2.38)
s = | m5)01m(r12)2 (2.39)
k

This method is perfectly equivalent to that described in the previous paragraph, ex-
pressed in terms of stiffness matrix. The only difference is the computation of nodal
reaction, either as the result of a matrix vector product, or by direct element by element
integration: in our view the second approach is more flexible for the problem under
exam. The inertia term - not modified - remains constant throughout the simulation,
since effective density is assumed constant with time and temperature.

The specific heat ¢ may also depend on temperature, therefore it is necessary to
recalculate at each time step the thermal capacity diagonal matrix.

We provide some further detail on material properties. These are defined in the code
in a tabular form, as a function of the temperature; linear interpolation is then adopted
for intermediate temperatures. Material properties may vary from point to point: it has
been assumed for the sake of simplicity that these properties are constant within each
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element. When integrating the internal force term, for example, first a mean element
temperature is calculated (over each element nodes), then the material properties are
determined with respect to the mean temperature and kept constant on the element.
We believe that the approximation induced by this approach is limited and is a minor
drawback when compared with the computational efficiency it brings.

The thermal expansion € can be simply calculated as long as the thermal expansion
coefficient remains constant:

€"(6) = ab
If a is a function of the temperature, then

déth
do

= ()

and

€th(g) = / " (YT (2.40)

The thermal expansion coefficient used in the previous equation is known as the tangent
expansion coefficient; it may be expressed more conveniently as:

-
J7, (T)dT
T-T,
a, is called the secant or mean thermal expansion coefficient: it allows to calculate a

given set of values of this coefficient before the time loop, and to evaluate the thermal
expansion as a simple product rather than by numerical integration.

eth(g) = (T = To) = am(6)8 (2.41)

2.6 Yield condition

The analyses of the beam dumping in different loading conditions have been performed
under the hypothesis of linear elasticity, so no yielding of the material has been consid-
ered. Anyway, a measure of the criticity of a given loading condition can be obtained
by comparing the point stress of the model at a given time with a reference yielding
condition.

2.6.1 Stassi Yield Criterion

Brittle materials are normally tested under bending condition, and results on the material
yielding stress at different temperatures are available. Yielding criteria are necessary to
compare the available experimental results on axial tension to the general stress state,
for which all the components of the stress tensor are available.

A widely used criterion for ductile materials as a metallic alloy, for example, is the Von
Mises yield criterion, where the yield stress determined in the tensile stress is compared
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with an equivalent stress, function of the components of the stress tensor calculated as
follows:

Ovm =1/ 0% + 05 + 05 — (0102 + 0203 + 0301) (2.42)

where {g;}'s are the principal components of the stress in the intrinsic reference system.

It is assumed that the material has the same behavior in tensile and compressive stress
states: this may be reasonable in metallic alloys, but is a poor approximation of the real
behavior of most brittle materials, like polycrystalline graphite. These materials have a
different resistance in tension and in compression, typically showing better performances
when subject to compressive stress states. A different yielding criterion is therefore
necessary for these materials: we used the Stassi yield criterion, which may be figured
out as a modified Von Mises criterion (see e.g. [12]).

After introducing the ratio k between compressive and tensile strength:

o

K — a_j (2.43)
we can define the Stassi tensile equivalent stress o4 as:

koZey + 3(k — 1)pOieq — 05 =0 (2.44)
the pressure p being defined as:

p=—3(01+0:403) (2.45)
The Stassi compressive equivalent stress o4 is then equal to 0ceqg = —kOteq. TO verify

the resistance in any point of the structure it is then sufficient to compare the tensile
equivalent stress o, with the tensile admissible stress or, equivalently, to compare
the compressive equivalent stress with the compressive admissible stress, being the
admissible stress the ratio of the tensile or compressive strength with respect to a
chosen safety factor 7.

Therefore the Stassi yield criterion reads:

Uteq S Otadm (2.46)
where
o
O tadm = ;t (2.47)

The Stassi criterion has been applied to the entire set of simulations presented in this
report in which an isotropic material, as Graphite is analyzed. We remark that it is
perfectly equivalent to a Von Mises criterion when the compressive and tensile strength
of the material are equal.
Another useful quantity is the Stassi ratio €4¢, defined as:
Oteq

€teq = (2.48)
t

The safety of the structure may be checked by verifying that everywhere in the model:

1
eteq < 5 (249)

thus allowing an immediate view of the criticity of a given state of stress.
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2.6.2 Maximum stress yield Criterion

The previously discussed Stassi Yield criterion may be figured out as an improvement of
the Von Mises Yield criterion for those materials in which the compressive and tensile
strength are different. This criterion is anyway applicable to isotropic materials only.

The Von Mises equivalent stress loses much of its significance when anisotropic
materials have to be analyzed, since different stiffness, as well as different tensile and
compressive strength, have to be considered along the different directions; it is therefore
difficult to identify a single quantity giving a significant measure of a stress state.

For anisotropic materials the Maximum Stress criterion has been applied. The resis-
tance of the material is verified by checking that for each point each component of the
stress is lower than a corresponding rupture stress [13]. A Maximum stress Ratio may
be defined as:

( Oxx —Oxx
art. O orc
Oyy —Oyy

or
oy 497
ort Or 7
Ems = max. of ¢ |57 “ (2.50)

o-f
vz
|o2x]
O2x
|oxy]

\ %

The normal stresses in the three directions are compared to the tensile or compressive
strength depending on their sign: if it is positive the ratio is made with the tensile
strength, if negative, the compressive strength is considered.

It is sometimes hard to obtain tested values of the shear resistance of the materials,
most of the times only normal stresses failure values are available, shear failure stresses
have to be estimated in some way.

If a material may be assumed to be fragile, the Galileo-Rankine criterion is considered
(it corresponds to the maximum stress criterion for an isotropic material): for this
criterion it turns out that the failure stress in shear is equal to the failure stress in
tension.

This is overestimating for the resistance to shear of a ductile material. However it
does not put excessive limits in stress conditions for which the correct values of the
limits are not available, and furthermore gives reasonable results when applied to the
problem at hand.

2.7 Beam loading

The loading on the beam obstacles is due to the energy deposition of the LHC beam in
the material.

As a consequence of the assumptions made (i.e. neglecting heat conduction and the
elastic deformation effect on heat balance), neither Dirichlet nor Neumann boundary
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conditions for the temperature are applied: the boundary is not subjected to given
temperature values, convection or imposed heat fluxes.

In a first approximation, the effect of the beam energy deposition is simulated by
directly imposing the structural temperature, assuming it has a known time-varying
distribution. In this way no thermal problem has to be solved, and the temperature can
be regarded as a given parameter.

In the first simulations (see chapter 3) we adopted the following distribution for the
temperature:

0(x, t) = Ope Lo =) () (2.51)

where 60, is the maximum temperature increase on the beam axis; the latter is parallel
to the z axis and the distribution is constant along z. The time-history has the following
form:

0 0<t< 1ty
g(t) = T2 to <t <to+ Atpg (2.52)
1 to+ Atpg < 't

where to and At,y represent the initial time and the duration of the beam deposition.
Expressions 2.51 and 2.51 are an approximation of the real condition and give a
schematic representation of the real time function of the energy deposition.
This method applies reasonably to parametric studies, as for the first 2D examples
proposed. For real 3D simulations, a more sophisticated approach shall be chosen.
The internal heating due to the energy deposition of the beam Q may be expressed
as follows:

Q(x, t) = Eg(x) (1) (2.53)

where E4(x) is the energy deposited in the material surrounding a single proton of given
energy or a given set of particles, and n,(t) gives deposition rate of protons, or particle
set, per unit time.

The energy deposition Eg4, is an input for the elastic code and is calculated with a
Monte Carlo method, implemented in the FLUKA code [4][5]. The rate of deposited
particles depends on the beam time structure and is provided as input in form of a
temporal function.

The following subsections give more details on the FLUKA interface and the dis-
tribution of particles. This is anyway an approximated approach since a more realistic
model should take into account the full coupling between the energy deposition and the
thermo-elastic phenomenon.

Energy deposition causes a temperature increase and a thermal expansion in the solid
material, modifying the local density and affecting the energy deposition; if high amounts
of energy are deposited and/or the beam is particularly focused, the beam obstacle may
undergo changes in the phase, from solid to liquid up to a gas, with important effects
on real energy deposition.
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The one-way coupling described before may be considered sufficiently accurate for
the problem at hand, where materials remain solid, but constitutes an interesting and
possible improvement for the future.

2.7.1 FLUKA interface

Numerical philosophies underlying Monte Carlo methods and spectral elements are quite
different, and such are implementations of FLUKA and ELSE.

In the spectral element approach the computational domain is split in a given number
of non overlapping elements, following a completely unstructured pattern. On the other
hand, FLUKA calculations are made on a set of regular, structured grids of cells, which
can overlap each other and may cover a computational domain different from that
considered in the mechanical simulations. The data structures are therefore completely
different. Consequently the output of FLUKA cannot be read directly in ELSE unless
some kind of interface is built.

Internal heating is the required input for the thermal - mechanical simulation: it has
to be integrated over each element to obtain a vector of nodal heat power, used in the
calculation as described in the previous paragraphs.

As mentioned, the integration for spectral elements requires the knowledge of the
exact value of the quantity to be integrated at each nodal position. The ELSE code
has therefore been improved by adding a numerical tool in charge of interpreting the
FLUKA output and computing the correct input at each nodal position.

To perform this task, the interface first reads the FLUKA output file and generates
the different grids used by FLUKA; then, for each spectral node, determines the grid
that has the maximum accuracy near that point and the subset of cells surrounding
the point of interest; finally the interface calculates the value of internal heating by
interpolating the values of these cells. It should be remarked that the numerical models
used in ELSE and in FLUKA may be (and normally are) completely different, in terms
of the number and size of the grids adopted, but also in terms of the reference system
used.

The simple example in Figure 2.3 may be useful in clarifying this procedure. Three
FLUKA grids are shown, all of these belonging to the same set of data. These grids
are reqular and structured, but also overlapping and non matching. An ELSE grid is
shown too. FLUKA data is defined on the cells whereas ELSE data has to be defined
on nodes. For each spectral node in the ELSE grid, such as nodes A, B and C shown in
Figure 2.3, the interface takes care of evaluating which of the FLUKA grids offers the
maximum precision in the proximity of the point of interest, and interpolates the results
of the FLUKA cells. So in the figure the value in node A is calculated interpolating
the results of FLUKA grid 1; node B depends on the results of the cells of the second
FLUKA grid and, finally, node C is associated to the third, coarser, FLUKA grid.

In this way, the internal heating is calculated with the maximum possible accuracy
for all the nodes, and may be integrated over the entire model. This procedure is fully
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Figure 2.3: Matching between ELSE and FLUKA grids

automatic and the user only has to specify the FLUKA output file to be used in the
simulation.

2.7.2 Particle distribution

In order to complete the definition of the internal heating in the beam obstacle it is
necessary to define exactly the rate of particle deposition on the target as a function of
time.

