Laboratory for Advanced Planning
and simulation project

Lumen Carotid Segmentation
Software:
Programming user Manual

Alan Scheinine® , Piero Pili® and Fabrizio Murgia®

¢ RSC/High Performance Computing Systems Area, CRS4
b EIP /Geometric Modelling and Monte Carlo Simulations Area, CRS4

Lumen Carotid Segmentation
Software:
Programming user Manual

Alan Scheinine® , Piero Pili® and Fabrizio Murgia®

% Geometric Modelling and Monte Carlo Simulations Area, CRS4
b High Performance Computing Systems Area, CRS4

12 Giugno 2003

ABSTRACT

This document illustrates the segmentation source modules used to extract lu-
men contours from CT images. The modules, based on open source software,
are:

Hash Library module: hash table;

Random Number generator module: George Marsaglia’s The mother of all
random number generators producing uniformly distributed pseudo ran-
dom 32 bit values with period about 22°;

DXIO Library module: Data Explorer, interface module and DICOM readers;

Loop Library module: the package Loop contains classes for loops and tubes,
and linear algebra for interpolation;

Smoothing Library module: the package Smoothing contains algorithms for
several techniques, including smoothing a two-dimensional loop and ex-
trapolating the ends of tubes at a bifurcation;

Filtering Library module: the image filters are independent of the segmenta-
tion program;

Contour The module for segmenting lumen;

In Appendix has been reported the GSNAKE-API and GSNAKE program
that we have used for in own tool.

Contents

DXIO
1.1 Format information from Data Explorer documentation
1.2 Description of the DXIO functions

1.3 DX_DICOM: Basic numbers and numerical vectors

HASH

2.1 Synopsiso e e
2.2 Descriptiono
2.3 Variables
2.4 PublicFunctions
2.5 Private Functions 0oL

2.6 HISTORY e

RANDOM

3.1 George Marsaglia’s random number generators

LOOP

4.3 class CyclicLoop e
4.4 Basic constants and simple functions oL
4.5 Classestohold arrays,

4.6 Interpolation and matrix inversion

10
13

15
15
15
15
16
17
18

19
19

5 SMOOTHING
5.1 Package Smoothing
5.2 class Smoothingo
5.3 Function find_mappingo oo
5.4 Program twotoone L.

5.5 Portable Pixmap,

6 FILTERING
6.1 ImageFilter.
6.2 ContourGUI and CanvasContourGui
6.3 DICOMread

7 CONTOUR
7.1 CONTOUR:ImageFilter
7.2 Mouse-Contour Interaction
7.3 Introduction.

T4 Overview
Bibliography
APPENDICES

Appendix A GSNAKE
A1 About thismanual
A.2 How to Avoid Reading this Manual
A.3 Design of the GSNAKE API

A.4 Class Design and Implementation

Appendix B GSNAKE Class Library Reference
B.1 IMAGE : The raw image object
B.1.1 IMAGE Constructor
B.1.2 IMAGE Destructor
B.1.3 Resettingan IMAGE

41
41
41
47
47
52

54
54
96
59

60
60
63
69
69

71

72

72
72
72
73
73

B.2

B.3

B.1.4 Initializing image matrix 76

B.1.5 Initializing Gaussian template i
B.1.6 Putting data into image matrix i
B.1.7 Getting data from image matrix 78
B.1.8 Getting IMAGE row andcol 78
B.1.9 Printing imagedata 79
B.1.10 Displaying image 79
B.1.11 Reading image data from file 79
B.1.12 Writing image datatofile 80
B.1.13 Histogram conditioning of image 81
B.1.14 Image correlation 81
B.1.15 X window image generation 82
B.1.16 Cutting an image segment 82
B.1.17 Copying an image oo 83
B.1.18 Filling of an areaof image 83
B.1.19 Example : Reading, writing and correlation of images . . 84
B.1.20 Example : Histogram specification of an image 85
B.1.21 Example : Cutting and copying of image segments 86
EDGE : Edge Gradient 87
B.2.1 EDGE constructor, 88
B.2.2 EDGE destructor 88
B.2.3 Resetting an EDGE object 88
B.2.4 Retrieving magnitude and angle of an edge point 88
B.2.5 Storing magnitude and angle of an edge point 89
B.2.6 Displayingedgemap 89
B.2.7 Calculating theedgemap 90
B.2.8 Getting row and column of EDGE 91
B.2.9 Example : Edge computation 91
PYRAMID : Pyramid of Images 92
B.3.1 PYRAMID Constructor 93
B.3.2 PYRAMID Destructor 93

B.4

B.5

B.3.3 Resetting PYRAMID object 93

B.3.4 Generating pyramid images 94
B.3.5 Accessingedgemap 94
B.3.6 Accessing Gaussian image 95
B.3.7 Getting pyramid level 95
B.3.8 Print Gaussian pyramid data 96
B.3.9 Displaying the pyramid of images 96
B.3.10 Duplicating a pyramid, 96
B.3.11 Putting root image into PYRAMID 97
B.3.12 Example:Building of pyramid from image 97
B.3.13 Example:Accessing a particular level image 98
MATRIX : Simple matrix calculation 99
B.4.1 Print matrixdata 100
B.4.2 Initializing matrix 100
B.4.3 Matrix transpose oL o oo 101
B.44 Matrix addition oo 101
B.4.5 Matrix substraction 101
B.4.6 Matrix multiplication, 102
B.4.7 Swapping rows of matrix 102
B.4.8 Matrixinversion 103
SNAXEL : The contour model unit 103
B.5.1 Computing mean position 104
B.5.2 Computing tangent vector 105
B.5.3 Computing normal vector 105
B.5.4 Calculating the SNAXEL angle 106
B.5.5 Showingsnaxel, 106
B.5.6 Interface row and column information 107
B.5.7 Interface snaxel energy information 107
B.5.8 Interface parameter information 108
B.5.9 Interface pointers to neighbouring snaxels 108

B.5.10 Example : Using mean position to calculate Internal energy109

B.6

B.7

B.5.11 Example : Verifying vector calculations 111

CONTOUR : A deformable template object 112
B.6.1 CONTOUR constructor 113
B.6.2 CONTOUR destructor 113
B.6.3 Resetting a CONTOUR 113
B.6.4 Automatic initialization of closed contour 114
B.6.5 Automatic initialization of open contour 114
B.6.6 Manual initialization of a contour 115
B.6.7 File interface methods 115
B.6.8 Learning shape matrix 116

B.6.9 Computing normalizing constant for classification purpose 116

B.6.10 Computing the average vector distance 1(U) between snaxels117

B.6.11 Regenerating shape matrix 117
B.6.12 Conversion of Coordinates 118
B.6.13 Calculating the internal energy of an individual snaxel . . 118
B.6.14 Affine transformations of contour 119
B.6.15 Computing the centre of gravity of contour 119
B.6.16 Duplicating a contour 120
B.6.17 Retrieving and accessing of a contour content 120
B.6.18 Displaying contour shape 121
B.6.19 Showing a contour on another image 122
B.6.20 Example : Initialization of contours 122
B.6.21 Example : Affine transformations of contour 123
B.6.22 Example : Coordinate conversion of contour 125
B.6.23 Example : Duplication of contour. 126
GHOUGH : Generalised Hough Transform Object 127
B.7.1 GHOUGH constructor 128
B.7.2 GHOUGH destructor 129
B.7.3 Resetting GHOUGH object 129
B.7.4 Finding one contour 129
B.7.5 Finding multiple contours 130

B.8

B.9

B.7.6 Example : Localization of a contour 131

B.7.7 Example : Localization of multiple contours 132
GSNAKE : Generalized Active Contour Mo-del 134
B.8.1 GSNAKE constructor 135
B.8.2 GSNAKE destructor 135
B.8.3 GSNAKE destructor 135
B.8.4 Generating pyramid images 136
B.8.5 Localization of contour., 136
B.8.6 Fine localization of GSNAKE template 137
B.8.7 Minimization of GSNAKE 138
B.8.8 Marginalizing gsnake to get probablity 138
B.8.9 Calculating total energy of a gsnake 139
B.8.10 Calculating total energy of a snaxel 139
B.8.11 Calculating internal energy of a snaxel 140
B.8.12 Caluclating Internal energy at snaxel co-ordinates 140
B.8.13 Calculating external energy of a snaxel 140
B.8.14 Showing GSNAKE 141
B.8.15 Displaying gsnake and image 141
B.8.16 Manual deformation of a contour 142
B.8.17 Duplicating a GSNAKE 142
B.8.18 Getting external energy input type 143
B.8.19 Getting and writing the regularization parameter 143
B.8.20 Retrieving internal and external energy 144
B.8.21 Example : Localization and minimization of GSNAKE . 144
B.8.22 Example : Energy calculationI 146
B.8.23 Example : Energy calculationIT 147
MODEL : Shape Learning Class 148
B.9.1 MODEL constructor 149
B.9.2 Learning shapematrix 149
B.9.3 Learning local deformation variances 150
B.9.4 Accessing the trained model 150

B.9.5 Example : Learning of shape matrix from different samples151

B.10 CLASSIFY : Contour Classification. 152
B.10.1 CLASSIFY constructor 153
B.10.2 CLASSIFY destructor 154
B.10.3 Loading a template into CLASSIFY 154
B.10.4 Classifying templates 155
B.10.5 Selecting the best matching contour 155
B.10.6 Getting the number of templatesread 156
B.10.7 Getting the matching score 156
B.10.8 Printing templates score 156
B.10.9 Getting label of template 157
B.10.10Example : Classifying various templates 157

Appendix C GSNAKE API Command Line Utilities 159

C.1 Image Processing utilities 159
C.1.1 Image generation: imggen 159
C.1.2 Image viewing: imgshow 160
C.1.3 Gaussian pyramid images generation: imgpyramid 161
C.1.4 Image conditioning : imgcond 162
C.1.5 Image learning : imglearn 163

C.2 GSNAKE utilities 163
C.2.1 Template generation : gsinit 163
C.2.2 Contour viewing: gsshow 164
C.2.3 Contour matching: gsfit 165

Appendix D STL 166

D.1 STL Introduction ottt 166

D.2 Owerall Description oo 167

D.3 Description of the functions 169

Chapter 1

DXIO

1.1 Format information from Data Explorer doc-
umentation

(Not every possibility is supported with this set of programs.)

