
EEG analysis in erebral death ondition usingWavelet Paket DeompositionFederio Santoni1 and Franeso Marrosu21 CRS4 Center for Advaned Studies, Researh and Development in Sardinia2 Cagliari University HospitalAbstrat. This paper proposes a methodology for extrating features from EEGin suspeted brain death onditions. Those signals are usually araterized by alow SNR and in suh situations distortions introdued by skull/eletrode/ableinterfae beome very relevant. After a alibration proedure, the analysis of EEGsignals was performed with a Wavelet Paket Deomposition �lter, where the mainomponent of noise are removed with soft thresholding strategy. We propose anestimate of error probability leading to the hoie of wavelet basis and thresholdparameters. As result, in absene of brain ativity, the output of this �lter produesreally at signals. However the presene of some ativity an be examinated in WPtime-frequeny domain revealing distintions between real brain ativity, narrowband noise and artifats.1 IntrodutionThe eletroenephalographi (EEG) reording is extensively used in IntensiveCare Units (ICU) as a reliable measure of eletrial brain ativity. Moreover,the interpretation of EEG reords aimed at diagnosis of the ondition of"brain death", better expressed as eletro linial silene (ES), is a ruialstep in modern mediine and represents the fundamental pre-requisite in lin-ial settings oriented for transplants [1℄. Although EEG analysis represents adiagnosti tool among many others (e.g. erebral arteriography, single photonemission tomography), its relatively low ost and its large availability havegained to this proedure the ondition of "golden standard" in monitoringomatose patients. However, digital EEG monitoring in ICU is, nowadays,neither popular nor widespread. Among the reasons for this resistane inpenetrating the ommon ICU pratie, the most important is that EEG mon-itoring has yet to be proved as an easy and reliable tool. Theoretially, theanalysis of a digital signal seems "prima faie" a relevant vantage over ana-logue reordings. However, in ase of ES, sine previous paper EEG yieldedresults that visually orrelate faithfully with linial signs (the fatal at line),you should expet that the omputerized EEG (CEEG) performs a superiortask in this spei� diagnosis proedure. Unfortunately, the noising bak-ground of an ICU generates insidious artifats and the required ampli�ationof the small voltage signals ause an ampli�ation of the noise as well.



2 Noise removal by thresholdingThe density distribution of a alibrated ES signal is almost gaussian [2℄. Fromthis premise, we an state the problem as one of estimating an unknowndeterministi signal after observing a proess sampled over an interval oflength N . We heneforth assume that the observed samples are those of anunderlying unknown signal and of white noise, wherex[m℄ = s[m℄ + n[m℄; (1)for m = 1; 2; :::; N and n � N (0; �2).Implementing an estimator in an orthogonal basis is intuitively appealingon aount of the distribution of the noise energy in suh a basis. Waveletbases are known to onentrate the energy of pieewisesmooth signals intoa few high-energy oeÆients [3℄. If the energy is onentrated into a fewhigh-amplitude oeÆients, suh a representation an provide an aurateestimate of s[m℄. The advantage of expressing in an orthogonal wavelet basisis two-fold:a) if the ontaminating noise samples are independent and identiallydistributed (i.i.d.) Gaussian, so are the oeÆients, and their statistial in-dependene is preserved.b) intrinsi properties of the signal are preserved in a wavelet basis.We �rst disuss a method for estimating the mean-square error assoi-ated with thresholding wavelet oeÆients at a given level. Given a signalin some basis representation, we will threshold the oeÆients and estimatethe resulting error, and this error will then be used in the searh for the bestbasis family. Suintly we report the problem as analysed in [4℄. Moreover wepresent a new derivation used to set the error probability of our detetionsystem.2.1 Risk of a Wavelet-based estimatorIn this setion, we present a mean-square error estimator exstensively usedin literature expeially for wavelet de-noising [6℄ . The mean-square error, ormore formally the risk related to reonstrution of a vetor s with a thresholdT , is given by R(s; T ) = Efks� ŝk2g (2)where ŝ is the representation of the reonstruted vetor. A signal reonstru-tion is obtained by applying some funtion of a salar T ("thresholding") toa set of oeÆients of s in a given Wavelet basis and then applying an inversetransformation. This is the general proedure we use throughout the paper.Though many thresholding funtions are appliable, for the sake of simpli-ity, in this setion we analyse stritly the risk limited to the hard thresholdingrule. Soft thresholding rule will be presented in setion 3.2 and for other rulessee [8℄.