The deposition is not continuous in time: the LHC protons are grouped in 39 distinct
trains; all trains are equal, each of them containing the same number of protons and
having the same duration of 1.8us as shown in Figure 2.4. Each of the rectangles in
the figure is a train and is in turn composed by 72 bunches of protons 25ns distant in
time [14].

The frequency content is not limited and it is possible to distinguish between several
time scales. It is practically impossible, due to the actual limits of the computational
resources available, to analyze all the time scales of the problem: the smallest ones
are discarded in our simulations. In particular, while it is possible to describe the time
structure of the batches, present computer performance do not allow to investigate the
effects of the bunch time scale. In fact, this would bring a time step lower than 25ns
and a consequent number of total time steps exceedingly large for the duration of the
simulation required by the dimension of the structure, not to mention the enormous
number of nodes required to efficiently describe those wave lengths.

We do not expect discarding higher frequency could significantly affect results: higher
frequency should be compared with the characteristic frequency of the system under
exam, that are related to the mechanical properties of the material adopted (wave
speed) and to the mean dimension of the energy deposition profile.

The minimum resolvable time scales of the model are related with the adopted time
step, that in turn depends from the wave propagation speed and from the minimum inter-
nodal distance; this characteristic length has been chosen considering the necessity to
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Figure 2.4: Bunch disposition inside the LHC

represent the energy deposition profile of the beam with a good approximation. The
nodal distance has been chosen such that a sufficiently high number of elements and
nodes is available to represent correctly the energy profile. The resulting time scales
are comparable with batch duration, and the smaller time scale of the bunches are
neglected.

The effect of this approximation on the results is negligible, also considering that
the effect of energy deposition rate on the thermal stresses is averaged by the time
integration procedure.

The model acts as a low-pass filter on the resolvable frequency. If simulation of
smaller time scales or higher frequencies is required, then finer grids are necessary and
the cut off frequency is limited by computational resources available: the higher the
frequency one wants to calculate, the higher the number of unknowns, the lower the
resulting time step, and, finally, the longer the CPU time required.

2.8 TDI Beam Obstacle design

The TDI (Injection Stoppers) for LHC are mobile obstacles intended to be used dur-
ing the adjustment of the injection trajectory in order to protect the superconducting
machine elements in the event of a malfunctioning of the injection kicker. The most
sensitive downstream element to be protected being the separation dipole D1, that is
placed 10 meters after the TDI end [14].

This structure must extend above and below the beam position to account for all
the possible operating conditions leaving a gap of the order of 10mm for the beam.

The beam obstacle design consists of several absorber blocks suspended or sustained
by two beam supports. Some detail of the structure is shown in Figure 2.5. Two
long support beams are bolted to a set of aluminum jaws: this in turn contains the
absorber blocks, made of different materials with a constant section, held in place and
pressed against the aluminum support by bearing plates and a system of precompressed
springs that push the copper plate against the block. The whole length of this system
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Figure 2.5: frontal view and section of the TDI
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equals 4185mm: 20 absorber blocks are used consisting, in the latest optimization of
the design, of 18 Boron Nitride absorber blocks, whose length is equal to 157.7mm, an
Aluminum block 600mm long, and a 700mm long Beryllium-Copper alloy block at the
end. The proton beam hits first the Boron Nitride blocks and then the Aluminum and
Beryllium-Copper ones. The section is rectangular with a width of 58 mm and an height
of 54mm.

The tolerances on the constructive dimensions are chosen such that a permanent
gap is present between the vertical surfaces of the assembly, both on the sides between
the jaw and the absorber block and the plate, as well as for the front and rear surfaces
where the jaws and the blocks are separated: in this way the thermal expansions do not
cause any undesired longitudinal compression. The absorber blocks are held in place by
the friction forces against the teeth of the jaw, due to the above mentioned pressure of
the copper plate, and by two sets (front and rear) of security plates.

This obstacle may receive single SPS bunches up to an ultimate intensity of 1.7-10'!
protons per bunch during the setting up of the injection. It is also necessary to consider
some exceptional modes of operation in which more bunches could be involved, up to
the full injected beam batch of 4 x 72 = 288 bunches of ultimate intensity.

The different operating conditions have been summarized in the following:

e Case 1 (Normal): the normal dumping of the beam. In this case the beam hits
the TDI at the center of its upper block with a displacement Ay = 34mm from
the plane of the beam orbit. This is the normal operation mode during injection
setup, with pilot bunches every 16s. In exceptional cases a full train dumping may
be also envisaged. The expected rate of these normal conditions is several per
year.

e Case 2 (Sweep): this happens in case of a wrong MKI timing or of prefire of
one module. When the passage of injected or circulating beam coincides with the
rise or fall slope of the kicker pulse, part of the bunches will be swept over the
TDI, either above or below the nominal orbit. The estimated rate of this event is
several per year.

e Case 3 : this corresponds to the failure of one of the MKI modules, with the
full batch hitting the block at a distance Ay = 9.16mm from the orbit, at the
expected rate of once a year.

e Case 4 (Grazing): the beam hits the TDI just on one of its edges so that part
of it continues its trajectory grazing the horizontal surface: the distance from the
plane of the beam orbit is approximately Ay = 5mm. This event may concern a
bulk of bunches (with an initial sweep) in the case of internal fault of a module
and estimated rate of a single event once every ten years.

The intent of this report is to analyze the normal condition (case 1) for the most critically
loaded absorber block: this include several parametric studies performed on simplified
2D models to get a better insight. The analysis were performed during the design and
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optimization phase for the TDI design to provide to the designers some information on
the mechanical behavior; hence, the results presented in the first chapters of this report
regard models having small discrepancies from the final design previously described, and
adopting different materials, such as standard graphite.



Chapter 3

Preliminary analyses

3.1 Introduction

In this chapter, the results of two analyses are shown: a infinite plane under a perfectly
centered thermal load and a semi infinite plane under a thermal load near the free
edge. These simulations were performed mainly to calibrate the numerical model for
the specific problem of the LHC.

For the first problem (the infinite plane case), the thermal load is analyzed also in
static conditions. The reasons behind this test are:

e The possibility to make comparison between numerical and analytical results pro-
vided by Sievers ([6]), concerning the elastic stress due to a rapid heating by a
particle beam.

e The necessity to find the 'optimal’ size of the mesh to be used for dynamic analyses.

The interest of the first test is mainly on a conceptual ground, and the infinite plane
approximation is well suited only for the very first instants of the thermal load. The
experience on similar problems has shown that wave reflections on the boundaries of the
structure should be regarded as a serious source of stress increase.

This is the motivation for the second set of analyses, where the effect of the proximity
of a free wall is studied. Indeed, it may happen in real conditions that the impingement
of the particle beam is not centered in the beam stopper but falls in the proximity of
one of its borders. This may result in a critical condition for the beam obstacle design.

3.2 Properties of the material

A standard Graphite is initially used: its properties as a function of temperature are
shown in Table 3.1, see [15].

Through this chapter the properties of the material are assumed independent from
temperature. The values adopted are those relative at 20°C .

28
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T 0 E v O¢ Oc a c k
[°Cl | [Kg/m*] | [GPa] [MPa] | [MPa] | [um /m °C] | [J/Kg °C] | [W/m °C]

0 1850 9.96 | 0.15 27 90 2.97 510 93
20 1850 10.00 | 0.15 27 90 3.00 650 90
100 1850 10.16 | 0.15 27 90 3.13 1010 81
300 1850 10.57 | 0.15 27 90 3.46 1400 62
500 1850 10.97 | 0.15 27 90 3.79 1590 49
750 1850 11.47 | 0.15 27 90 4.06 1750 38
1000 1850 11.98 | 0.15 27 90 4.23 1880 31
1250 1850 12.48 | 0.15 27 90 4.40 2000 27
1500 1850 12.99 | 0.15 27 90 4.57 2050 24
2000 1850 14.00 | 0.15 27 90 491 2130 20
2500 1850 9.50 | 0.15 27 90 5.24 2200 19
3000 1850 5.00 | 0.15 27 90 5.00 2270 18

Table 3.1: Properties of standard Graphite

3.3 Thermal load

The beam energy deposition is simulated by means of a thermal gaussian load, in the
form:

0(x, t) = Bpe P F (1) (3.1)

with r = y/x? 4+ y? and 6, being the maximum temperature at the center of the section
of energy deposition, 8y = 653.7°C. The parameter b gives a measure of the steepness
of temperature variation with the radius: for r = 1/+/b it turns out 8 = 0.36,. For the
assumed value b = 0.106-10° m 2, representative of the condition in the beam stopper,
the temperature decreases to a 30% of the maximum value at a distance r = 3mm.

The maximum temperature is reached in 7.8us: the time function used is the ramp
shown in Figure 3.1 (left). The Figure 3.1 (right) shows the snapshot of the temperature
distribution when the maximum value is reached.

3.4 Infinite plane

The numerical model is a 75 x 75mm? graphite slice with absorbing conditions on the
edges and a perfectly centered load. The absorbing conditions are necessary to simulate
an infinite surface.

Every element is 1.5 x 1.5mm?, therefore the temperature variation from its max-
imum to a value equal to 6y/e is contained in two spectral elements along the radius.
Several spectral degrees are used: depending on the chosen value of the spectral degree,
a different number of spectral nodes are subjected to a temperature increase, different
number of unknowns are involved, and different accuracies could be obtained. A tuning
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Figure 3.1: Temporal function and snapshot of the temperature

is therefore required to obtain a satisfactory precision within acceptable values of CPU
time.

3.4.1 Static analysis

In this problem the thermal load is applied statically: the temperature increase in the
material is theoretically realized in a infinite time. Several simulations are made varying
spectral degree and the results are compared with those obtained analytically, see Table
3.2. For spectral degree 3, the mesh has 2500 elements and 22801 spectral nodes.

The stress values are calculated in three different nodes: in the load point (r = 0),
at r = 1.5mm and at r = 3mm. The difference between numerical and analytical value
is plotted in Figure 3.2. The error decreases rapidly with the increase of the spectral
degree being almost negligible, for engineering design purposes, when the spectral degree
is set to 3.

3.4.2 Dynamic analysis with constant properties

The same problem, an infinite graphite plane subjected to a localized temperature in-
crease, is now analyzed as a dynamic problem. Since particle deposition in beam obsta-
cles is characterized by a very low deposition time, dynamic effects are very important.
To be more precise, deposition and temperature rise time should be considered slow or
quick depending on the dynamic effects they produce, which are related to the dimen-
sions of the energy spot and to the wave propagation speed. A simple indication of the
importance of dynamic effects is the comparison between temperature rise time and the
time required for a wave to cover the length of the heated part.