The data is specified by an offset in bytes in the data section of the current
file, an offset within the data section of another Data Explorer file, or by the
keyword follows, indicating that the data begins immediately following the new-
line after the follows keyword. The offset is specified in bytes for both binary
and text files.

Optional keywords before the data keyword specify the format and byte
order of the data. The mode keyword before a data-location specification sets
the default data encoding for all subsequent data clauses to be the most recently
defined data encoding. The default data encoding is text (or ascii on all currently
supported systems). The ieee keyword specifies the ANSI/IEEE standard 754
data format.

If binary (or ieee on all currently supported systems) is specified, the default
byte order depends on the platform on which Data Explorer is running. On the
DEC Alpha, the default byte order is Isb (least significant byte first). On all
other platforms [written before Intel supported], the default byte order is msb
(most significant byte first). The ‘data mode’ clause can be used outside an
Array Object definition; see "Data Mode Clause” for more information.

object number [class] array
llnamell

[type [unsigned] byte]
signed byte

unsigned short
[signed] short
unsigned int
[signed] int
hyper

float

double

string

[category real]
complex
[rank number]
[shape number ...]
items number
[msb] [text] data [mode] offset

1sb ieee file file,offset
binary follows
ascii

If byte, short, or int are not prefixed with either signed or unsigned, by
default, bytes are unsigned, shorts are signed and ints are signed. For compat-
ibility with earlier versions, char is accepted as a synonym for byte. Note: For
string-type data, the Array rank should be 1 and the Array shape should be the
length of the longest string plus 1.

1.2 Description of the DXIO functions

Constants for types The data types are flagged by the constants
DX_TYPE_NONE,
DX_TYPE_CHAR,
DX_TYPE_SIGNED_CHAR,
DX_TYPE_UNSIGNED_CHAR,
DX_TYPE_SHORT,
DX_TYPE_UNSIGNED_SHORT,
DX_TYPE_INT,
DX_TYPE_UNSIGNED_INT,
DX_TYPE_LONG,
DX_TYPE_UNSIGNED_LONG,

10

DX_TYPE_FLOAT,
DX_TYPE_DOUBLE, and

DX_TYPE_LONG_DOUBLE. Not all of these data types are implemented by
DX files, in particular, the long types are not implemented.

Constants for endianess The endianess is flagged using
DX_UNKNOWN_ENDIAN,
DX_MSB, and

DX_LSB. These flags describe what is found in the header, but otherwise, no
adjustment of the data is made for endianess and binary files created by
these functions will not be portable.

loop_indices The struct
loop_indices passes a group of specialized variables as one argument of
make_loop_indices.

read_dx_header

read_dx_header reads a header file in Data Explorer format for a single array.
The actual array may be in another file declared in the header file.

get_text
get_text fills-in a character array with the text of the header information.
read_dx_type

read_dx_type opens a file and parses the DX format header simply to determine
the type of the data array. It can be useful when one wants to know what
type of data array needs to be malloc’ed.

Reading DX data
read_dx_char,
read_dx_signed_char,
read_dx_unsigned_char,
read_dx_short,
read_dx_unsigned_short,
read_dx_int,

read_dx_unsigned_int,

11

read_dx_float and

read_dx_double

These functions read the header and the data in DX format.

Note the that pointer that is returned itemers to a newly malloc’ed array
that the user will need to free when no longer needed.

free_dx_data Serves as an interface between C++ and C. When data is read
from a file, a malloc’ed array is returned.

free_dx_data permits a C++ to use free() to return the space to the heap.
make_loop_indices

make_loop-indices fills-in the structure

loop_indices.
open_data_file

open_data_file positions file pointer to the beginning of the data.
float_is_zero

float_is_zero tests if a float type value is effectively zero, returning 1 (true) if
the argument is close to zero.

fix_relative_name

fix_relative_name checks for a leading slash in the pathname outfile. If there
is no leading slash, the substring of filename up to and including the last
slash is pitemixed to the outfile character arrry.

reassign file_pointer

reassign _file_pointer closes the header file and opens a second file for writing
the data.

strstr_word

strstr_word finds first match that is a distinct word.
distinct_word

distinct_word checks that a string is not imbedded.
seek_type

seek_type seeks the keyword that describes the DX data type.

to_dx_type

12

to_dx_type converts from integer to string for a given DX type. Used for writing
the header.

Writing the header

write_dx_header writes the header. The format of the header is based on the
assumption that the data to be written has the x-direction varying the
fastest; which is the opposite of the DX default convention.

Writing header and data Writing everything, both the header and the data
array is done with the functions

write_dx_char,
write_dx_signed_char,
write_dx_unsigned_char,
write_dx_short,
write_dx_unsigned_short,
write_dx_int,
write_dx_unsigned_int,
write_dx_float and
write_dx_double.

Reading and writing one data item A DX file to be read may not have
been created with this set of functions and as a consequence, the order
of the data may not have the x-direction varying most rapidly. So for
reading data, a specialized loop is used that calculates the array index
for each data item and the data items are read one at a time. Though
it is not absolutely necessary to write the data one item at a time, such
functions have been implemented; moreover, writing one item at a time for
formatted data allows line feeds to be inserted for easier reading. These
functions are

1.3 DX DICOM: Basic numbers and numerical
vectors

LimitRange The class LimitRange is used for the conversion between primitive
numerical types. The role is similar to a static cast. Since it operates on
one number at a time, the conversion is not efficient. Nonetheless, the
class may be useful for type conversion of fields between different steps of
processing while avoiding compiler warnings. Here are some examples of
the functions

13

static T limit_range(char s);
static T limit_range(unsigned int s);
static T limit_range(double s);

The primitive numerical types that can be used for the function parameter
or return value are char, signed char, unsigned char, short, unsigned short,
int, unsigned int, long, unsigned long, float, double and long double.

LocalNumTNTVect The class LocalNumTNTVect inherits from the TNT
class Vector. A few more functions have been added and some functions
have been changed to increase efficiency. This class definition is identical to
that used for Nast++. This is a vector for primitive numerical types rather
than a vector of an arbitrary class. Note that the size does not change
when allocation is done beyond the range of the internal array. Such an
assignment is an error. The size is set when the class is constructed or by
using newsize(int).

14

Chapter 2

HASH

2.1 Synopsis

The hash table library module is rthe file hash.c - hash table with a KEY
that is an array of integers and a VALUE that is one integer. The include
file is in flosys3d directory includefort_general. The code of the user should
have #include<hash.h>. The compiled functions are in the flosys3d library
libsmlutl.a.

2.2 Description

Functions for a hash table. The key is a vector of integers. For each hash table,
the number of elements in the vector is fixed when the hash table is created.
Associated with each key is a value of type integer. The hash table automatically
grows or shrinks as needed.

e Variables

e Public Functions

e Private Functions

2.3 Variables

The type definition HTable and the variable hash_ifdebug are specifically defined
for this package. Other variables listed below are example declarations.

15

HTable HTable *htable; A typical declaration for a hash table named htable.

num _key_elmnts int num_key_elmnts; A variable set equal to the number of
elements in the key. The value can range from 1 to 12.

key int key[NUM_OF_ELEMENTS]; This array could contain one key.
fd FILE *fd; A binary file that has already been opened.

key_count int key_count; The number of items in the key list returned by
<CODE> get _keys().

value_count int value_count; The number of items in the value list returned
by get_values().

key_vec int **key_vec; An array of pointers to the base address of each key
returned by get_keys (htable, & key_count, & key_vec). The space occupied
by the list can be destroyed using free(key_vec).

value_vec int *value_vec; An array of integer values returned by get_values
(htable, & value_count, &value_vec). The space occupied by the list can
be destroyed using free(value_vec).

hash _ifdebug int hash_ifdebug; If set to 1, some print statements are activated.
Declared in hash.h.

2.4 Public_Functions

new_hash htable = new_hash(num_key_elmnts)
HTable * new_hash(int num key_elmnts)

Returns a newly created hash table for which the keys always have num_key-
_elmnts elements. Returns NULL if not successful.

destroy_hash destroy_hash(htable) void destroy_hash(HTable *htable)
Frees the space occupied by htable.

hash_insert status = hash_insert(htable, key, value) int hash_insert(HTable
*htable, int *key, int value) Returns 0 if key[] was not in the hash table
(key was never used or the key was deleted prior to this call). Returns 1 if
key[] was in the hash table and the value was replaced. Returns a negative
number if an error occurs.

hash lookup status = hash lookup(htable, key, & value) int hash lookup (HTa-
ble *htable, int *key, int *value) Returns 0 and sets value if key][] is found.
Returns 1 if key[] is not found. Returns a negative number if an error
occurs.

16

hash_delete status = hash_delete(htable, key) int hash_delete(HTable *htable,
int *key) Returns 0 if key[] was deleted from the hash table by this call.
Returns 1 if nothing was done: item was never inserted or was delete
previously. Returns a negative number if an error occurs.

get_keys status = get_keys(htable, & key_count, & key_vec)

int get_keys(HTable *htable, int *key_count, int ***key_vec) Creates an ar-
ray of pointers to type integer key_vec which contains key_count
items. The first key returned has base address key_count[0]. Returns 0 if
successful.

get_values status = get_values(htable, & value_count, & value_vec) int get_va-
lues (HTable *htable, int *value_count, int **value_vec) Creates an array
of integers value_vec which contains value_count items. Returns 0 if suc-
cessful.

write_hash status = write_hash(htable, fd) int write_hash(HTable *htable,
FILE *fd) Writes a hash table htable to file fd. Returns 0 if successful.
read_hash htable = read_hash(fd) HTable *read_hash(FILE *{d)

Returns a hash table read from file fd. The hash table space is newly
created as if new_hash() had been called. Returns NULL if not successful.