General formulation. Aording to Mallat notation [4℄ (we used it throgh-out the following setions) we desribe the hard thresholding rule asT (yx) =8<: yx; if jyxj > T0; if jyxj � T: (3)for any salar yx where T is the threshold. Usually the measure of loss ausedby reovering signal oeÆients, derives from a quadrati distane whih de-pends on T and on signal oeÆients ys:LfT (yx) ; ys; Tg = (ys � T (yx))2: (4)Considering the reonstruted signal ŝ as obtained from the rule (4) appliedto the wavelet oeÆients in a partiular orthogonal basis B = fW xig andwith Wx expressing the vetor of projetion (inner produt) of x onto thewavelet basis Wxi = hx;W xii, the mean value of the loss is the estimationerror (2)EfL(T (W x) ; s; T )g = Efks�W xT (W x) k2g = R(s; T ); (5)where for ompatness W x represents the matrix of basis funtions. Repre-senting the signal s =W xWs with the wavelet basis (Ws is the vetor withomponents hs;W xii ), risk an be expressed in terms of the basis oeÆientstoo, orR(s; T ) = EfkWxWs �WxT (Wx) k2g = NXi=1 E �jWsi � T (Wxi) j2	 :(6)To better understand the struture of R, we rewrite the funtion T (Wxi) =WxiIjWxi j>T where I is the indiator funtion. As briey alluded to earlier,remember that Wxi =Wsi +Wni and Wni � N(0; �2).After few alulations and onsideringW2siIjWxi j<T+W2siIjWxi j�T =W2siwe obtain from (6)R(s; T ) = NXi=1 E nW2siIjWxi j<T +W2niIjWxi j�To : (7)This equation express an intuitive onept: the ontribute to the total riskis dued to the signal oeÆients when the noisy oeÆient Wxi is under thethreshold and to the pure noise W2ni when Wxi is over the threshold.Wavelet Paket Deomposition and Retangular approximation.The Wavelet Paked Deomposition (WPD) di�ers from Wavelet Deomposi-tion (WD) sine it deomposes approximation and detail oeÆients, buildinga omplete tree [10℄.



This di�erene allows to better loate the signal ativities into time-frequeny(sale) plan in a more omplete way than WD and to monitorizewith the same detail level all frequeny bands. This feature is really impor-tant for both detetion and analysis purposes, as disussed in next setion.Consider a level j of WPD deomposition of the signal s. This level ontainsN oeÆients distributed into 2j basis and, as previously aÆrmed for WD,only few oeÆients are signi�antly greater than zero. Obviously the signalenergy is onserved in the WP domain so, Es =PNi=0 jsij2 =PNi=0 jWsi j2.Now we introdue an approximation assuming that the distribution ofoeÆients Wsi is onstant for a subset of indexes N � fi : Wsi 6= 0g andn = ard(N) � N Wsi = 8><>:�q Esn ; if i 2 N0; if i 62 N: (8)In other words, we approximate with a retangular funtion the distributionof WP oeÆients in a way to maintain the signal energy. Obviously thisfuntion works well when there are few oeÆients to approximate in the WPdomain. In following setions we assume almost one WP oeÆient of signal> T and we inlude the energy loss after thresholding with an eÆieny fatork = EsEstrue < 1. This fator is stritly related with n and those parametersde�ne the ompression eÆeny of a WPD with a given basis.3 Detetion and analysisThe aim of this paper is to demonstrate the e�etive reliability of a detetionand analysis system of EEG signals of patients in ritial ondition based onWPD. In this optis we desribe the qualitative behavior of the risk. In thenext paragraph we show the relation between error probability and ompres-sion and therefore suggest whih kind of wavelet basis use for deomposition.If detetion shows some evidene of life, it's important to de�ne some analysisproedure to reover and reonstrut this embedded and unknown ativity.We used the algorithm implemented by Donoho and Johnstone based onthe needing of some visual feature (smoothness) of the reonstruted signal.Their works demonstrated the optimality, under ertain ondition, of the useof soft-thresholding rule when minimizing the risk R(s; T ) in a minimax sense[6℄. In this paper, sine the noise onsidered is zero-mean, we de�neSNR = 10 log�var(s)�2 � (9)as measure of Signal to Noise power Ratio.