In our model the temperature varies in time following a ramp of finite width; dynamic
effects depend from the width of the ramp: the steeper is the ramp, the bigger is the
dynamic part of the stress. To show this, we compare the results of two loads sharing
the same temperature distribution of the static problem, but with different width of the
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r=20 N=1|N=2|N=3| analytical
ox[MPa] 13.42 | 1046 | 11.12 11.18
oy [MPa] 13.42 | 1046 | 11.12 11.18
o,[MPa] | 23.04 | 22.15 | 22.35 22.37
p[MPa] 16.62 | 14.36 | 14.86 1491
ovm|MPa] | 9.62 | 11.69 | 11.23 11.18

r=15mm | N=1| N=2| N=3]| analytical
ox[MPa] 10.88 | 9.59 9.94 9.95
oy [MPa] 9.55 7.09 7.63 7.67
o.[MPa] 18.04 | 17.48 | 17.61 17.62
p[MPa] 12.82 | 11.39 | 11.73 11.75
ovm[MPa] | 7.91 9.39 9.05 9.03

r=3mm |N=1|N=2|N=3| analytical
ox[MPa] 6.43 7.38 7.27 7.21
o, [MPa] 2.58 1.10 1.39 1.41
o,[MPa] 8.67 8.59 8.62 8.61
p[MPa] 589 | 5.69 | 5.75 5.74
ovmlMPa] | 5.34 6.97 6.65 6.62

Table 3.2: Static analysis: numerical results, varying the spectral degree, and analytical solution

ramp, and the static results. The first ramp, which better approximates the real TDI
behavior, is characterized by a rise time of 7.8us; the rise time of the second is equal to
0.1us. The maximum stress values at different distances from the center of the loaded
area are compared in Table 3.3.

It is apparent that the first ramp may be considered slow for the material considered,
since the resulting stress values are comparable with those obtained by the static analysis.
In fact a stress wave starting from the center of the energy deposition area may cover
almost 20mm during the rise time of the temperature, a path significantly higher than
the mean energy deposition area size. On the contrary, the second ramp is very quick,
since a wave may travel only for 0.24mm in the rise time of the temperature.

The Figure 3.3 shows the displacement of different points for the first and second
ramp. The initial rise time for the second ramp is set to 9.9us so that the temperature
reaches the maximum value at t = 10.0us in both cases.

In the second one, the displacement is bigger at the beginning, but after the initial
transient the two results are coincident, and equal to the static part of the stress.

The Figure 3.4 displays different snapshots of the displacement for the first ramp
(7.8us); the results at the same instants for the second ramp are shown in Figure 3.5

The displacement for the two ramps have a similar profile but, evidently, the circular
wavefront departing from the center has a much steeper profile for the second ramp.
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Figure 3.3: Displacement of different points when the ramp is 7.8us long (top) and when it is 0.1us long
(bottom)



CHAPTER 3. PRELIMINARY ANALYSES 34

()

t =10.0us
Displacement magnitude
200 357607  703e-07 105606 141e06 176006 2.1%e-06 _ 2.6e-06
t =15.0us
Displacement magnitude
546e-20  363e-07  7.26e-07 1006  1d5e-0f 182006  2.18e-06  2.54e-06
t =20.0us

ment magnitude
224020 367607  722e-07 108206 144e06  181e-06 21706 2.55e-06

Figure 3.4. Snapshots of the displacement magnitude when the ramp is 7.8us long
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r=20 ramp 1 | ramp 2 | static
ox[MPa] 11.34 | 27.09 | 11.12
o, [MPa] 11.34 | 27.09 | 11.12
o,[MPa] 22.41 27.14 | 22.35
p[MPa] 15.03 | 27.11 | 14.86
oym[MPa] | 11.08 | 0.47 | 11.23
r=15mm | ramp 1 | ramp 2 | static
ox[MPa] 10.16 | 21.37 | 9.94
o, [MPa] 7.84 21.35 | 7.63
o,[MPa] 17.68 | 21.38 | 17.61
p[MPa] 11.89 | 21.37 | 11.73
ovm[MPal 8.91 0.32 9.05
r=3mm | ramp 1 | ramp 2 | static
ox[MPa] 7.46 10.48 | 7.27
o, [MPa] 1.61 10.44 | 1.39
o,[MPa] 8.68 10.46 | 8.62
p[MPa] 5.92 10.46 | 5.75
ovm|MPal 6.55 0.31 6.65

Table 3.3: Dynamic analysis: comparison between stress values when the load is applied statically and
with different ramps

3.4.3 Dynamic analysis with temperature dependent properties

As mentioned before, the analyses discussed so far were performed adopting material
properties referred to the standard graphite at 20°C. This was necessary in order to
make a comparison with an analytical solution, and to get a first look at a reference
problem with simplified physics.

A step toward a more accurate description can be done by considering temperature
dependent material properties. In Figure 3.6, the results in terms of Stassi equivalent
stress are shown for the problem with constant material properties (top) and that with
temperature dependent properties (bottom), with the standard ramp, having a rise time
of 7.8us. The state of stress is more critical for the problem with temperature dependent
material. The reason is clearly the thermal expansion coefficient that increases with
temperature for the material considered.

3.4.4 Results analysis

The Stassi equivalent stress above tensile strength is shown in Figure 3.7 at different
instants.

It is possible to notice that the maximum value of the ratio between the Stassi
equivalent stress and the tensile limit for the graphite, is reached at r = 5.5mm and
t = 12us. It is worthwhile to remark that the gaussian parameters affect the position
and the instant of the maximum Stassi stress value. A test with a different gaussian
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Figure 3.6: Stassi ratio for constant property material (top) and for a temperature dependent material

(bottom)
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load (where only the parameter b is changed) is done and the results obtained are shown
in the Figure 3.8.

More in detail, in the new test, the parameter b of the gaussian load is set to one
tenth of the original value, and this brings a bigger o; the maximum of temperature
does not change, so the energy deposited and the stress values are greater. We remark
that the position of the maximum stress value is now at r = 18mm.

In another test, the ramp width is changed (precisely it is halved), while all the other
parameters are kept constant. The results are shown in Figure 3.9. In this second test,
the position and the instant of maximum stress remain the same, the stress values are
greater since the dynamic part is increased.

From these and other results, it seems that keeping the same form of the temperature
profile, and varying temperature and width of the heated area, the stress pattern in the
quasi static approximation keeps the same form, and stress values are approximately
proportional to the maximum temperature value. Moreover, the radius at which the
critical stress condition is reached is approximately proportional to the o parameter of
the temperature function, the ratio between the two being approximately equal to 0.54.

The dynamic effects are superposed to the static stress distribution: they are related
to the temperature increase, the lower the rise time of the temperature the higher the
resulting dynamic stress. It is not easy to relate the rise time to the maximum value of
the dynamic stress, reference to more detailed analytical works can be made [6]. Here
we conclude that the dynamic stresses may almost double the stress induced by a static
temperature distribution; as mentioned before, a way to check the importance of the
dynamic effects may be the comparison of the rise time of the temperature and the
time required by the elastic wave to cover a characteristic length of the temperature
distribution (say o as defined before). This is quite obvious indeed, but gives a quick
rule of thumb useful in material selection.

It should be also noticed that the dynamic stress waves are characterized by two
maximum values, corresponding to the two changes in slope of the time function adopted
(i.e. the beginning and the end of the period in which the material is subjected to the
heating).

Not surprisingly, the time at which the most critical stress condition is reached does
coincide with the time at which the second circular wavefront, the one arising from
the center of the heated area at the end of the heating period, reaches the radius of
the maximum static stress: due to the superposition of these effects, the most critical
condition is obtained. Therefore, given the characteristics of the heating curve and the
material properties, it is possible to get an idea of the point and the time in which the
beam stopper is subjected to the most critical stress condition.

Stresses however may increase a lot in case the heating spot falls near a free surface
of the material: this situation is studied in the following paragraph.
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Figure 3.9: Stassi ratio: ramp width 3.9us

3.5 Semi infinite plane

A semi infinite plane under the thermal gaussian load near the free edge is now analyzed.
In the Figure 3.10 the model is shown: it is a 75 x 39mm plane with a free surface
condition on the bottom edge and absorbing conditions in the rest of the boundary. The
thermal load and the mesh are exactly the same used in previous sections. The material
properties are variable with temperature in the area surrounding the load point.

The proximity of the hot spot to the free edge leads to an increase of stresses with
a stress concentration on the free edge. It may be important to determine which is the
critical distance of the heat area from the free edge, the distance at which the most

absorbing conditions

load point

absorbing conditions absorbing conditions

free edge

Figure 3.10: Model approximation for the semi infinite plane
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Figure 3.11: Maximum Stassi ratio varying the distance of the load point from the free edge

dangerous stress condition appears at any time for the given temperature profile and
temperature rise time.

Different tests are made varying the load point: the results are summarized in Figure
3.11, where the maximum Stassi ratio found at any instant of the simulation in any
point of the model is plotted as a function of the distance of the center of the heated
area from the free edge. It is possible to see that the more critical condition takes
place when the load point is 3.5mm (i.e. 1.1670) far from the free edge. In fact, since
o = 3mm, in this case the total load energy is deposited very near to the free edge.
Further approaching the beam deposition point to the free edge would cause part of the
thermal energy to fall outside of the plane.

Figures 3.12, 3.13 and 3.14 show several snapshots of the stress wave represented
in form of Stassi ratio, for different load conditions, with the center of the heated area
located at 7mm, 3.5mm and on the free edge, respectively.

The Figures 3.15, 3.16 and 3.17 show the Stassi equivalent stress varying the load
position. For every graph the distance of the load point from the free edge is indicated.

The Figures 3.18, 3.19 and 3.20 show the radial displacement, the radial stress and
tangential stress respectively.
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Figure 3.12: Snapshots of the Stassi ratio when the load center is 7mm distant from the free edge
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Figure 3.13: Snapshots of the Stassi ratio when the load center is 3.5mm distant from the free edge
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Figure 3.14: Snapshots of the Stassi ratio when the load center is on the free edge
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Figure 3.15: Stassi ratio along the normal to the free edge for different load distances and different times
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Figure 3.16: Stassi ratio along the normal to the free edge for different load distances and different times
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Figure 3.17: Stassi ratio along the normal to the free edge for different load distances and different times
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Figure 3.18: Radial displacements along the normal to the free surface for the maximum stress load

condition

4e+06xx‘xxxxxxxxx

2e+06 —

T

LI N B B B B

| L A

-2e+06 —
'E‘ -
o 4
= — t=1.0e-05s i
© _4e+06 — t=1.1e-05s -
t=1.2e-05 s -
— t=1.3e-05s B
t=1.4e-05 s T
-6e+06 t=1.5e-05 s —
t=1.6e-05 s 7
— t=1.7e-05s ]
t=1.8e-05s

-8e+06 — t=1.9e-05s ]
t=2.0e-05 s B

_le+07 11 l ) N I S I I I I | l ) N S I N S I l ) N I S I I I I |

0 0.01 0.02
rm]

0.03

Figure 3.19: Radial stresses along the normal to the free surface for the maximum stress load condition
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Figure 3.20: Tangential stresses along the normal to the free surface for the maximum stress load
condition



Chapter 4

TDI 2D analysis

4.1 Introduction

In this chapter we analyze a 2D model of a TDI section under the same loading conditions
discussed previously. Some details of construction drawings of these parts are presented
in Figure 4.1. The thickness of each block is greater than its plane dimensions, hence
we expect the plane strain hypothesis to be a good approximation of the real conditions,
at least within the limits of a 2D analysis.