2.5 Private _Functions

hash01 static unsigned int hash01(int *key_int list, int num key_elmnts, un-
signed int mask) Given a key, returns a hash index.

hash02 static unsigned int hash02(int *key_int list, int num key_elmnts, un-
signed int mask, unsigned short expand factor) Given a key, returns a
hash index using a method different from hash01.

make_tablesize static void make_tablesize(int new_tablesize, HTable *htable)

Given a suggested table size new_tablesize, finds a table size that is a
power of 2 and sets the hash table variables table_size, mask, not_mask,
rehash_upper and rehash_lower.

compare _keys static int compare_keys(int *key1, int *key2, int num_key_elmnts)
Return 1 if two keys are equal, otherwise returns 0.

rehash int rehash(HTable *htable) Determines if the table size should be changed.
Returns 0 if nothing is done. Returns 1 if rehashing is done. Returns neg-
ative if there is an error.

no_rehash _insert static int no_rehash_insert(int *key, int value, HTable *htable)
Used in the function rehash to insert values into the resized hash table.

17

write_hash_entry static int write_hash_entry (HashEntry *entry, long int base,
FILE *fd)

Writes one structure of type HashEntry to file fd. The variable base is
used to convert the pointer to the key array to an integer with zero offset.
Returns the number of words written.

read_hash_entry static int read_hash_entry (HashEntry *entry, long int base,
FILE *{d)

Reads one structure of type HashEntry from file fd. The variable base is
used to create a pointer to the key array. Returns the number of words
read.

2.6 HISTORY

The KEY is an integer vector because originally this set of hash routines was
written for geometric objects used in finite element descriptions. For example,
a triangular surface could be stored as the indices of the three vertices, with the
VALUE being the index that identifies the triangle.

18

Chapter 3

RANDOM

This library module furnishes the random numbers generator algorithm used by
the segmentation tool.

3.1 George Marsaglia’s random number gener-
ators

George Marsaglia’s the mother of all random number generators producing uni-
formly distributed pseudo random 32 bit values with period about 2250. The
text of Marsaglia’s posting is appended at the end of the function.

The arrays motherl and mother2 store carry values in their first element,
and random 16 bit numbers in elements 1 to 8. These random numbers are
moved to elements 2 to 9 and a new carry and number are generated and placed
in elements 0 and 1. The arrays motherl and mother2 are filled with random
16 bit values on first call of mother by another generator. mStart is the switch.
Returns: A 32 bit random number is obtained by combining the output of the
two generators and returned in *pSeed. It is also scaled by 232 —1 and returned
as a double between 0 and 1

SEED: The inital value of *pSeed may be any long value
Bob Wheeler 8/8/94

Marsaglia’s comments

Yet another RNG

Random number generators are frequently posted on the network; my col-
leagues and I posted ULTRA in 1992 and, from the number of requests for
releases to use it in software packages, it seems to be widely used.

19

I have long been interested in RNG’s and several of my early ones are used
as system generators or in statistical packages.

So why another one? And why here?

Because I want to describe a generator, or rather, a class of generators, so
promising I am inclined to call it The Mother of All Random Number Generators
and because the generator seems promising enough to justify shortcutting the
many months, even years, before new developments are widely known through
publication in a journal.

This new class leads to simple, fast programs that produce sequences with
very long periods. They use multiplication, which experience has shown does a
better job of mixing bits than do +,- or exclusive-or, and they do it with easily-
implemented arithmetic modulo a power of 2, unlike arithmetic modulo a prime.
The latter, while satisfactory, is difficult to implement. But the arithmetic here
modulo 26 or 232 does not suffer the flaws of ordinary congruential generators
for those moduli: trailing bits too regular. On the contrary, all bits of the
integers produced by this new method, whether leading or trailing, have passed
extensive tests of randomness.

Here is an idea of how it works, using, say, integers of six decimal digits from
which we return random 3-digit integers. Start with n=123456, the seed.

Then form a new n = 672 x 456 + 123 = 306555 and return 555.
Then form a new n = 672 % 555 + 306 = 373266 and return 266.
Then form a new n = 672 % 266 + 373 = 179125 and return 125.

and so on. Got it? This is a multiply-with-carry sequence x(n) = 672xx(n—
1) + carrymodb = 1000, where the carry is the number of b’s dropped in the
modular reduction. The resulting sequence of 3-digit x’s has period 335,999.
Try it.

No big deal, but that’s just an example to give the idea. Now consider the
sequence of 16-bit integers produced by the two C statements:

k = 30903 * (k&65535) + (k >> 16);
return(k&65535);

Notice that it is doing just what we did in the example: multiply the bottom
half (by 30903, carefully chosen), add the top half and return the new bottom.

That will produce a sequence of 16-bit integers with period ; 229, and if we
concatenate two such:

k = 30903 * (k&65535) + (k >> 16);
j = 18000 % (j&65535) + (j >> 16);
return((k << 16) + j);

we get a sequence of more than 2°° 32-bit integers before cycling.

20

The following segment in a (properly initialized) C procedure will generate
more than 2!18 32-bit random integers from six random seed values i,j,k,l,m,n:

k = 30903 * (k&65535) + (k >> 16);

j = 18000 % (j&65535) + (j >> 16);

i = 29013 x (i&65535) + (i >> 16);

I = 30345 % (1&65535) + (I >> 16);

m = 30903 * (m&65535) + (m >> 16):
n = 31083 * (n&65535) + (n >> 16);
return((k+i+m) >>16) +j + 1+ n);

And it will do it much faster than any of several widely used generators
designed to use 16-bit integer arithmetic, such as that of Wichman-Hill that
combines congruential sequences for three 15-bit primes (Applied Statistics,
v31, p188-190, 1982), period about 242.

I call these multiply-with-carry generators. Here is an extravagant 16-bit
example that is easily implemented in C or Fortran. It does such a thorough
job of mixing the bits of the previous eight values that it is difficult to imagine
a test of randomness it could not pass:

z[n] = 12013z[n — 8] + 1066x[n — 7] + 1215z[n — 6] + 1492z [n — 5] + 1776x[n —
4] 4+ 1812x[n — 3] + 1860z[n — 2] + 1941x[n — 1] + carrymod2'®.

The linear combination occupies at most 31 bits of a 32-bit integer. The
bottom 16 is the output, the top 15 the next carry. It is probably best to
implement with 8 case segments. It takes 8 microseconds on my PC. Of course
it just provides 16-bit random integers, but awfully good ones. For 32 bits you
would have to combine it with another, such as

z[n] = 9272x[n — 8] + 7777x[n — 7] + 6666x[n — 6] + 55552[n — 5] + 4444z [n —
4] 4 3333z[n — 3] + 2222z[n — 2] + 1111z[n — 1] + carrymod2'®.

Concatenating those two gives a sequence of 32-bit random integers (from
16 random 16-bit seeds), period about 22°°. It is so awesome it may merit the
Mother of All RNG’s title.

The coefficients in those two linear combinations suggest that it is easy to
get long-period sequences, and that is true. The result is due to Cemal Kac,
who extended the theory we gave for add-with-carry sequences: Choose a base
b and give r seed values x[1],...,x[r] and an initial ’carry’ c¢. Then the multiply-
with-carry sequence

z[n] =al xz[n — 1]+ a2 *z[n — 2]+ ... + ar x z[n — r] + carrymodb

where the new carry is the number of b’s dropped in the modular reduction,
will have period the order of b in the group of residues relatively prime to
m = ar *b" + ... +alb' — 1. Furthermore, the x’s are, in reverse order, the digits
in the expansion of k/m to the base b, for some Ojkjm.

21

In practice b = 2% or b = 232 allows the new integer and the new carry to
be the bottom and top half of a 32- or 64-bit linear combination of 16- or 32-bit
integers. And it is easy to find suitable m’s if you have a primality test: just
search through candidate coefficients until you get an m that is a safeprime-both
m and (m-1)/2 are prime. Then the period of the multiply-with-carry sequence
will be the prime (m-1)/2 (It can’t be m-1 because b = 2'¢ or 232 is a square).

Here is an interesting simple MWC generator with period; 292, for 32-bit
arithmetic:

z[n] = 1111111464 * (z[n — 1] + z[n — 2]) + carrymod23?.

Suppose you have functions, say top() and bot(), that give the top and
bottom halves of a 64-bit result. Then, with initial 32-bit x, y and carry c,
simple statements such as y = bot(1111111464 % (x + y) +¢) z = y ¢ = top(y)
will, repeated, give over 2°2 random 32-bit y’s.

Not many machines have 64 bit integers yet. But most assemblers for modern
CPU’s permit access to the top and bottom halves of a 64-bit product.

I don’t know how to readily access the top half of a 64-bit product in C. Can
anyone suggest how it might be done? (in integer arithmetic)

George Marsaglia geo@stat.fsu.edu

22

Chapter 4

LOOP

4.1 Loop

The package Loop contains classes for loops and tubes, and linear algebra for
interpolation.

4.2 Overview

Class hierarchy

The base of the array classes is BasicArrayBase. This class does not contain an
array, it simple contains size and length data members and methods to access
these data. Note that size and length are independent. The size is the size
of the allocated storage, whereas, the length is the current number of entries,
possibly less than the size.