3.1 DetetionTo evaluate the error probability of a system based on hard or soft thresh-olding, we onsider two situations. In the �rst ase, the patient is alive so hisEEG signal an be modeled with the additive model (1). The probability ofa null detetion (i.e. to obtain a vetor of zeroes 0) isP (e)+ = P (ŝ = 0) = P (WxT (Wx) = 0) = NYi=0P (jWxi j < T ); (10)sine we are onsidering orthogonal bases and unorrelated noise. Using thesame approximation desribed in (8), the equation (10) an be rewritten asP (e)+ = Yi2N P  jWni +rEsn j < T! Yi62N P (jWni j < T )= P  jWn +rEsn j < T!n � P (jWn j < T )N�n = pnEs :pN�nn (11)In the seond ase, we onsider an ES signal (s = 0) so it an be onsideredas pure noise (Wxi = Wni). The probability of detet something di�erentfrom noise isP (e)� = P (ŝ 6= 0) = 1� NYi=0P (jWni j < T ) (12)= 1� P (jWn j < T )N = 1� pNnThe whole error probability of our system an be written asP (e) = P (ejs 6= 0) + P (ejs = 0) = P (e)+ + P (e)� (13)= 1� pNn �1��pEspn �n�where P (e)+represents the inidene of false negatives and P (e)� the ini-dene of false positives.Straightforward onsiderations on (13) demonstrate the need of a highompression (n � N) to keep low the error probability. But this is the aseour approximation works better. Our purpose is to obtain some reasonablevalues of loss (k) and ompression (n) for a linial aeptable error. Weplot the equation (13) in funtion of nN %, onsidering k = 12 and for someSNR values (�g.1). For low values of ompression the inidene of P (e)� ispredominant while, for very high value of ompression (� 97%), the ontri-bution of false negatives is the most signi�ant and limits the lower boundof the error.For example, to obtain a P (e) < 10�4 with SNR= 0, we need of a basiswith a ompression of nN � 97% with a loss of 50%. We made a lot oftests with EEG signals and we found that Coiet4 family [10℄ satis�es theseonstraints.



Fig. 1. Error probability for di�erent SNR.3.2 AnalysisThe SURE algorithm is a method presented by Donoho and Johnstone [5℄for the soft-thresholding proedure de�ned by�(yx) = sign(yx)8<: jyxj � T; if jyxj � T > 00; if jyxj � T � 0 (14)Besides the bene�ts of this strategy, largely desribed in [6℄, the weakdi�erentiability of this thresholding funtion makes straightforward applia-ble the Stein method [9℄ to estimate the risk R(s; T ) in an unbiased fashion.The optimal threshold T will be hosen to minimize this approximation foreah deomposition level. This "adaptative" method is really quasi-optimalin the "dense" situation, i.e. when the energy is distributed over many o-eÆients, but it has a serious drawbak in situations of extreme sparsityor, in other words, when the signal ompression is high. Donoho proposeda pre-testing proedure to In this ase, exploiting that, in probability, ifWn � N(0; �2); kWnkl1n � Tf = �p2 log(n) [7℄, the threshold is set toTf . As usual, noise variane is approximated with �̂2 = �MAD(Wx)0:6745 �2.In Fig.2 we apply WP soft thresholding on a EEG signal measured froma patient in Brain Silene ondition (Fig.2, 2d) ompared to the analogueappliation on a signal deriving from a normal patient (Fig.2a, 2b).4 Future workIn this paper a preproessing system for de-noising and omputerized anal-ysis of EEG signals in ritial onditions has been presented. The basi al-gorithm is based on Wavelet Paked Deomposition and our inspetion has
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