The analysis is performed on a section of the block and its neighboring elements, to
evaluate the loads transferred to these parts and the critical state of stress thus induced.
The graphite absorber block is in fact held in place by an aluminum support and by an
overlying copper plate pressed over it, as shown in the drawings.

It is therefore crucial for a correct preparation of the model to properly determine
the contact, gap and interference condition between the different parts of this assem-
bly. Constructive drawings have been analyzed to verify the coupling specifications and
measure tolerances between the different parts. It has been verified that the specified
dimensions and relative tolerances realize an interface with a permanent gap within each
of the parts, and in particular for the vertical surfaces between the graphite core and
the aluminum support and between the latter and the copper plate. Moreover, even in
the worst case for the as built dimensions, the permanent gap between the parts is still
higher than the maximum displacement due to heating and elastic wave propagation.

Referring now to the horizontal surfaces, the different parts are pushed together
by a set of pre-stressed springs: a constant pressure is therefore applied on the small
contact horizontal areas between the graphite core and the aluminium jaw and between
the copper plate and the upper surface of the graphite block.

Thus, the model of the TDI section has been prepared avoiding the continuity be-
tween the vertical surfaces, and the nodes of the two parts may share the same position
but do not coincide. For the horizontal surfaces a non linear contact condition could be
applied, at the expenses a worsening of the computer time requirements: in our opinion
this is not worthwhile, due to the limited dimension of the contact area between graphite
and aluminum and the different acoustic admittance of the materials of the different
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Figure 4.1: TDI drawing
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T 0 E v o Oc a c k
[°C] | [Kg/m’] | [GPa] [MPa] | [MPa] | [um /m °C] | [J/Kg °C] | [W/m°C]

20 8960 110 | 0.343 | 333 33.3 16.4 385 385
250 8960 110 | 0.343 | 333 33.3 18.5 385 385
500 8960 110 | 0.343 | 333 33.3 20.2 385 385
1000 8960 110 | 0.343 | 333 33.3 24.8 385 385

Table 4.1: Copper mechanical properties

T Jo E v O Oc a c k
[°C] | [Kg/m’] | [GPa] [MPa] | [MPa] | [um /m °C] | [J/Kg °C] | [W/m °C]
20 2710 68 0.33 35 35 24 900 210
250 2710 68 0.33 35 35 25.5 900 210
500 2710 68 0.33 35 35 27.4 900 210

Table 4.2: Aluminum mechanical properties

parts. Continuity is imposed on these surfaces, so matching surfaces share the same
nodes.

This test is useful since provide an upper approximation of the energy transferred
from the block to the surrounding parts and the stress state induced on them. In the
following we consider a stand-alone block (i.e. we neglect the surrounding components)
in such a way that the whole energy of the beam dumping is confined inside the block
itself.

The features of the thermal load are the same used in the first analyses: a tem-
perature variation is imposed first on the center of the block, and then near the lower
border. The temperature variations undergoes the following law:

B(x, t) = Gye DO +00)%) g(t) (4.1)

where 0y, = 635°C is the maximum temperature increase, (xg, ¥o) are the coordinates
of the center of the heated area and g(t) gives the temperature time-history. The
temperature is equal to zero until t = 2.14us, then grows linearly to reach the maximum
at time 10.0us. This law approximates the deposition of the energy of four trains of
protons, as an impulse of finite length At,y = 7.86us.

4.2 Material properties

The properties of Copper and Aluminum adopted for this simulation are indicated in
Tables 4.1 and 4.2. Standard Graphite properties are used for the absorber block,
reference may be made to the previous chapters for details on graphite properties.
Wave speed, as well as the material density, should be carefully taken into account.
The speed values of the pressure waves for the different materials at t = 20°C, are
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Material | Speed [m/s]
graphite 2389
copper 4373

aluminum 6097

Table 4.3: Pressure wave speed for the different materials

indicated in the Table 4.3. Propagation velocity also drives the choice of the element
size through the wave length resulting for a given frequency or, if the element size is
given, determines the time step size via the stability requirements.

4.3 TDI grid

The Figure 4.2 shows the mesh used in the simulation. Different colors are used to
indicate the different materials: red for copper, fucsia for aluminum, black for graphite
with constant properties at t = 20°C, and blue for graphite with properties varying with
temperature.

The model is described by 6340 elements. The element size is not constant: as a
term of comparison, in the graphite core each element is 1 x 1mm?. A spectral degree
equal to three is chosen constant for all the model, and the total number of spectral
nodes is 58059.

4.4 Results analysis

In the following, results are presented in the form of color plots of kinetic energy density,
and several measures of the state of stress for a relevant number of instants, to better
follow the propagation of the wave through the structure.

Figures from 4.3 to 4.6 show the kinetic energy density in the structure, giving a
straightforward view of how energy propagates in the beam obstacle.

Figure 4.3 top is relative to the time when the temperature stops its growth: it is
clearly visible that a circular wave front has already left from the center of the block,
7.8us before, when beam deposition began. The energy density is initially concentrated
in the area around the center but rapidly propagates in the rest of the obstacle. The
bottom Figure refers to 12us: the first wavefront has not yet reached the borders of
the block and clearly the final front of the wave has already left the center.

The wave propagates and reaches the horizontal border first (see Figure 4.4) and
then the lateral surfaces. A different behavior is put in evidence in these pictures: on the
lower border and the lateral surfaces (free edges) a maximum elongation is recorded.
The upper surface is in contact with a material that is more rigid and has an higher
density than graphite of the absorber block, and seems to act approximately like a rigid
wall.
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Figure 4.2: TDI 2D mesh
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Figure 4.5 shows snapshots taken at t = 18us and t = 20us: some border effects
are particularly evident on the sides near the aluminum support of the lower surface of
the absorber block. It is interesting to see that the kinetic energy seems to be confined
mostly inside the absorber block and just a limited portion seems to pass to the rest of
the structure.

Proceeding in time, multiple reflections take place inside the block, the energy dis-
tribution and wavefronts become difficult to distinguish as shown in Figure 4.6; in the
upper one it is anyway possible to see the energy distribution in the rest of the structure,
with a much lower density than in the absorber block.

Figures 4.7-4.12 show the Von Mises equivalent stress and internal pressure at several
instants. The results suggest that the state of stress induced by the load condition
are mostly due to the static part, the beam deposition time being long enough for
dynamic components of the state of stress to be small when compared to the static
part. Therefore, the stress and pressure distribution in the structure seem to remain
constant with stresses concentrated near the beam deposition area with the exception
of limited area near the borders where notches are present.

This indication is partly confirmed by the most important results, those of Figures
4.13 - 4.17 that show the ratio of the Stassi tensile equivalent stress with the tensile
rupture stress, giving a direct measure of the criticality of a stress configuration (a
unitary ratio means rupture).

It is evident that an annular area around the beam deposition center maintains an
high value during all the simulation. Anyway a circular stress wave propagating in the
absorber block is now clearly visible along with its reflections in Figure 4.14, and the
stress concentration near the notch of the contact area become more evident, but stress
values appear still far from critic conditions. The stress configuration worsens in the
next Figure 4.15 where stress concentrations on the notch are even more evident but
still not critic.

From the last Figure 4.17 we can observe how the surrounding structure is loaded
by the absorber block; stresses are evident but limited in value due to the material
properties and the form and function of the structures involved. So the stresses in the
bearing plate appear to have limited importance and those on the aluminum jaw seem
confined to the lower teeth, near the contact area, and appear tolerable at least in these
load conditions.
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Figure 4.3: Kinetic energy density [J/m3]
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Figure 4.4: Kinetic energy density [J/m3]
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t = 18us

t =20us

Figure 4.5: Kinetic energy density [J/m3]
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t =30us

t =40us

Figure 4.6: Kinetic energy density [J/m3]
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Figure 4.7: Von Mises equivalent stress [Pa]
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Figure 4.8: Von Mises equivalent stress [Pa]
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Figure 4.9: Von Mises equivalent stress [Pa]
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Figure 4.10: Internal pressure [Pa]
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Figure 4.11: Internal pressure [Pa]
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Figure 4.12: Internal pressure [Pa]
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Figure 4.13: Stassi ratio
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Figure 4.14: Stassi ratio
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Figure 4.15: Stassi ratio
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Figure 4.16: Stassi ratio
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Figure 4.17: Stassi ratio

155

0035

0.706

0.127

70



CHAPTER 4. TDI 2D ANALYSIS 71

4.5 TDI 2D analysis with near surface load

In this section, we investigate the near surface load: the mesh of the TDI model is the
same used in the previous section, while load conditions change.

The analyses described in the previous chapter, have shown that the beam deposition
located at the center of the absorber block is not the worse one: stresses become more
critical when the heated area is located near the free edge of the block.

In particular, the parametric analysis has shown that the maximum stress values are
found on the free edge when the heated area center is located 3.5mm (1.170) above
it. The same load conditions are applied in TDI 2D model; we want to verify if those
results are still valid or if the real boundary conditions of the absorber block may lead
significant changes.

Figures from 4.18 to 4.20 show the results of the simulation, in terms of the Stassi
equivalent stresses. The distance of the load point from the free edge is 3.5mm. The
maximum value is 0.76 and it is concentrated in the lower edge (see the top snapshot
of the Figure 4.18). This value is the same obtained in the first analyses for the semi
infinite case (Figure 3.11). In the snapshots of Figure 4.19 and 4.20 it is possible to
observe an increase of stresses concentrated in the edges, but the absolute value is
always lower than that obtained on the lower surface at the first instants.

The propagation of the stress wave is visible too, but its intensity is limited when
compared to the maximum stress concentration. The duration of the beam deposition
is in fact the same and is therefore slow for the given the properties of the material; so
the dynamic part has limited interest when compared with the static part of the stresses.
This is even more evident for those results where a stress concentration, mostly static,
is present on the lower face and hides the stresses in the rest of the structure. The
stresses on the border are anyway really critic and demand a serious attention. On the
basis of this simulation, with the load conditions and the adopted materials, the Stassi
ratio reaches a value of 0.76, meaning that the safety factor with respect to the rupture
is lower than 1.5.

We remind that these analyses do not include the longitudinal stress waves, which
are expected to bring a worsening of the results.
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Figure 4.18: Stassi stress ratio

72



CHAPTER 4. TDI 2D ANALYSIS

t = 18us

Stassi_ratio
o0 Q.70 0.20 0.30 0.40 .50

t =20us

Stassi_ratio
o0 Q.70 0.20 0.30 0.29 049 0.59 0.69

Figure 4.19: Stassi stress ratio
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Figure 4.20: Stassi stress ratio
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Chapter 5

Graphite TDI 3D analysis

5.1 Introduction

This chapter is devoted to a 3D analysis of the graphite TDI. The analysis is limited to
a graphite block, since it has been agreed that in this way the energy deposited by the
proton beam remains inside the absorber block; furthermore, it has been verified in the
previous chapter that only the graphite block is really interested by the wave propagation
and stress values inside the aluminum jaw and the copper top are negligible.