The only class that has BasicArrayBase as an immediate base class is With-
Topology. All other classes that represent arrays inherit BasicArrayBase by
inheriting WithTopology. The only time BasicArrayBase appears in a more
derived class is when an algorithm uses the static function

BasicArrayBase: :generic_mod(i, length)

The function generic_mod is different from mod in the treatment of negative
numbers. Toroidal boundary conditions are implemented so that generic_.mod(-
1, length) is equal to (length - 1), and so on.

The class BasicArrayBase contains the virtual functions.

23

virtual void renew_basic_array() = 0;

virtual void renew_basic_array(int size_in) = 0;
virtual int length() const;

virtual void setlLength(int length_in);

The next step in the array hierarchy, the class WithTopology, does not con-
tain space for an array. It simple implements either a linear of cyclic topology.
As well as having a method for setting the topology, there are the methods

virtual void lockTopology();
virtual void unlockTopology();

Though a lock can be unlocked, the locking mechanism can be used as an in-
dication that initialization has been done. The WithTopology constructor starts
as Lup:LINEAR_ARRAY and unlocked. In an algorithm that creates an ar-
ray, by locking (possibly first setting the topology to Lup::CYCLIC_ARRAY)
later steps in the algorithm cannot undo the initialization by mistake. By the
way, the namespace for constants is ”Lup” instead of ”Loop” because there is
a class named ”Loop”.

One other generally useful function is introduced in WithTopology, the func-
tion my_mod.

virtual int my_mod(int i);

The function my_mod returns genericmod(i, length) where length is the
value set for the particular instantation of the class.

The next stap in the array hierarchy is the class that contains an allocationed
array

template<class T> class BasicArray

which inherits from class WithTopology. The primitive array within this
class can be any type, T. The class WithTopology is not used explicitly elsewhere
in this package, but rather, its methods are accessed through BasicArray or
classes derived from BasicArray. By the way, though the array access operators

virtual T& operator[](int i)
virtual const T& operator[](int i) comnst

are defined, yet the primitive array T* is public because sometimes very fast
access may be needed.

In BasicArray the virtual functions

24

void renew_basic_array()
void renew_basic_array(int size_in)

are defined, they destroy the contents when changing the size of the primitive
array. In addition, there is defined the function resize(int newsize) which pre-
serves entries from 0 to (newsize - 1). The virtual function of BasicArrayBase,
setLength(int length_in), is redefined to use resize(int length_in). This does not
guarantee that size() == length() because resize is not called if the allocated
space is already sufficient.

There is also a class

template<class T> class ReadOnlyArray
that derives from

BasicArray<T>

but the class ReadOnlyArray is not particularly useful for several reasons:
the array T* is public, the assignment operator changes the content in any
case, and the non-constant operator array access operator that is redefined from
BasicArray, that is,

T& BasicArray<T>::operator[](int i)

must return something.

The class BasicArray is analogous to the class vector of the standard tem-
plate library. One difference is that BasicArray includes the option of setting
a cyclic topology. Another difference is that the length is distinct from the
size. The latter difference can also be found in the CORBA class sequence.
Moreover, the BasicArray also does not automatically increase in size, unlike
the STL vector when push_back() is used. In many cases, BasicArray is used
to represent a loop (a contour) which has a cyclic topology. In the case of a
cyclic loop, access above or below the array limit is allowed, the wrap-around
is automatic. As a consequence, an index that is outside the conventional array
bounds can still be useful. But that index would change its meaning, it would
change the element to which it points, if the length of the loop changes. More
specifically, the loops are used to form tubes in which for a given loop an ad-
jacent loop has points to the given loop. Of course, a loop needs to change its
length (the number of points) for algorithms that refine the points of a loop or
cancel points that are not included in a longitude of a tube, but such changes
must be done coherently with the adjacent loop. The problem is the question
of indexing when there is wrap-around. So changing the length (that is, the

25

number of points) is an procedure that must be done carefully. In sum, the
differences between a BasicLoop and an STL vector are motivated.

In the hierarchy of classes for loops, the BasicLoop is hidden in three other
classes:

class FlatPointArray : public BasicArray<Doublet>
class PointArray : public BasicArray<Triplet>
class PatchedPointArray : public BasicArray<PatchedPoint>

It seems easier for the programmer (and with regard to the first generation
C++ compilers, easier for the compiler) to use non-templated classes, or in
this case, specific cases of the templated class BasicArray. Aside from loops,
BasicArray is used as an array class for holding sets of loops that form a tube,
for example

class LoopArray : public BasicArray<Loop>
class PatchedLoopArray : public BasicArray<PatchedLoop>

and simply integers for a longitudinal line
BasicArray<int> Longitude: :point_array;

But class BasicArray does not appear explicitly outside of the package Loop,
which is reasonable because if cyclic topology is not needed it is better to use a
conventional class, such as the STL vector.

One point of view is that the classes FlatPoint Array, Point Array and Patched-
PointArray can be considered specific cases of BasicArray, in any case, arrays.
A loop (a contour) is something more. As a consequence, there are the classes
LoopBase, BasicLoop, FlatLoop, Loop, PatchedLoop and CyclicLoop to im-
plement loops. Before describing the loops, the derived classes of BasicArray
(those used for loops) will be described since they contain a few more functions
than BasicArray.

A FlatPointArray has functions setX(int, double), setY (int, double), setZ(int,
double), double getX (int), double getY(int) and double getZ(int), but for Z the re-
sult is independent of the integer index. The class has a protected data member

double _zeta since the type of the array, Doublet does not have a Z component.
The default topology is Lup::CYCLIC_ARRAY.

A PointArray has the same functions for setting and getting the position of
a point as does FlatPointArray, except that the Z value can vary from point to
point. The default topology is Lup:: CYCLIC_ARRAY.

The class PatchedPointArray has the same position data access methods as
FlatPointArray and PointArray, and the initial topology is Lup::CYCLIC_AR-
RAY. In addition, it has the functions

26

virtual int getGot(int i) const

virtual int getConnection(int i) const

virtual void setGot(int i, int got_in)

virtual void setConnection(int i, int connection_in)

to access the ”got” and ”connection” values at each point.

The three classes FlatPointArray, PointArray and PatchedPointArray can
each be constructed from the other.

All three loop classes FlatLoop, Loop and PatchedLoop inherit from the
templated class BasicLoop, which in turn inherits from LoopBase, which in
turn inherits from XYZPntLoop.

Starting at the bottom, XYZPntLoop is a pure abstract class that declares
the following functions:

virtual int size() const = 0;

virtual int length() const = 0;

virtual void setLength(int length_in) = 0;
virtual int topology() const = 0;

virtual void setTopology(int topology_in) = 0;
virtual void remove_item(int idx) = 0;

virtual double x(int i) comst = 0;

virtual double y(int i) const = 0;

virtual double z(int i) comnst
virtual void setX(int i, double x_in) = 0
virtual void setY(int i, double y_in) = 0;
virtual void setZ(int i, double z_in) = 0;

]
o

Aside from remowve_item, these functions have analogs in BasicArray or the
classes derived from BasicArray. So far, a loop is hardly different from a Ba-
sicArray. Many lines of class definitions are needed for loops without creat-
ing anything new. The approach that has been taken is that FlatPointArray,
PointArray and PatchedPointArray should be considered intelligent arrays (like
STL vector) the go beyond BasicArray only in that they provide access to the
attributes of their points with some convenience functions (for example, set-
Got(int, int) and setConnection(int, int)) whereas the loop classes is where a
developer should put functions related to loops used to form tubes. The role of
XYZPntLoop is implied by its name: the abstract virtual functions tell us that
every loop has points with x, y, and z values, as well as the additional basic
functions listed above.

The next class in the loop hierarch is LoopBase

class LoopBase : public virtual XYZPntLoop

27

which does not contain an array of points, and yet, contains many algo-
rithms. The class LoopBase defines many abstract virtual functions which,
when combined with the abstract virtual functions of XYZPntLoop, are enough
for the definition of concrete algorithms. The concrete algorithms are static
functions, to give just a few examples:

static int inside(XYZPntLoop* 1lb, double x, double y)
static int chirality(XYZPntLoop* 1b, int ifdebug)
static void nokinks_3d(XYZPntLoop* 1b,
int numsteps,
double tolerance,
int ifdebug)
static double median_gap_2d (XYZPntLoop* 1b)
static void segment_interpolate(XYZPntLoop* 1lb, ...)
static double interval_distance(LoopBasex* lb,
int beg,
int end,
int dimen)
static void gen_midpnt(LoopBase* 1lb,
int which,
double segment_distance,
double total_distance,
double *mid_point)

The actual class used for the first parameter, [b, will be a class for which
the virtual functions have an actual implementation. The static functions have
corresponding abstract virtual functions declared, without the first parameter.
In a derived class the virtual functions which correspond to the static functions
call the static functions with the first parameter {\em this}.

The next step in the hierarchy is BasicLoop, which is a templated class that
inherits from LoopBase.

template<class T>
class BasicLoop : public LoopBase { ... }

All of the abstract virtual functions of XYZPntLoop and LoopBase are im-
plemented. A few examples from the class BasicLoop are:

void remove_item(int idx) {
int k;
for (k=idx;k<(length()-1) ;k++) {
point_array[k] = point_array[k+1];
}
setLength((length() - 1));
}

28

double x(int i) const { return point_array.getX(i); }
void setZ(int i, double z_in) { point_array.setZ(i, z_in); }

int inside(double x, double y) {
return LoopBase::inside(this, x, y);

}

int chirality(int ifdebug) {
return LoopBase::chirality(this, ifdebug);
}

void gen_midpnt(int which,
double segment_distance,
double total_distance,
double* mid_point) {
LoopBase: :gen_midpnt (this, which,
segment_distance, total_distance,
mid_point) ;

Some algorithms for loops, such as

void setChirality(int chirality_in,
int ifdebug)
void force_order()

are implemented in BasicLoop, but many are implemented in LoopBase.

As was the case for array classes, the are specific classes for specific values
of the template parameter of BasicLoop. Few new methods are introduced in
these specific classes, just data access and type conversion.

Explain that they just have simple data access and conversion, AND Patched-
Loop has a few other methods.

class FlatLoop : public BasicLoop(FlatPointArray)

interpolate_lsf

The function interpolatelsf is a C function that interpolates a segment of a
curve as a third-degree polynomial. The number of points used for defining the
coefficients of the polynomial can be greater than the number of coefficients.
For each call it returns three points within the interval between two points in

29

the middle of a curve segment. This function is somewhat specialized as it was
developed for smoothing a contour for segmentation.

As input the function is given a set of two-dimensional points. The number
points is 2*extent and the pair points whose midpoint is interpolated have in-
dices (extent - 1) and extent. The coordinate system is rotated so that the line
connecting pntfextent - 1] and pntfextent] is horizontal and the interpolation
polynomial gives y values (height) along x in the rotated system. As well as
providing an interpolated midpoint, it returns two points a distance frac (to-
wards the middle) from the central points of the original curve. For example,
frac = 1/6 gives points on the final curve that are evenly spaced if points on
the original curve are evenly spaced.

Several noteworthy aspects of this function are the following. The inter-
polated points are not displacements of the original points because a pair of
original points are used to define the interval, inside of which. three interpo-
lated points are placed. The interpolated points should not be considered valid
if the variable is_bad_point is set to true. For some arrangements of original
points, the interpolated value can be far from a smooth curve.

The criteria for setting is_bad_point is the following. The function is given
as an argument the circumference. If the contour were a circle, then for a given
distance between a pair of points we know the displacement of a midpoint of
a cord to reach the circumference. The interpolation function starts with the
midpoint and displaces it according to the local curvature, so this displacement
would be the distance between the midpoint of the cord and the circumference
if the segment of the curve was part of a circle. This is one way to estimate
how much displacement is realistic. But the contour is not a circle and another
estimate of a reasonable displacement is to consider it relative to the length of
the cord, for example, the displacement would be equal to half the cord if the
interpolated midpoint for a ninety degree angle. The criteria for a ”bad” point is
when the displacement is more than twice displacement due to a uniform circle
unless that critical distance is less than one quarter of a cord length. In the
latter case, the original definition of the critical distance is considered too severe
and the interpolated point is considered ”bad” if its displacement is greater than
a quarter of a cord length. A further constraint is that the critical distance can
never be greater than half the cord length. If an interpolated point is tagged as
bad, the magnitude of its displacement is reduced to the critical distance.

The actual implementation is slightly different. For example, where half the
cord length is used in the above algorithm, the actual value is 0.9 times half
the cord length. The details of the algorithm is based on what gave reasonable
smoothing for a certain group of contours. Rather than making more coherent or
more generalized this particular function, it is recommended that other similar
functions be written, with this one left as an example.

30

interpolate_lsf 2

The signature of the function is shown below.

void interpolate_lsf_Q(double *x_pnts, double *y_pnts,
int extent,
unsigned char *immobile,
double immobile_weight,
double *final_x, double *final_y,
double *xn, double *yn,
double *xp, double *yp,
int *is_bad_point,
double total_distance,
double frac,
double max_angle,
int ifdebug)

The function interpolate_Isf_2() interpolates a point that is already on the
curve, rather than interpolating points that are midway between the points at
(extent - 1) and extent as is the case for interpolate_1sf(). The number of
points in the curve segment is 2*extent + 1.

Impact on caller: Was

xneg = (1.0 - frac)*x_pnts[extent - 1] + frac*x_pnts[extent];
yneg = (1.0 - frac)*y_pnts[extent - 1] + frac*y_pnts[extent];

and now changed to

xneg = frac*x_pnts[extent - 1] + (1.0 - frac)*x_pnts[extent];
yneg = fracxy_pnts[extent - 1] + (1.0 - frac)*y_pnts[extent];
xpos = frac*x_pnts[extent + 1] + (1.0 - frac)*x_pnts[extent];
ypos = fracxy_pnts[extent + 1] + (1.0 - frac)*y_pnts[extent];

So now center is at index extent and also definition of frac has changed.
Number of points was extent*2 but now is (extent*2)+1 .

Must give array and variable

unsigned char *immobile

double immobile_weight value of two means, as if point existed twice

class LoopBase : public virtual XYZPntLoop

31

does not yet contain array
class XYZPntLoop

is pure abstract

How is cyclic loop different from patched loop ? How is remove_item imple-
mented in each derived class ?

$ grep -1 BasicArray *.hh *.C
basic_loop.hh

flat_point_array.hh case of BasicLoop
flat_point_array.C

point_array.hh case of BasicLoop point_array.C
patched_point_array.hh case of BasicLoop patched_point_array.C
longitude.hh longitude_list.hh longitude list.C

loop

patched loop.C class PatchedLoop : public BasicLoop(PatchedPointArray),
public virtual PatchedPntLoop

virtual functions of basic array base, and the generic mod: /// minimize
array size virtual void renew_basic_array() = 0; /// set array size virtual void
renew_basic_array(int size.in) = 0; /// get formal length virtual int length()
const; /// set formal length virtual void setLength(int length_in); //Q}

/**@name static methods */

//e{

/// different from mod because -1 maps to (length_in - 1)
inline static int generic_mod(int i, int length_in) {

/**Q@name virtual methods of BasicArrayBase */

//7e{

/// delete all elements of array
void renew_basic_array() {
setSize(1);
delete[] things;
things = new T[_size];
}

/// allocate array to size size_in

32

void renew_basic_array(int size_in) {
setSize(size_in);
delete[] things;
things = new T[_sizel;
}
/// get formal length
int length() const { return(BasicArrayBase::length()); }
/// set formal length, but no greater than size()
void setLength(int length_in) {
if (length_in > size()) {
resize(length_in);
}
BasicArrayBase: :setLength(length_in);
}
//@}

basic_array_base.C basic_array_base.hh void setSize(int size_in); //Q}

/**@name data members */

//e{

/// size of allocated array
int _size;

/// formal length of array
int _length;

//@}

public:

/**x@name usual methods */

//7e{

/// default constructor

BasicArrayBase();

/// constructor

BasicArrayBase(int size_in);

/// copy operator

BasicArrayBase(const BasicArrayBase& object_in);

/// assignment

BasicArrayBase& operator=(const BasicArrayBase& object_in);
/// virtual destructor

virtual “BasicArrayBase();

//@}

33

/**@name data member accesss */

//7e{

inline int size() const { return _size; }

//@}

/**x@name virtual functions */

/7e{

/// minimize array size

virtual void renew_basic_array() = 0;

/// set array size

virtual void renew_basic_array(int size_in) = 0;
/// get formal length

virtual int length() const;

/// set formal length

virtual void setLength(int length_in);

//@}

/**x@name static methods */

//7e{

/// different from mod because -1 maps to (length_in - 1)
inline static int generic_mod(int i, int length_in) {
int j;
if (length_in == 0) {
j =0;
}
else {
if (i >= length_inx2) {
j = i%length_in;
}
else if(i >= length_in) {
j =1 - length_in;
}
else if(i >= 0) {
=1
}
else {
j = (length_in - 1) - ((abs(i + 1))%length_in);
}
¥
return j;
}
//@}

34

basic_array.hh
flat_point_array.C
flat_point_array.hh
loop_array.C
loop_array.hh
patched_loop_array.C
patched_loop_array.hh
patched_point_array.C

patched_point_array.hh

point_array.C
point_array.hh
read_only_array.hh
basicloop.hh
compressible_loop.C
compressible_loop.hh
cyclic_loop.C
cyclic_loop.hh
flat_loop.C
flat_loop.hh

loop.C

loop.hh
loop_array.C
loop_array.hh
loop_base.C
loop_base.hh
loop_namespace.C
loop_namespace.hh
loop_point.hh
loop_soft_error.C
loop_soft_error.hh

patched_loop.C

35

patched_loop.hh
patched_loop_array.C
patched_loop_array.hh
xyz_pnt_loop.hh

4.3 class CyclicLoop

The class CyclicLoop is a BasicLoop with template parameter Patched-
PointArray . That is to say, each point of the loop can have a connection to
another loop.

function connect_pair

This function connects the closest points of two loops. The signature is the
following.

void CyclicLoop::connect_pair(PatchedLoop* loopl,
PatchedLoop* loop2,
RelaxMode relax_mode,
int ifdebug)

functions find_closest

int CyclicLoop::find_closest(int ibeg, int iend,
Triplet& p)

For points in the interval ibeg to iend of a CyclicLoop , this function finds
the point closest to the position p. The value of iend can be less than ibeg. In
any case, the search for the closest points is done from ibeg to ibeg + 1, ibeg
+ 2, etc. with the possibility of passing the last index and continuing from the
first index.

When the entire loop is to be considered for finding the closest loop point
to a given point in space, the virtual functions of LoopBase can be used.

int find_closest(double x, double y)
int find_closest(double x, double y, double z)

Considering all the distances between nearest neighbors, returns the distance
for with half the nearest-neighbor distances are larger and half are smaller. (In
two dimensions or three dimensions.)

36

class LoopBase
double LoopBase::median_gap_2d(XYZPntLoop* lb);
double LoopBase::median_gap_3d(XYZPntLoop* lb);

Repeats the following algorithm until no points are closer than gap_critical
or until the number of cycles is equal to the number of points. The algorithm
is that for each point on a loop the distance to another point is calculated for
eight points ahead of the given point. For all these comparisons the minimum
distance is found. Given the closest two points, which should be eliminated?
The distance between neighboring points is calculated for the pair before and
after each of the two closest points, that is, the new gaps are found if one or the
other point where eliminated. The point eliminated is the one whose absence
creates the smallest new gap.

class LoopBase

void LoopBase::remove_close_pnts_2d(XYZPntLoop* Ib, double gap_critical);

4.4 Basic constants and simple functions

Sorting A few classes, LoopBase, PatchedLoop and LongitudeList, need
sorting. The C functions

void integer_sortwithaux(int *1list,
datum *aux,
int list_size);
void sort_double(double *list,
int *aux,
int list_size);
void sort_dble(double *1list,
int list_size);

have been implemented. In addition, the classical general-purpose database
structure datum is defined.