Properties of the standard graphite and the thermal load have been already intro-
duced. In these 3D analyses a temperature increase is a priori imposed (no thermal
problem is solved), with temperature constant along the z axis. The temperature en-
Joys the same time function and a value constant along the z direction, as in the previous
chapters.

Since the finite length in z direction is the main difference respect to TDI 2D analyses,
it is interesting to highlight the behavior in this direction. Initially, some tests are made
to identify the grid size bringing the optimal ratio between accuracy and computational
effort.

5.2 Symmetry conditions check

This first analysis refers to a test model with the same section of the previous examples
and a length fixed to a value of 20mm, due to a preliminary design. The analysis was run
with a low spectral degree with the aim of verifying the validity of some approximations,
rather than obtaining accurate results. All the external surfaces are supposed to be free
from any imposed boundary condition, so that the energy arising from the interaction
with the proton beam is kept inside the absorber block.

Figure 5.1 shows the grid of the model. The model is 58 x 54 x 20mm?, and the
element size is 1mm along x and y and 5mm along z. The spectral degree is equal
to 1, and the number of elements and nodes are 12368 and 16025, respectively. The
blue portion of the block indicate the zone where material properties are varying with
temperature.
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GBI FEQT

Figure 5.1: TDI 3D grid
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Figures 5.2 and 5.3 show the simulation results. More precisely, the first one displays
the Stassi stress ratio at t = 15us in the external surface and in a centered section
lying in the yz plane; in the second one the Stassi stress ratio in x direction for different
z values are reported.

As clearly suggested from the figures, an higher spectral degree would be preferable
when running a real test.

The structure under exam is characterized by a symmetry along two planes: the
central section of the block perpendicular to the z axis and the vertical plane passing
through the center of the section and normal to x axis. Again, the boundary conditions
are symmetric with respect to the afore mentioned planes, as well as the thermal load.
A reduction of problem’s unknowns may thus be obtained exploiting the symmetry in x
and in z direction: this is made in the next tests. Here the complete model is analyzed
to check the validity of this assumption.

It turns out that this approximation works fine, as graphically evident in Figure 5.2,
and more in detail in the graphs of Figure 5.3: the results are clearly symmetric with
respect to r and to the plane at z = 10mm.

From these first simulations it is evident that the stresses in the frontal and rear
free surfaces are higher than those on the center, where we may assume that the plane
strain conditions are approximately verified; evidence of a longitudinal stress wave is
being given in the following tests.

5.3 Non uniform mesh check

A second test is made to verify if adopting a non isotropic mesh density would lead to
a worsening in the quality of the results.

The model studied represents one quarter of the whole structure; the material
adopted is graphite with the standard properties of the first chapter, and the imposed
thermal load has a gaussian profile on any x-y section and is constant along the z axis.

When the first analyses on a 2D plane structure were presented, it was discussed how
the mean dimension of the temperature distribution profile and the time scales of energy
deposition may influence the choice of the element mean size and the spectral degree.
Since the temperature profile is assumed constant along the z axis, it is therefore possible
to reduce the number of unknowns by selecting a non uniform mesh with element mean
size higher in the z direction. Results obtained with the uniform mesh will be compared
with those obtained with a coarser mesh.

In the Figure 5.4, the two grids are shown. The models have the same dimensions,
29 x 27 x 23.5mm?, and symmetry conditions in the light blue surface (yz plane) and in
the red surface (xy plane). Free surface conditions are applied to the external surfaces
of the model. The simulation is made, for both cases, using a spectral degree equal to
3.

The first grid is almost uniform, every element is 2 X 2 x 2.14mm?3 (slightly longer
in the z direction). The elements are 2926 and the spectral nodes are 118660. For the
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Figure 5.2: Stassi stress ratio at t = 15us

78



CHAPTER 5. GRAPHITE TDI 3D ANALYSIS

stassi/srt

_I TTTTTTTT | TTTTTTTTT TrTTTTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTT I_

. |— z=0.0m ]

- |— z=0.005m .

[ |— z=0.01m ]

B e 7=0.015m i

- z=0.02 m /\ /\ g

0.2 / \ —

01 -

. L i
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

r[m]

Figure 5.3: Stassi stress ratio at t = 15us and for different z values
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second grid, every element is 2 x 2 x 4.7mm?, the number of elements is 1330 and the
spectral nodes are 55840.

In the Figure 5.5 the snapshots of Stassi stress ratio at t = 10us are shown. The
differences between the two results are negligible and the stress values are quite similar.
In the Figure 5.6 the z component of the displacement in z direction in different instants
is shown.

From these comparisons, it is possible to conclude that the use of a grid with double
element size in z direction with respect to the mean element size in the section plane is
reasonable: the results of the uniform and coarser grids are similar, but the latter model
may be preferred due to the lower CPU time and memory requirement.
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Figure 5.4: Model with 11 and 5 elements in z direction, respectively
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Figure 5.5: Snapshots of Stassi stress ratio for the model with 11 and 5 elements in z direction
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5.4 Graphite block 3D analysis

According to the results shown in the previous paragraph, the non uniform grid has been
selected for the 3D analysis of the graphite absorber block. The block is 58mm wide
and 54mm high (the section is not perfectly rectangular); the thickness of the block is
47.3mm.

Symmetry conditions are adopted: one quarter of the structure is analyzed and
suitable boundary conditions are imposed on the xy section located at the middle of
the block, and on the yz plane passing through the center and containing the beam
axis. As usual, z axis does coincide with the proton beam, the y axis is vertical and x
direction horizontal.

Several colors indicate different formulations adopted in different areas of the grid:
temperature variable properties are adopted for the elements shown in blue, whereas
constant with temperature properties are used for the elements shown in black. The
second ones are obviously more efficient on the computational side.

A temperature variation is imposed first on the center of the block, with the following
law:

o(x, t) = gMe—b((x—Xo)2+(y—yo)2)g(t) (5.1)

where 6, is the maximum temperature increase 6y, = 635°C, (xo, yo) is the center of
the heated area and g(t) gives the variation of temperature in time, the parameter
b = 0.106-10°m 2 corresponds to o & 3mm. The temperature is initially equal to zero
until time t = 2.14us, then its value grows linearly to reach the maximum at 10.0us.
This law approximates the deposition of the energy of four batches of protons, as an
impulse of finite length At,y, = 7.86us.

In Figures from 5.7 to 5.14, kinetic energy is displayed on the cross section in the
middle of the block, corresponding to the back surface of the model. Figures from 5.15
to 5.22 show kinetic energy density with a view of the external front surface and the
longitudinal section.

On the middle section, it is possible to recognize the same behavior found in the 2D
analyses commented previously. Figure 5.7 and 5.8 show snapshots of the time interval
in which temperature is growing to reach its maximum at 10.0us. Here, the rise and
propagation of a cylindrical wave are clearly visible, with a wavefront leaving the center
of the structure at the beginning of the energy deposition, at t = 2.14us.

In the Figures 5.9 through 5.14 the wave propagates inside the structure reaching
the external reflecting borders, with a behavior's that is very similar to that found in
the 2D analyses, as expected. The legend of the color plot is kept constant for all the
snapshots, while this was not possible for Figures from 5.15 to 5.22, due to extremely
variable energy range.

These figures exhibit a phenomenon not arguable from a 2D analysis: the propagation
of a longitudinal wave in the block. Figures from 5.15 to 5.16 show how the central
part of the front surface is subjected to an increase of the kinetic energy during the
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beam dump; after that, a longitudinal, almost hemispherical, wave departs. As visible
in pictures taken after t = 10us, the radius of this wavefront seems comparable to that
of the in-plane circular wave.

The cylindrical wave propagating radially and the hemispherical wave superpose,
resulting in higher energy densities that are evident in the front surface.

Figures 5.23 through 5.27 show the Von Mises stress in the central section of the
graphite absorber block. The stress pattern is similar to that found in the 2D analyses:
it has an axial symmetry with respect to the center of the block where the heated region
is located, reaches its maximum at the center of this region, and gradually decreases
to zero. The value at the center gradually rises up to t = 12.0us. It is interesting
to note that no wave propagation is visible by the analysis of these pictures only: the
dynamic effects on the stresses are limited, since the stress configuration is dominated
by its static part, at least for this central section.

Figures from 5.28 to 5.32, showing the equivalent stress on the front surface and on
the longitudinal section, put in evidence different stress distributions with lower values
on the axis of the beam. The stress value grows with the temperature and reaches
its maximum at t = 12us. It is interesting to notice that the maximum is still on
the central section. From the kinetic energy results it was shown how the maximum
densities are reached on the front surface, therefore it is not surprising to see that this
time a stress wave propagation is visible in terms of Von Mises equivalent stress, on the
front surface, especially in the Figure 5.31.

Similar analyses can be made on the pressure results. It is shown for the central
section in Figures 5.33 - 5.37: it has a very sharp distribution around the beam axis,
with @ maximum at t = 12.0us. This time, a pressure circular wave departing from
the center is visible (especially in Figures 5.34 and 5.35) corresponding to the stress
wave generated by the beginning of the temperature rise at t = 2.14us and reaching
the lateral surface at t = 14.0us; a second pressure wavefront, with opposite phase,
originates at t = 10.0us and is visible in Figures 5.35 and 5.36.

Figures from 5.38 to 5.42 show pressure values on longitudinal section and front
surface. The results are similar to those discussed previously for the central section;
the pressure value is maximum on the beam axis and decreases rapidly with the radius.
Pressure waves are visible on the longitudinal section and also on the front surface,
giving a view of the cylindrical waves propagating from the beam axis. The pressure
decreases rapidly when reaching the front surface where, due to the boundary conditions
adopted, only plane stresses are present. This can lead to a misunderstanding on the
concept of pressure, here intended as an internal pressure equal to one third of the first
invariant of the stress tensor, giving a measure of the state of stress immediately under
the surface. On the center of the front surface the material is pull out by the thermal
expansion in the beam axis, high value of the stress components in the plane of the
front surface should therefore be present around that area, as visible in the plots of the
equivalent stress.

The material adopted has different values of the compressive and tensile strength:
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this is accounted for by the Stassi equivalent stress. The Figures from 5.43 to 5.50 give
the results of the ratio of the Stassi tensile equivalent stress with the tensile rupture
stress, for the points of the central section of the absorber block. These results are
similar to those found with the 2D analysis: the stress wave is visible, but the Stassi
ratio is almost constant in this section, with the maximum in the annular area around
the axis center.

Figures 5.51 through 5.58 show that a stress increment is present on the front
surface, as expected, and is maximum on the area around beam axis where the material
is forced to pull out, for t = 12.0us (see Figure 5.53). The stress wave is not clearly
visible on the front surface but is more evident inside the material, in the section plane
in particular, as shown in Figure 5.54.

The analysis of this 3D model suggests that the most critical portions of the structure
- in this load - condition are the front and rear surfaces of the block near the beam axis,
where the Stassi equivalent ratio reaches values clearly superior than those found on
the central section and in the previous 2D tests. Even higher values may be expected
when the beam hits the block near its lower surface. The analysis of the results of this
simulation therefore suggests a change in the design of the absorber block, and/or in
the material adopted for its construction.
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Figure 5.7: Kinetic energy density on the central section [J/m®]
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Figure 5.8: Kinetic energy density on the central section [J/m®]
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Figure 5.10: Kinetic energy density on the central section [J/m?]
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Figure 5.11: Kinetic energy density on the central section [J/m?]
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Figure 5.12: Kinetic energy density on the central section [J/m®]
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Figure 5.13: Kinetic energy density on the central section [J/m?]
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Figure 5.14: Kinetic energy density on the central section [J/m?]
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Figure 5.15: Kinetic energy density on the outside surface [J/m?®]
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Figure 5.16: Kinetic energy density on the outside surface [J/m?®]
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Figure 5.17: Kinetic energy density on the outside surface [J/m?®]
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Figure 5.18: Kinetic energy density on the outside surface [J/m?®]
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Figure 5.20: Kinetic energy density on the outside surface [J/m?®]

100



CHAPTER 5. GRAPHITE TDI 3D ANALYSIS

t = 28us

6.94e-05 i3 66.5 LR 133. 166, 200. £33,

t =30us

Ec

000363 346 692 o4 738 773 207. 242

- _‘: -

Figure 5.21: Kinetic energy density on the outside surface [J/m?®]
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Figure 5.22: Kinetic energy density on the outside surface [J/m?®]
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Figure 5.23: Von Mises stress on the central section [Pa]
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Figure 5.24: Von Mises stress on the central section [Pa]
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Figure 5.25: Von Mises stress on the central section [Pa]
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Figure 5.26: Von Mises stress on the central section [Pa]
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Figure 5.27: Von Mises stress on the central section [Pa]
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Figure 5.28: Von Mises stress on the outside surface [Pa]
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Figure 5.29: Von Mises stress on the outside surface [Pa]
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Figure 5.30: Von Mises stress on the outside surface [Pa]

110



CHAPTER 5. GRAPHITE TDI 3D ANALYSIS

t=16us
Vonhfises
.00 205e+06  40%+06  §.ldevd6  B.78ed6  1.02eed7 1230407 Td3erdT
t = 18us

Vonhfises
.00 2050406  40%+06  6.19e+06  8.78e+06  1.02es07 1230407  T4d3e+07

Figure 5.31: Von Mises stress on the outside surface [Pa]
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Figure 5.32: Von Mises stress on the outside surface [Pa]
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Figure 5.33: Pressure value on the central section [Pa]
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Figure 5.34: Pressure value on the central section [Pa]
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Figure 5.35: Pressure value on the central section [Pa]
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Figure 5.36: Pressure value on the central section [Pa]
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Figure 5.37: Pressure value on the central section [Pa]
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Figure 5.38: Pressure value on the outside surface [Pa]
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Figure 5.39: Pressure value on the outside surface [Pa]
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Figure 5.40: Pressure value on the outside surface [Pa]
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Figure 5.41: Pressure value on the outside surface [Pa]
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Figure 5.42: Pressure value on the outside surface [Pa]
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Figure 5.43: Stassi ratio on the central section
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Figure 5.44: Stassi ratio on the central section
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Figure 5.45: Stassi ratio on the central section
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Figure 5.46: Stassi ratio on the central section
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Figure 5.47: Stassi ratio on the central section
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Figure 5.48: Stassi ratio on the central section
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Figure 5.49: Stassi ratio on the central section
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Figure 5.50: Stassi ratio on the central section
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Figure 5.51: Stassi ratio on the outside surface
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Figure 5.52: Stassi ratio on the outside surface
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Figure 5.53: Stassi ratio on the outside surface
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Figure 5.54: Stassi ratio on the outside surface
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Figure 5.55: Stassi ratio on the outside surface
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Figure 5.56: Stassi ratio on the outside surface
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Figure 5.57: Stassi ratio on the outside surface
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Figure 5.58: Stassi ratio on the outside surface
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Chapter 6

Boron Nitride TDI 3D analysis

6.1 The model

The LHC Injection Beam Stopper (TDI) has already been described in some detail.
During the design Graphite has been abandoned for the construction of this equipment
and substituted by Boron Nitride; this material should guarantee better performances
than those shown by graphite, that did not appear satisfactory from the results of the
numerical analysis shown in the previous chapters.

The structure is thus composed by a set of 18 Boron Nitride absorbing blocks,
followed by an Aluminum and a Beryllium-Copper blocks. The boron Nitride blocks are
the most stressed; each of them have a constant section, almost rectangular, with a
width of 58 mm and an height of 54mm. The length is constant as well and equal to
157.7mm.

It was shown in the previous chapter that a non uniform mesh may be adopted
with a limited influence on the quality of the simulation results, thus allowing to reduce
the total number of spectral nodes, and unknowns, to be considered, to decrease the
element size and increase the nodal density where more precision is required.

Thus the element size is kept approximately constant on each section, nearly equal to
2mm, and is variable along the axis of the absorber block, in the direction of the beam; it
is equal to 2mm near the front and back faces, and reaches a value approximately equal
to 8mm near the center of each block. A total number of 26928 spectral elements is
considered. The number of nodes depends on the spectral degree adopted, for spectral
degree N = 2 the spectral nodes are 226519, while when N = 4 the number o nodes is
1767405, corresponding to over 7 million d.o.f.

Figure 6.1 shows the model adopted, with the spectral “macro” elements put in
evidence. Spectral nodes inside each element are not shown.

The geometry of the block and the external boundaries may suggest to take ad-
vantage of symmetry conditions: unfortunately, the load conditions do not show this
symmetry and thus a model size reduction could not be obtained.

As in the 3D simulations run on graphite, free boundaries are assumed on all the
external surfaces of the blocks.
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Figure 6.1: Boron Nitride absorber block, spectral element mesh
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Figure 6.2: Scheme of the Hexagonal Boron Nitride crystal

6.2 Material properties

Boron Nitride is often referred to as “white graphite” because it has the same platy
hexagonal structure of carbon graphite, and also some similar properties. It is a white
solid material in the as produced hot pressed form. It is non-porous, and non-toxic and
may be easily machined.

It is used in Nuclear applications because of its high neutron capture cross section,
but it also presents high thermal conductivity, a low thermal expansion, and, most
important for this application, a good thermal shock resistance.

The material is highly anisotropic in its electrical and mechanical properties due to
the platy hexagonal crystals and their orientation during the hot press consolidation.

Figure 6.2 shows the scheme of the crystal: the platy structure is visible. The
intrinsic material reference system is oriented as follows: axes 1 and 2 are parallel to
the plane (the material is isotropic in the plane) and direction 3 is perpendicular to the
plane.

The material is machined to build the absorber blocks so that the hot pressing
direction (3) is coincident to the beam axis direction (Z in the model), so that the
direction of maximum resistance is coincident with the maximum load direction.

The following tables contain the relevant thermal and mechanical properties adopted
in the simulations; the values are relative to the hexagonal hot-pressed Boron Nitride,
grade BN5000 from Sintec and are taken from the Fraunhofer Institut test results
(Bericht Nr. B2074/2075/2076).

Most of these properties depend on the temperature value, with the exception of
those in Table 6.1, such as Poisson ratios and the density at the reference temperature.
The values of the Poisson ratios, difficult to obtain, are not provided from the test; the
values in the table have been estimated on the basis of similar materials (the graphite
data in particular).

Thermal properties are listed in Table 6.2, it is apparent that all of these are subjected
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Property Symbol | Units | Value
Density 0 kgm=3 | 1910
Poisson ratio 12 V19 - 0.15
Poisson ratio 23 Vo3 - 0.15
Poisson ratio 31 V31 - 0.15

Table 6.1: Hexagonal Boron Nitride: properties not depending from temperature

Temperature | Expansion coefficient | Specific heat | Thermal conductivity
T a1 (6 %) a3 Cp kl k2 k3
°C ,u,mm_l ocfl JKg—l ocfl Wm—l onl
100 -0.07 -0.07 1.03 1000 34 34 24
200 -0.52 -0.52 0.56 1210 33 33 23
300 -0.37 -0.37 0.92 1370 32 32 23
400 -0.11 -0.11 1.3 1490 31 31 22
500 0.1 0.1 1.57 1590 30 30 22
600 0.28 0.28 1.79 1700 30 30 21
700 045 045 211 1860 29 29 21
800 0.57 0.57 2.5 1950 28 28 20
900 051 051 2.28 2180 27 27 20

1000 052 052 226 2200 27 27 19
1100 076 0.76 2.32 26 26 19
1200 207 207 3.23 25 25 18
1300 3.04 3.04 3.93 24 24 18
1400 23 23 17

Table 6.2: Hexagonal Boron Nitride: properties not depending from temperature

to great variation depending on the temperature, but it is also evident a great anisotropy:
quantities as the thermal expansion coefficient or the thermal conductivity along the hot
pressing direction, marked with 3, is clearly different from the in-plane properties, those
along the axis marked with 1 and 2.

The elastic moduli are listed in Table 6.3. Again, a clear link with the temperature
value is evident, but the anisotropy is less significant for these quantities, since the
elastic moduli along the principal direction are quite similar.

It is important to say that the experimental tests from the Fraunhofer institute only
give a measure of the normal elastic moduli E;, E> and Ej3, while no data are available
for the shear moduli Gy, Gz and Gjz;. These values are essential for a mechanical
analysis, so they have been estimated from the following formula well suited for quasi
isotropic behavior:

1 1 1 vy

Table 6.4 presents the values of the rupture stress components. Here again is evident
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Temperature | Young's modulus Shear modulus
T Ei Ex E3 Gio Gz Gap
°C GPa GPa
20 34 34 38 148 155 155
350 46 46 41 20 19 19
700 10 10 15 43 51 51

Table 6.3: Hexagonal Boron Nitride: properties not depending from temperature

Temperature | Tensile strength | Compressive strength Shear strength
T O4p1  O4p2 04p3 | Oc1  Oc2 O0c3 O0s12 0523 0Os31
°C MPa MPa MPa
20 75 75 75 | 110 110 99 75 75 75

350 95 95 69 | 111 111 100 95 95 95
700 37 37 27 59 59 69 37 37 37
1000 9 9 4 9 9 9

Table 6.4: Hexagonal Boron Nitride: properties not depending from temperature

a strict correlation between the stress values and the temperature. Compressive strength
is higher than tensile strength, and similar results appear along the different directions:
the material is almost isotropic, concerning strength properties.