Constants Constants are defined in the class Lup. In particular, the val-
ues of LINEAR_ARRAY CYCLIC_ARRAY OPEN_CURVE and
CLOSED_CURVE are defined. The file loop_namespace.hh, which has
these definitions, is constructed so as to be meaningful when included in
a C file, C++ file or even a Fortran file.

Points Three point classes are defined, Doublet, Triplet and PatchedPoint.
A PatchedPoint has a variable got to say whether a connection is being
used and a variable connection to indicate the index of a point on an
adjacent loop. A patched point has only one connection so a longitudinal
line along a patch (local manifold) of a tube is a singley-linked list.

37

LoopSoftError The class LoopSoftError has the static variables

static int _bounds_error;
static int _topology_error;
static int _read_only_error;

which function like the C errno. For example, an array bounds error does
not always cause the error to print but a test can be done for an error
condition by testing bounds_error(). An example of use is shown below.

PatchedLoop& PatchedTube: :operator[](int i) {
PatchedLoop& t = loop_array[il;
if (LoopSoftError: :bounds_error() != 0) {
if (write_count < 10) {
fprintf(stderr,"Error in array bound\n");
fprintf(stderr,"line %d file %s\n" LINE
write_count++;

}

FILE__);

) —— ——) =

¥

return t;

}

The variable write_count is a static variable of the class PatchedTube.
The first ten bounds errors for the class PatchedTube cause an error
message to be written, which is enough to tell the developer or user that
something is wrong. More lines written would have the disadvantage of
hiding (for example, by causing to scroll-away) other useful error messages.

Data For testing, tube data can be found in the following subdirectories:

smooth_166dx
smooth_286dx
smooth_286dx_bis
smooth_286sn
smooth_386dx
smooth_386sn
smooth_anastomosi

4.5 Classes to hold arrays

BasicArrayBase The class BasicArrayBase does not contain an array, it
just holds the size and length. The number of valid elements is length,
whereas, the size of the allocated space is size.

WithTopology The class WithTopology inherits from BasicArrayBase
and adds a topology, either linear or cyclic.

38

BasicArray The class BasicArray inherits from WithTopology. It contains
allocated space of a primitive array of type T.

FlatPoint Array This section will not describe arrays of loops, but only arrays
of points. A BasicArray of Doublet’s is a FlatPointArray.

PointArray A BasicArray of Triplet’s is a PointArray.

PatchedPointArray A BasicArray of PatchedPoint’s is a PatchedPoint Ar-
ray.

ReadOnlyArray The class ReadOnlyArray is an array whose writing-into
can be prevented. This class is not now used.

4.6 Interpolation and matrix inversion

Interpolation The following C functions are used for interpolation:

void interpolate_lsf(double *x_pnts,
double *y_pnts,
int extent,
double *final_x,
double *final_y,
double *xn, double *yn,
double *xp, double *yp,
int *is_bad_point,
double total_distance,
int num_pnts,
double frac,
int ifdebug)

void make_baseline(BaseLine *horz,
double x1, double yi,
double x2, double y2,
double *dist_half_cord)

void move_to_baseline(BaselLine *horz,
double *xpnts, double *ypnts,
int num_pnts)

void get_from_baseline(BaseLine *horz,
double *xpnts, double *ypnts,

int num_pnts)

The interpolation is a least squares fit to a third degree polynomial. For
a short line segment, a baseline is defined that is approximately parallel

39

to the line segment, then all the points are rotated so that the variable
to be interpolated is the height from the baseline. The number of points
is typically greater than the number of unknowns (the four coefficients of
the polynomial) so, in effect, the interpolation is a least squares fit.

Invert Matrix For interpolation, matrix inversion is needed. The inversion is
done using the Fortran-based Lapack library. The Lapack library functions
are called by the C function

int invert_matrix(double *matrix,
int size,
int ifdebug);

Linear Vector Mapping The linear interpolation between two loops requires
a definition of a mapping that contains both a vector and a matrix. This
mapping is defined in the structure linear_vector_mapping.

Four Points The functions interpolate_4 and do_interpol do interpolation for
just four points, but these functions have not been tested and are not now
used.

LimitRange The class LimitRange is used for the conversion between primi-
tive numerical types. The role is similar to a static cast. Since it operates
on one number at a time, the conversion is not efficient. Nonetheless, the
class may be useful for type conversion of fields between different steps of
processing while avoiding compiler warnings. Here are some examples of
the functions

static T limit_range(char s);
static T limit_range(unsigned int s);
static T limit_range(double s);

The primitive numerical types that can be used for the function parameter
or return value are char, signed char, unsigned char, short, unsigned short,
int, unsigned int, long, unsigned long, float, double and long double.

NumberTyped The class NumberTyped inherits from Number and im-
plements the virtual functions of Number. This class contains one pro-
tected data member: T _value. It implements all of the virtual functions
of Number, using LimitRange when numeric conversions are necessary.

40

Chapter 5

SMOOTHING

5.1 Package Smoothing

The package Smoothing contains algorithms for several techniques, including
smoothing a two-dimensional loop and extrapolating the ends of tubes at a
bifurcation.

Many of the classes in the package Loop are used in this package.

5.2 class Smoothing

The class Smoothing contains algorithms for smoothing a contour.

Smoothing Parameters

Parameters for the smoothing are data members of the class. These parame-
ters are given default values when the class is constructed (the function wvoid
init_variables()). The smoothing parameters and their associated set/get func-
tions are the following.

double _segment_fraction;
double segment_fraction() const;
void segment_fraction(double d);

// Before interpolation, the numsteps parameter for nokinks_2d.
int _nokinks_numsteps_before;
int nokinks_numsteps_before() const;

41

// Sets _nokinks_numsteps_before to a value between 0 and 64.
void nokinks_numsteps_before(int numsteps_in);

// Before interpolation, the tolerance parameter for nokinks_2d.

double _nokinks_tolerance_before;

double nokinks_tolerance_before() const;

// Sets _nokinks_tolerance_before to a value between 1.0 and
128.0.

void nokinks_tolerance_before(double tolerance_in);

// After interpolation, the numsteps parameter for nokinks_2d.
int _nokinks_numsteps_after;

int nokinks_numsteps_after() const;

// Sets _nokinks_numsteps_after to a value between O and 64.
void nokinks_numsteps_after (int numsteps_in);

// After interpolation, the tolerance parameter for nokinks_2d.

double _nokinks_tolerance_after;

double nokinks_tolerance_after() const;

// Sets _nokinks_tolerance_after to a value between 1.0 and
128.0.

void nokinks_tolerance_after(double tolerance_in);

double _gap_factor;
double gap_factor() const;
void gap_factor(double d);

int _goal_num_pnts;
int goal_num_pnts() const;
void goal_num_pnts(int goal_in);

double _fraction_averaged_curvature;
double fraction_averaged_curvature() const;
void fraction_averaged_curvature(double fraction_averaged_in);

double _frac_min_curvature;
double frac_min_curvature() const;
void frac_min_curvature(double frac_min_in);

double _frac_max_curvature;
double frac_max_curvature() const;
void frac_max_curvature(double frac_max_in);

42

The parameter _segment_fraction is the fraction of the total loop length that
is used in the smoothing done by the function segment_interpolate().

The paramter _gap_factor is a fraction that multiplies the average distance
to arrive at gap_critical that is used in the call to remove_close_pnts_2d().

gap_med = loop_inout->median_gap_2d();
gap_critical = gap_factor()*gap_med;
loop_inout->remove_close_pnts_2d(gap_critical) ;

The removal of close points is done in the function smooth_contour(). The
functions median_gap_2d() and remove_close_pnts_2d() are defined in the
class LoopBase .

The parameter _goal_num_pnts is used in smooth_contour() and arrange-
num_dens(). It is the final number of points in the contour.

The parameters _fraction_averaged_curvature, _frac_min_curvature and _frac-
_maz_curvature are used in the algorithm arrange num_dens().

The _fraction_averaged_curvature is the fraction of the loop used to deter-
mine the local curvature. The function arrange num_dens() creates a higher
density of points where the curvature is higher. The problem is that a curve
that zig-zags might have a high curvature locally but perhaps the short-range
zig-zag is to be eliminated.

The parameters _frac_min_curvature and _frac_maz_curvature are an indirect
way to control the number density in the function arrange_num_dens(). For
each point, a local curvature is defined. Then the local curvature values are
confined to a range between _frac_min_curvature and _frac_maz_curvature.

Smoothing::angle per_dist
The function signature is the following.
double angle_per_dist(double x1, double yi,
double x2, double y2,
double x3, double y3);

Used in the function arrange num_dens().

Smoothing::find_distance
The function signature is the following.

double find_distance(double x1, double y1,
double x2, double y2);

43

Smoothing::smooth_contour

The function signature is the following.

void smooth_contour (FlatLoop* loop_inout);

/%
For a loop defined in two dimensions, a FlatLoop,
the function smooth_contour makes the curvature more uniform.
The first step is
nokinks_2d(_nokinks_numsteps_before,

_nokinks_tolerance_before, ifdebug);

followed by
remove_close_pnts_2d(_gap_factor*median_gap_2d());

Then for each point, ipnt, there is the call
segment_interpolate(ipnt,
flat_loop,
seg_fraction*sum_distance_2d(),
sum_distance_2d(),
after_x, after_y,
bad_point_item,
xn_array_item, yn_array_item,
xp_array_item, yp_array_item,
0.16666, ifdebug);
The fraction 0.16666 creates points spaced 1/3 of
the original distance.