The mechanical tests only gave results for the tensile and compressive strength. To
estimate shear strength, coherently with the strength criteria adopted, we assumed that
each component of the shear strength is equal to the tensile strength along the axes 1
and 2.

The material is checked for the failure with the maximum stress criteria: each com-
ponent of the stress tensor is compared with the corresponding failure value, either in
tension or in compression depending on the sign of the stress.

The maximum value of the ratio between the stress component and the limit value
is assumed as a measure of how critic a stress state is. The maximum allowable value
for the ratio is 0.66, that corresponds to an allowable stress of % of the failure stress.

6.3 Load conditions

Each block has been loaded by the energy deposition of a train of four batches. The
energy deposition per particle is the result of a Monte Carlo simulation and is introduced
as input for the thermal and mechanical simulation.

The exact particle distribution in space and time, i.e. the energy density in the
material and the time law of its deposition, has been exactly simulated: the reader may
refer to the second chapter for details. The beam energy deposition starts at t = 2.14us
and ends at t = 10.0us.
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Binning | Rmin Rmax NR | 6min Bmax NO | Zmin Zmax NZ
mm mm - rad rad mm mm -

62 155 | —7 s 0 4150 415
62 155 | —7 0 2850 285
62 155 | —7 2850 3450 60
62 155 | —7 3450 4150 70

AW N =
O O O O
N 3 3

o 0O 00 0Of !

Table 6.5: Monte Carlo simulation: mesh properties

Several load conditions have been considered: in a first test the beam load in con-
centrated at the center of the absorber blocks, the so called Normal conditions. In a
second test (Grazing) the beam axis is chosen to graze the surface of the absorber
block that faces the beam orbit, and the beam axis is assumed to be tangent to that
surface. The third test considers the beam axis inside the absorber block, parallel to
the surface facing the undisturbed beam orbit, and 4mm distant from the surface.

The power deposition on the spectral element model is calculated from the interpola-
tion on each spectral node of the results of a Monte Carlo simulation run on Fluka, that
gives the density of the energy deposited on the material by a single proton of the beam.
The Monte Carlo simulation was run on a computational grid composed by 4 binnings
in cylindrical coordinates. The properties of the Fluka mesh adopted are summarized in
Table 6.5.

This discretization, together with an adequate statistic, should guarantee a suffi-
ciently accurate description of the energy deposition in the radial direction, a good
approximation along the axis, but should not result very accurate in the tangential di-
rection around the beam axis.

First, a complete analysis of the 18 Boron Nitride blocks was run, with a spectral
degree N = 2, in order to find the most stressed block; then, the same mesh has been
used to check for the most critical load condition, checking the resistance of the most
stressed block, when the beam hits at different distances from the internal surface,
starting from the grazing condition in which the beam axis is tangent to the lower
internal surface.

The same particle energy deposition results are used for all the simulations, since it
is assumed that the results are not influenced by the presence of discontinuities in the
material. The particle distribution refers to the case in which all the particle energy
may be deposited inside the material: if this does not happen, as in the grazing case,
only the portion of the energy deposition profile that actually falls inside the material is
considered without any influence by the portion that falls outside the blocks.

Finally a very detailed mesh is used, with a spectral degree equal to 4, to simulate
the three design conditions: centered beam, grazing and near surface load.

The results in terms of temperature and maximum stress found in the simulated
period are shown for each Boron Nitride absorber block. Detailed results in terms of
kinetic energy propagation, pressure and stress distribution are illustrated in greater
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detail for the most stressed block.

6.4 Results analysis

6.4.1 Most stressed block

A thermo-mechanical analysis was run for all of the Boron Nitride blocks, in the centered
beam conditions, to check for the block subjected to the most dangerous thermal loads
and mechanical stresses.

The beam load acts on a set of 18 Boron nitride absorbing blocks, and it is necessary
to simulate the behavior of each of the block separately, and check for the resistance of
each of them, in fact it is not easy to decide a priori which block is the most stressed
one. The simulations are run up to t = 80us and the most critical stress condition
found in this time extent is verified in each point. The spectral degree is N =2 and a
time step At = 1.0E — 7s was chosen.

Figure 6.3 display the Fluka energy deposition inside the absorber blocks due to a
single proton, resulting from the interpolation on the spectral element model of the
data obtained by the Monte Carlo simulation. It is evident that the beam is highly
concentrated in the first three blocks, with a high value on the beam axis, maximum
on the third block, and then gradually decreases in intensity and is less concentrated
radially on the subsequent blocks.

Figure 6.4 shows the temperature increase due to the beam energy deposition inside
the material at the end of the heating time in a central section of all the blocks.

In the first blocks the heated volume is highly concentrated around the beam axis,
with the temperature that increases to reach the maximum in the third block. The
energy deposited on the subsequent block is less concentrated around the axis and the
maximum temperature decreases. The temperature follows the energy deposition profile
given by the Fluka output, but is not proportional to it since the thermal capacity is not
constant but depends on the material temperature.

Not surprisingly, the third block results the most stressed one, since the maximum
temperature is reached and high values of radial temperature gradient around the beam
axis are present. Figure 6.5 shows the maximum stress ratio found in the whole sim-
ulation: it turns out that the most stressed blocks are the first 5, and the third in
particular. The stressed area is concentrated around the beam axis where the maximum
temperature increase is reached. The last blocks do not show peaks: the material seems
to be stressed more uniformly, due to the elastic wave propagation.

Figure 6.6 presents the maximum stress ratio in each block for an 80us simulation.

The stresses resulting from the thermal load and the resulting stress wave propaga-
tion have been evaluated at each time step at each node of each absorber block. For
all nodes the ratio between every component of the stress tensor and the corresponding
rupture stress value is calculated, and the maximum is evaluated. The points on the
graph represent the maximum value of these ratio for the block, considering all the



CHAPTER 6. BORON NITRIDE TDI 3D ANALYSIS 146

950mm _ _ — _ R

2375mm
2850mm

a.000 a.037 a.067

o0.722 0.7153 0.783 0.274

GeV
cm3

Figure 6.3: Proton energy deposition per unit volume ( ) in the boron nitride absorber blocks
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Figure 6.4: Temperature increase (K) in the boron nitride absorber blocks
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Figure 6.5: Maximum stress ratio (-) in the boron nitride absorber blocks
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Figure 6.6: Maximum stress ratio in the boron nitride absorber blocks

stress components and all the point of the block during the simulation time.

The maximum stress ratio has approximately the same aspect of the temperature
on the beam axis: the maximum value is found in the third block, as expected. The
value of the ratio is 0.32, lower than the maximum allowable value of 0.66.

6.4.2 Most stressed condition

The particle beam may heat the absorber blocks at various distances from the lower
internal surface: it is therefore interesting to verify, as in the case of the graphite block,
if there exists a particular position for which the resulting stresses reach the maximum
value.

Several numerical simulations were therefore run on the third block, with the beam
axis being moved progressively inside the material starting from the tangent position
(O0mm), up to 5mm from the surface. The analyses were run adopting a spectral degree
N = 2 for a total simulation time of 80us, a time step At = 1.0E — 7s was chosen.

The graph in Figure 6.7 shows the maximum stress ratio value found in the block
for the different beam positions. The results show that the maximum value is more or
less constant for the different beam positions considered.

This is a clear difference with the graphite behaviour: its reason is not due to a
different behavior of the two materials rather to failure criterion adopted.

In fact, the Stassi failure criterion was in fact adopted for graphite, it considers the
influence of the internal pressure in the evaluation of an equivalent stress: hence, in the
volume near the beam axis where a positive and high value of the internal pressure is
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Figure 6.7: Maximum stress ratio for different hitting positions

found, the equivalent stress is lower and the characteristic annular form appears. When
the beam approaches the internal surface there cannot be an high value of the internal
pressure any longer, and according to the Stassi criterion the maximum equivalent stress
increases; this was verified in the analysis of graphite.

As already mentioned the Stassi criterion is not applicable to this structure due to
the anisotropic properties of the Boron Nitride. The maximum stress criterion was
selected, which does not consider any effect due to the internal pressure. Therefore the
maximum stress value, located on the points on the axis of the beam heated volume is
only partly influenced by the proximity to the border of the block.

In these load conditions the maximum stress criterion is more severe than the Stassi
criterion; the equivalent stress calculated on the basis of the maximum stress for the
graphite is expected to be higher than its counterpart evaluated on the Stassi basis and
presented in the previous chapters.

6.4.3 Detailed analysis. Beam distance: 27mm

The third block results the most stressed one among the 18 Boron nitride Absorber
blocks. The analysis has been therefore focused on this block, running more detailed
simulations in the three design conditions selected. The spectral degree chosen for these
analyses is N = 4 and the time step is fixed to At = 2.0E — 8s.

First the centered load conditions results are shown. Figure 6.8 and 6.9 display the
temperature increase in the block, due to the energy deposition: the heated volume
is almost cylindrical, very concentrated around the axis. Beam deposition starts at
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t = 2.14us and ends at t = 10us with a quasi constant temperature rise. In all the
following figures the model is oriented so that the beam exits form the surface of the
picture, the block being viewed from the rear surface.



CHAPTER 6. BORON NITRIDE TDI 3D ANALYSIS 152

Temperafire

.605.

519,
432,
346.
259,

t =4us
173,

las#

0.00

Temperatire

l605.

519,
432.
346,
2583,

t =06us
173,

.86.4

0.00

Figure 6.8: Temperature rise in the third boron nitride absorber block [K]
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In Figures from 6.10 to 6.16, kinetic energy density on the the external surface is
depicted.

The pictures show that the general behavior of the Boron Nitride absorber block is
very similar to that found in the 3D analysis run on the graphite block. In the external
surface views the propagation of a circular wave departing from the beam axis is clearly
visible. After the end of the beam deposition at t = 10us, the energy density maximum
value reduces suddenly, and the propagation of the longitudinal wave becomes more
evident (see Figure 6.12,6.13, 6.14); the radial wave is subjected to multiple reflections
on the boundaries and its path becomes soon difficult to follow. In Figure 6.16 it is
possible to see the longitudinal wave that after reflection comes back to the front and
rear faces.

The results have shown that the wave propagation, clearly visible by the kinetic
energy plots, is not evident when the pressure or equivalent stress plots are analyzed:
therefore only the results at the end of the beam energy deposition are shown as an
example in Figures 6.17, 6.18.

The difference with respect to the graphite results, where the propagation of the
stress wave is more clearly visible, is partly due to the above mentioned different equiv-
alent stress adopted, but also to the different material properties. We have also to
mention that the load conditions are different with respect to the graphite simulation:
a lower value of the mean radius of the heated volume results from the Fluka data
interpolation in this block.

Finally, Figure 6.19, shows the maximum value of the stress ratio in each point of
the block, and the time at which the value is reached. The results are quite similar to
those shown in Figure 6.18: the most stressed volume is still concentrated around the
beam axis, but also other parts of the volume are subjected to significant stresses, and
the maximum value too is higher, due to the elastic stress wave.

Concerning the time results, it is interesting to see that the color plot is not continu-
ous but is characterized by sharp separations between different parts of the block. This
means that the maximum stress ratio is found at similar times for the points belonging
to a particular part of the model, and the division between the parts is related to the
path that the elastic wave follows through the block.

Stress ratio results indicate again that the stress condition appears safe according
to the simulation. The maximum value of 0.32 found in the model corresponds to a
safety factor of more than 3 over the rupture and of almost 2 over the allowable stress,
giving enough margin for the approximations affecting numerical simulation.
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Figure 6.10: Kinetic energy density, centered beam [J/m?]
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Figure 6.11: Kinetic energy density, centered beam [J/m?]
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Figure 6.12: Kinetic energy density, centered beam [J/md]
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6.4.4 Detailed analysis. Beam distance: 0mm

The grazing condition is now analyzed in detail. The mesh is the one already intro-
duced, with a spectral degree N = 4. First the kinetic energy density is shown with
an external view of the block: Figures from 6.20 to 6.26, exibit how the kinetic energy
propagates inside the block, with an elastic wave moving radially from the beam axis
and longitudinally from the front and rear faces.

Again, the maximum value of the kinetic energy density is subjected to a great
variation in time, with very high values during the heating period. In the Figures 6.20
6.21 the kinetic energy density is concentrated at the edges of axis of the heated volume,
where the material of the surface is pulled out by the thermal expansion. In figures 6.22
6.23 the radial and longitudinal wave propagation are more evident, with the first wave
reflections on the block external faces. The kinetic energy distribution then becomes
soon very difficult to be interpreted (see Figure 6.26 due to the multiple reflections of
the stress wave).

The stress wave propagation cannot be clearly identified by the analysis of the pres-
sure and equivalent stress plots; pressure and stress ratio results at the end of the beam
loading period are shown in Figures 6.27 and 6.28.

The stress ratio is very similar to that found for the centered load conditions: the
most critical condition is found again in the beam axis, and is related to the ratio of
the longitudinal component of the stress tensor with the corresponding rupture stress.
This is subjected to a limited influence by the surrounding material, and/or by the beam
position: similar results are found in these two analyses and are continued from further
simulations.

The internal pressure results also are similar to those concerning centered beam
load; the results in Figure 6.27 represent the internal pressure in the material, defined
as one third of the sum of the principal stresses, and therefore does not coincide with
the external pressure on the external surface of the block that vanishes everywhere.

Figure 6.29 shows the maximum value of the stress ratio for each point of the block
during the simulation time, and the instant at which this maximum value is reached.
The maximum values are very similar to those found at t = 10us. The influence of the
stress wave is limited, the most stressed part of the model being again concentrated
around the beam axis where the maximum temperature increase is reached.

The results of the maximum stress ratio indicate that the maximum equivalent stress
is lower than the allowable stress value.
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Figure 6.20: Kinetic energy density, beam distance 0mm [J/m?®]
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Figure 6.21: Kinetic energy density, beam distance 0mm [J/m?®]
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6.4.5 Detailed analysis. Beam distance: 4mm

The near surface load condition is the last loading case analysed in detail. Here the
beam axis is located inside the absorber block, 4mm distant from the lower surface.
The spectral degree is N = 4 and the time step is again equal to At = 2.0E — 8s.

Figures from 6.30 to 6.36 show the kinetic energy density in the absorber block as
appears on the external surface. The results are very similar to those of the grazing
loading conditions. The wave profile is very similar but the maximum value is higher: in
fact, almost the whole beam energy is deposited in the absorber block, therefore more
energy has to be distributed inside the block.

Stress results are similar to those found for the grazing condition. Figure 6.37 shows
the internal pressure and the stress ratio at the end of the beam loading period.

The maximum values of the stress ratio and the time at which this maximum value
is reached for each point of the model are presented in Figure 6.38. Again the results do
not differ significantly from those found in the other loading conditions: the maximum
value is again on the beam axis, and is still lower than the allowable value of 0.66.
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Figure 6.30: Kinetic energy density, beam distance 4mm [J/m?®]
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Figure 6.31: Kinetic energy density, beam distance 4mm [J/m?®]
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Chapter 7

Conclusions

In the frame of contract K777/SL a numerical analysis of the mechanical behavior of
beam obstacles is presented, the load condition being those due to the high energy
particle beam circulating in the new Large Hadron Collider (LHC).

By means of numerical simulation it has been possible to get a detailed view at the
different mechanical phenomena that take place in this equipment under particular load
conditions, to tune up a specifically designed high performance simulation code, and to
verify the correctness of the design of the TDI| beam stopper under several operating
conditions.

The ELSE code, developed at CRS4, extended and modified for this particular prob-
lem has been the chosen tool for the numerical analysis. The code is based on the
spectral element method a powerful numerical technique similar to the well known finite
element method, and very efficient in the simulation of wave propagation.

Keeping the flexibility of FEM in dealing with complex geometries, it allows to reach
accuracies beyond the standard methods and/or solving very large problems, since it
uses a reacher set of functions, that results very efficient when solving wave propagation
problems. It is an h-p method, meaning that the solution may be refined both reducing
the mesh size as in finite element, but also increasing, at run time, polynomial order of
the method.

The method is fully described in the second chapter, where the underlying theory
is presented, together with details on the implementation of the ELSE code. The
thermal-mechanical coupling is described as well, as other extensions developed for the
problem at hand such as temperature dependent material properties, or the interface
with a Monte Carlo code used to evaluate the atomic interaction of particles with beam
obstacles and the resulting energy deposition.

The same chapter also gives a general description of the TDI beam obstacle design
and of the load conditions to which it is subjected. The TDI (Injection Stoppers) for
LHC are mobile obstacles intended to be used during the adjustment of the injection
trajectory in order to protect the superconducting machine elements in the event of a
malfunctioning of the injection kicker, by dissipating the energy of the particle beam
that may hit it at several different positions.

186
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The third chapters presents the results of the first conceptual and parametric studies
and numerical simulations. The problem of an infinite solid being hit and heated by a
particle beam is first analyzed. The particle beam is supposed to give an energy deposi-
tion characterized by a symmetry around the beam axis and by a constant distribution
along the axis; a 2D analysis was therefore sufficient.

These simulations not only give the opportunity to compare and validate the numer-
ical results with those obtained by analytical models, but were also useful to find out
the relevant parameters in the beam load, and material properties that have significant
influence on the stress distribution and stress wave propagation.

It may happen that the particle beam does not hit the absorber block in a central
position, where the maximum efficiency in energy dissipation may be reached, but rather
near the external faces, where the stress condition of the structure is worsened because
of the effects of the stress wave reflections on the external surfaces. The problem was
first studied in the third chapter by means of 2D numerical simulations on a semi-infinite
plane model. The influence on the stress intensity of the distance from the free surface
at which the beam hits the obstacle is evaluated and related to the beam and material
characteristics.

The actual problem of the TDI beam obstacle design was then faced. The fourth
chapter presents the results of several numerical 2D simulations run on a section of
the TDI absorber block. These analyses have been run in parallel to the design of this
equipment, and the results presented are relative to the material initially selected for
the absorber blocks: graphite.

Several load conditions are analyzed on the boron nitride section, in particular the
influence of the beam hitting position has been first evaluated. When the beam is not
centered but is near to the lower surface of the block, the surface facing the undisturbed
orbit of the particles, more dangerous stress states are found.

In fact, if the centered load conditions may be considered acceptable for the re-
sistance requirements of a graphite absorber block, this is not true for a near surface
load. According to the Stassi failure criterion, the resulting safety factor with respect
to rupture resulted lower than 1.5 that may be considered acceptable, even within the
limits of a 2D analysis.

The same chapter presents the results of the simulations run on a 2D model of
a section not only of the absorbing structure, but also of the supporting structures
surrounding it. This analysis was intended to evaluate the amount of energy that may
pass through the block borders and the loading conditions and resulting stress values
that are induced in the other structures.

The limited extension of the contact area, and the relevant differences in the material
properties of the jaw with respect to the absorber block, reduces the amount of elastic
energy transferred to the surrounding structure, with low values of the resulting stresses.
The elastic energy is mostly contained in the absorber block, and the presence of the
other parts of the structure only has a limited influence on the maximum stresses that
may be reached inside the block.
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The fifth chapter shows the results of a 3D simulation on the graphite absorber
block. The simulation was limited to the absorber block only, due to the limits in the
computational resources and to the fact that, as demonstrated by the 2D analysis, a
little amount of energy was transferred to the supporting structure.

The 3D analysis allowed to put in evidence the propagation of a longitudinal wave
inside the block with origin at the front and rear faces on the beam axis and travelling
trough the whole length of the block giving rise to significant stress values. The analysis
was run on the centered load condition. The results show that the maximum value of
the equivalent stress according to the Stassi failure criterion is concentrated on the front
and rear surfaces near the intersection with the particle beam axis. In these points a
significant concentration of kinetic energy is also present and the material seems to be
pulled out of the block by the quick thermal expansion.

The maximum values of the equivalent stresses are higher than those found in a 2D
section. The beam loading conditions seem to be too severe for this design, and for
the material adopted so far. It was decided to verify the performances of a different
material: the hot pressed hexagonal boron nitride.

This ceramic material is similar in different aspects to graphite, but has better per-
formances for the mechanical resistance to this particular load, due to the very low
value of the thermal expansion coefficients and to the good values of the tensile and
compressive strength.

The thermal, elastic and mechanical strength properties of this material have been
provided by CERN, as result of a material testing campaign of the Fraunhofer Intitute.
Anyway, a rule of thumb estimation of some of the required mechanical properties was
necessary, since they have not been produced by the experiments.

The results of the complete thermo-mechanical analysis on the whole set of the
18 Boron-Nitride absorber blocks of the final design is presented in Chapter 6. The
exact energy distribution resulting by the Monte Carlo simulation with Fluka is used to
calculate the temperature increase in the different absorber blocks.

The load conditions in terms of particle energy space, time distribution, intensity
and position of the beam axis, was provided by the CERN too.

First, a complete analysis of all the 18 blocks in the centered beam conditions was
performed, to detect the block subjected to the most critical loading conditions. All the
blocks have been examined separately in a 80us long simulation, in order to examine
the effect of multiple wave reflections. The third block, resulted the most critical, being
subjected to the maximum temperature increase, exhibiting high values of temperature
gradients and maximum values of the equivalent stress.

This block has been subjected to further investigation, and verified not only in the
centered load case, but also in the grazing conditions, when the axis is tangent to the
lower surface, and in a near surface condition, when the particle beam axis falls inside
the absorber block but is close to the lower surface.

The benefits of the change of material are evident. In each of examined conditions
the results of the simulations show that the maximum value of the equivalent stress
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state is constantly lower than the allowable value, showing a safety factor nearly equal
to 2 over the allowable stress.

Even if it may be partially due to the failure criterion chosen for this anisotropic
material, from the load condition examined it resulted that the beam position has a
limited influence on the most critic value of the stress state.
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