The final steps are
nokinks_2d(_nokinks_numsteps_after,
_nokinks_tolerance_after, ifdebug);
followed by
remove_close_pnts_2d(_gap_factor*median_gap_2d());

*/

Smoothing::arrange num_dens

The function signature is the following.

void arrange_num_dens(FlatLoop* loop_ptr,
int ifdebug);

44

Smoothing::standard_order

The function signature is the following.

void standard_order (FlatLoop* loop_ptr,
int ifdebug);

// Rotate curve so that it starts at smallest x.

num_pnts = loop.length();
smallest_x = loop.x(0);
index_smallest = 0;
for(i=0;i<num_pnts;i++) {
if (smallest_x > loop.x(i)) {
smallest_x = loop.x(i);
index_smallest = i;
}
}

// Shifts points so that point at first_point has index O.

void setFirstPoint(int first_point) {
loop.setFirstPoint (index_smallest) ;
if (total_twist > 0.0) {
j = index_smallest;
for(i=0;i<num_pnts;i++)
{
loop.setX(i) = xpnts[j];
loop.setY(i) = ypnts[j];

j++;
if(j >= num_pnts) {
j —= num_pnts;
}
}
}
else {
j = index_smallest;
for(i=0;i<num_pnts;i++) {
loop.setX(i) = xpnts[j];
loop.setY(i) = ypnts[j];
j==s
if(§j < 0) {
j += num_pnts;
}

45

// Reverse directions of rotation of points relative to indexing.
void setChirality(int chirality_in,
int ifdebug)

// Have points listed by counter-clockwize rotation.
loop.setChirality(l, ifdebug);

Smoothing::smooth_one_contour_01

The function signature is the following.

void smooth_one_contour_01(FlatLoop* loop_tmp,
int ifdebug);

/*
The actual smoothing can involve smoothing
more than once.
One procedure that seems to work well for
generating contours of 128 points is
implemented in smooth_one_contour_01.

*/

Smoothing::segment_interpolate

This static function has the following signature.

static void segment_interpolate(int ipnt,
XYZPntLoop* 1b,
double segment_distance,
double total_distance,
double& after_x,
double& after_y,
int& bad_point_item,
double& xn_array_item,
double& yn_array_item,
double& xp_array_item,
double& yp_array_item,
double frac,
int ifdebug) ;

46

5.3 Function find_mapping

The C language function find_mapping finds a linear mapping between two
contours. The mapping is specified by the structure LinVMap defined in the
package Loop in the file lin_v_map.h. The theory is described in comments in the
file find_mapping.h in the package Smoothing. The mapping LinVMap consists
of a center position, an average displacement vector, and a matrix that describes
the change of displacement (relative to the average displacement vector) as a
function of position (relative to the center position). The input to this function
is a set of two-dimensional vectors with defined on a plane, one displacement
vector for each point on the plane. Redefining the problem so that the plane
position is relative to the average point position and the displacement is relative
to the average displacement, the problem becomes one of linear algebra, that of
solving an overdetermined system of linear equations.

5.4 Program two_to_one

The program two_to_one uses many functions of the packages Loop and Smooth-
ing to interpolate a bifurcation. The program is highly specific, certain files

of contours are "hardwired” into the program. Moreover, the program writes

pixmap files to show what it has done. This program can be used as an example

for developing other programs.

The program reads the environmental variable LOOPHOME to find the
contours used for the specific cases treated by this program. You just need speci-
fiy the directory of the package Loop because the test cases (the subdirectories
smooth_166dx, smooth_386sn, etc.) are part of the Loop package.

The program takes the arguments -p directory and -b number, where number
is between 0 and 6. (Option -b signifies "base name index”.) The directory is
the location if the *.ppm output files. (Option -p signifies ”pictures”.)

For reading the contours, the set of C programs in the file Loop/rw_tubatura.c
are used. Most of the programs in Loop/rw_tubatura.c are general-purpose, but
there are a few specialized functions for testing. In particular, get_tube_filena-
mes() is specialized for the filename of the datasets in the package Loop. An-
other specialized function in Loop/rw_tubetura.c is read_tubatura02() which
assumes there is one major bifurcation and one of the branches can have a sec-
ond bifurcation. If a particular branch (tube) is empty, certain values in the C
structure TubeSegment must be forced to zero, since the language C does not
have default constructors. A sample code fragment for initializing the structure
TubeSegment is shown below.

// The structure TubeSegment is a C type, so it does
// not have a default constructor.

47

// The number of loops must be set to zero because
// most sample cases do not have a second split

// called bS and bD.

TubeSegment toob_1, toob_a, toob_b, toob_bS, toob_bD;
toob_1.count = 0; toob_1.loops = NULL;

toob_a.count = 0; toob_a.loops = NULL;

toob_b.count = 0; toob_b.loops = NULL;

toob_bS.count 0; toob_bS.loops = NULL;
toob_bD.count 0; toob_bD.loops = NULL;

The example above deals with five tubes simply because the (specialized
for testing) program read_tubatura02() returns a set of five tubes and the
debugging program check01() expects five tubes.

The C structures of type TubeSegment are converted into C++ structures
of type Tube, for example

Tube tubel_tmp(toob_1);

We see above that the conversion is done by using a constructor operator.
The program two_to_one() uses Tube objects such as Tube tubel so after
conversion the assignment operator is used, as shown below.

tubel = tubel_tmp;

The C structures such as TubeSegment toob_1 and Tube tubel are
defined within braces ”{}” so that they are temporary. Before exiting from the
braces, free_tube must be called because read_tubatura02() mallocs arrays
that would not be freed automatically when the structure TubeSegment goes
out of scope. Recall that TubeSegment is a C structure and hence does not have
a destructor. An example code fragment is shown below.

// read_tubatura02 mallocs arrays inside of the tubes which
// need to be freed before the tubes go out of scope
free_tube(&toob_1); free_tube(&toob_a); free_tube(&toob_b);
free_tube(&toob_bS); free_tube(&toob_bD);

At this point in the algorithm two_to_one() we have the C++ classes of
type Tube. By convention, for this particular group of test cases, the tubel is
the main tube in which the bifurcation begins after the last contour and tubea
& tubeb are branches in which the first loop after the bifurcation is at index
0. What we really need for this algorithm is a class PatchedLoop because it
contains links to points on a neighboring loop. The loops of the tube (of type
class Loop) can be accessed with the square bracket operator so the necessary
PatchedLoop object are instantiated with a PatchedLoop constructor then
assignment.

48

PatchedLoop loopil;
PatchedLoop loopl_tmp(tubel[k]);
loopl = loopl_tmp;

There are no links between loops initially, which is imposed with the follow-
ing lines of code

loopl.setAllGot(-1);
loopl.setAllConnection(-1);

The length of each loop is calculated and placed in double precision variables
dist1, dista, distb.

Now an assumption is made, that the pair of points furthest away from each
other on the main branch are furthest from the bifurcation and are in a segment
(arc) similar to the pair of branches that combine at the bifurcation. One of
these points on loopl1 is associated with the closes point of loopa and the other
is associated with the closest point on loopb. The loopl is then partitioned into
two pieces for which the ratio of the arc lengths is nearly equal to the ratio
of the perimeters of loopa and loopb. This partitioning is done ”step by step”
starting from the two extreme outside points. The overall idea is to associate a
part of loopl to loopa and to associate the rest of loopl to loopb.

The next step in the algorithm is involves complicated point indexing that
will not be explained. The end result are two points on loopl, called end2beg3
and end3beg2 which signify where the estimated projected loopa ends on loopl
and loopb begins (end2beg3) and where the estimated projected loopb ends
on loopl and loopa begins (end3beg2).

The first crude extrapolation of loopa to the position of loop1 is a Patched-
Loop called first_extrap_a which contains the piece of loopl between end3beg2
and end2beg3 plus a circular arc between end2beg3d and end3beg2. The analo-
gous description applies to the object first_extrap_a. The algorithm can be seen
in the actual code. A detail concerning the loop sizes need to be explained.
An error occurs if one tries to index beyond the ”length” of a PatchedLoop.
In addition, when copying the loop or generating a cyclic loop, only the first
"length” points are used. The number of points in loopl, called sizel, is con-
sidered to sufficient for first_extrap_a and first_extrap_b. Initially, the objects
first_extrap_a and first_extrap b are allocated space sizel then the ”length” is
set to sizel while they are being constructed, as shown below.

first_extrap_a = PatchedLoop(sizel);
first_extrap_b = PatchedLoop(sizel);
first_extrap_a.setLength(sizel);
first_extrap_b.setLength(sizel);

49

After they have been constructed, first_extrap_a and first_extrap_b must
have their lengths set (using setLength(actual_size)) to be equal to the ac-
tual number of points in the construction so that functions such as Cycli-
cLoop::connect_pair() will work correctly.

One sees in the program two_to_one() that first_extrap_a and first_extrap_b
are draw using the class PortablePixMap. After which, static functions from
the class CyclicLoop are used, as shown below.

CyclicLoop: :connect_pair(&loopa, &first_extrap_a,
CyclicLoop: :RELAX, ifdebug);
CyclicLoop: :check_connect_pair(&loopa, &first_extrap_a);

CyclicLoop: : connect_pair(&loopb, &first_extrap_b,
CyclicLoop: :RELAX, ifdebug);
CyclicLoop::check_connect_pair(&1oopb, &first_extrap_b);

Since loopa and first_extrap_a are type PatchedLoop, they have the data
members to indicate a point-by-point mapping between the two. That is, each
point has a data member got and connection. (Ditto for loopb and first_extrap_b.)
The mode of operation CyclicLoop::RELAX specified in the call of connect_pair()
tends to distribute the connections uniformly at the expense of having the con-
nections not being strictly nearest pairs of points.

The function find_offset() defines a set of points lup and a set of vectors
offset, one vector for each point. In the code fragment shown below, lup is
given the points of loopa and the vectors in offset are vectors from loopa to
first_extrap_a for the points connected by the function connect_pair.

PatchedLoop: :find_offset(&loopa,
&first_extrap_a,
&lup, &offset,
ifdebug) ;

find_mapping (&lup,
&offset,
&mapping) ;

// Subroutine free_loop frees the array inside of a closed loop.
free_loop(&lup); free_loop(&offset);

The function find_mapping() shown above is a C function and as a conse-
quence lup and offset are C structures of type ClosedLoop. Since they are C
structures, the data allocated within these structures needs to be freed explic-
itly with the function free_loop(). The function find_mapping() derives an

50

average displacement vector and a matrix transformation (scaling and rotation)
(both in mapping) that is a "best fit” to the set of offset vectors. (Ditto for
loopb and first_extrap_b.)

The next code fragment is shown for loopa and first_mapped_a and is also
done for loopb and first_mapped_b. Notice that as well as allocating space for
the PatchedLoop first_ mapped_a, the ”length” needs to be set in order to
tell apply_map() how many points on which it should operate. The function
argument loopa remains constant. The mapping mapping is applied to the
points of loopa to generate the points of first_mapped._a.

first_mapped_a = PatchedLoop(256) ;

first_mapped_a.setLength(256);

PatchedLoop: :apply_map(&loopa,
&first_mapped_a,
4mapping,
ifdebug) ;

To summarize, the first loop of each branch after the bifurcation is extrap-
olated towards the loop of the main branch before the bifurcation. The extrap-
olation is based on an approximate partitioning of the loop of the main branch
into two pieces. Each of the two pieces of the main branch has an arc added in
the gap where the loop was cut so that the extrapolation is based on a mapping
between closed loops.

The loops first_mapped_a and first_mapped_b should be intersecting loops,
that is, the union of the two should be similar to the loop of the main branch.
The next step in the algorithm (code not shown) is to identify the points of
first_mapped_a inside first_ mapped_b and vice versa. Also, an adjustment is
made in case the original loops do not all have the same sense of rotation. The
next step in the program two_to_one() is to draw the results of the operations
performed thus far.

The end result that is desired is to have extrapolated loops for branches A
and B which include (in one or the other) all of the points of the loop of the
main branch. The part of the extrapolated loop of branch A (the Patched-
Loop called first_mapped_a) this is not inside first_mapped_b will not use ex-
trapolated points but rather will use points of the main branch loop, whereas,
the extrapolated points will be used for points of first_mapped_a that are in-
side first_mapped_b. Now consider the main loop and the intersecting loops
first_mapped_a and first_.mapped_-b. Where first_mapped_a and first_-mapped_b
intersect (in two places) is not necessarily a point of either first_mapped_a or
first_mapped_b and moreover is not necessarily a point of the loop of the main
branch. Yet there should be a point on the loop of the main branch that is
very near the intersection of first_mapped_a and first_mapped_b. It is possible
to define a linear mapping on first_mapped_a and first_mapped_b such that they
intersect at common points at two places, moreover, point that are also on the

51

loop of the main branch. The program (code not shown) defines a few points
in remap_1 and remap_2 which define a mapping that assures the coincidence
of points as described above. The following mapping is then applied. (Ditto for
first_mapped_b.)

PatchedLoop: :find_offset (&remap_1,

&remap_2,
&lup, &offset,
ifdebug) ;
find_mapping (&lup,
&offset,
&mapping) ;

free_loop(&lup); free_loop(&offset);

PatchedLoop: :apply_map (&holder_a,
&first_mapped_a,
&mapping,
ifdebug) ;

As a final step, the number of points in each extrapolated loop is set to 128.

5.5 Portable Pixmap

Portable Pixmap is a type of Portable Anymap developed by Jef Poskanzer.

The class PortableAnyMap contains just height and width data. The
class Shift contains just center position and scale data. These classes are base
classes for the class PortablePixMap which draws contours in portable pixmap
format. One function, setBackground(), needs the hashing functions defined in
include/HASH/hash.h and compiled in lib/libhash.a.

The functions in this class are not the most general-purpose, but rather, the
functions were written to show the results of operations on contours. For exam-
ple, different contours can be indicated by using draw_cross(), draw_square(),
draw_diamond(), and draw_circle(). The class PortablePixMap is also
useful for drawing a two-dimensional color-encoded field using setRed(), set-
Green(), setBlue() and setColor(). All of the functions mentioned in this
paragraph have two versions. In one version, the position is given as a pair of
integers and in the other version the position is given as a pair of doubles. The
latter version uses the x and y shift values and scaling of the base class Shift.

The function setBackground() looks for the most-used pixel value and
changes only those locations to the new background color.

The function write_binary (picture_file) opens for writing and then closes
the file picture_file.ppm.

An example code fragment is shown below

52

#include "Smoothing/portable_anymap.hh"

PortablePixMap* A_ppm = new PortablePixMap(width, height) ;

x = (xmin + xmax)*0.5; // x center of contour
A_ppm->setCenterX(x);

y = (ymin + ymax)*0.5; // y center of contour
A_ppm->setCenterY(y) ;

scale = 1.0/(dmax - dmin); // Scale by inverse of contour size.
// Add space for border region.

scale -= (2.0xborder)/(sqrt(width*height)*(dmax - dmin));
A_ppm->setScale(scale);

// Note that black is indicated by color (1, 1, 1) instead

// of (0, 0, 0). The background is (0, 0, 0), which will be

// changed to (255, 255, 255) using B<setBackground()>.

for(i = 0; i < sizea; i++) {
A_ppm->draw_square(loopa.x(i), loopa.y(i), 1, 1, 1);

}

// ... other contours are drawn

A_ppm->setBackground (255, 255, 255);

// The name given to B<write_binary()> does not include the

// suffix .ppm, which is always appended.

A_ppm->write_binary(picture_file);

fprintf (stdout,"Writing picture file %s.ppm\n",
picture_file);

// Free space used for the pixmap.
delete A_ppm;

53

Chapter 6

FILTERING

6.1 Image Filter

The image filters are independent of the segmentation program. Any set of
filters must implement the virtual functions of BasicImgFilter , which are

virtual int filterDoIt(int w, int h,
const std::vector<float>% sigwin_slice,
std: :vector<float>& filtered_sigwin_slice);

virtual void open_parameter_window() ;

virtual void hide_parameter_window() ;

In addition, all filters can use the signal of the base class
void filter_changed();

The choice of which filters are active and the choices of the filter parameters
are done by using a GUI that is implemented by a particular filter set.

The filterDolt() function is called when the image changes or when the filter
parameters change. This function implements the filtering. Since filterDolt()
must be called by the segmentation program for a particular slice or set of slices,
the segmentation program needs to know when a filter parameter has changed,
hence the signal filter_changed().

The filters use the convention that the values in the input image

54

const std::vector<float>& sigwin_slice

are between 0.0 and 255.0. This is motivated by the fact that the filters
already written usually make this assumption. In particular, the maximum
value is important when using the inversion filter. Even though the range is
limited, information is not lost because the type is floating-point. The filters
can be used on the original image before it is discretized.

Two sets of filters have been constructed to test the package: files fil-
ter/img_filter01.hh and filter/img_filter01.hh, and files filter/img_filter02.hh and
filter/img_filter02.hh. The two classes ImgFilter01 and ImgFilter02 are nearly
identical.

There are two sets of filters in order to test the ability to change the filter sets
while the program is running. The class ImgFilter01 (or ImgFilter02) con-
tains the image filter parameters. In this example implementation, there is also
the class ImgFilter01Params (or ImgFilter02Params) which implements
the GUI for changing the parameters. (Despite the name, ImgFilter01Params
does not store the parameters, that is done by ImgFilter01.)

The files filter_window.hh and filter_window.hh provide an example driver
for image filters, FilterWindow.

The logic of providing more than one filter set is provided by the class Filter-
setManager in the files filter/filterset_manager.hh and filter /filterset_manager.C.
The possible filter sets cannot be dynamically loaded, but rather, all the pos-
sibilities are instantiated in the constructor of FiltersetManager. The class
FilterWindow, which displays the image and controls filtering, is an arbitrary
construction so the class FiltersetManager is not required to know anything
about the class (such as FilterWindow) that uses it. The public methods of
FiltersetManager are:

void create_filterset_popup(QWidget* parent);

int filterDoIt_manager(int w, int h,
const std::vector<float>% sigwin_slice,
std: :vector<float>& filtered_sigwin_slice);

and the public data members are:

QPopupMenu* filterset_popup;
std::vector<BasicImgFilter*> filterset_vec;

and the signals:

void no_filter_chosen(const QString& m);
void filterset_changed();

95

The function create_filterset_popup() needs to be given the widget parent
onto which the popup menu is placed. The class FiltersetManager cre-
ates the popup menu and keeps track of the id numbers. The function fil-
terDolt_manager() is a simple wrapper for BasicImgFilter::filterDolt() which
allows the FiltersetManager to decide which filterset to use. The signal
no_filter_chosen() is an error message and the signal filterset_changed() indi-
cates that the image should be filtered again because the filter set changed.

Though an ideal organization of C++ programs would have a functional
wrapper for the filter sets, for now, the complete set of filters is made public in
order for the class FilterWindow (or similar) to connect between its filtering
and the signal BasicImgFilter::filter_changed() of each filter set. The popup
menu for the filter set selection is public because the class FilterWindow (or
similar) needs to insert it into its menubar.

6.2 ContourGUI and CanvasContourGui

The class ContourGUI is an abstract class of virtual functions for a graphical
user interface for manipulating contours. Primarily, the functions concern the
mouse. What is done depends on the mouse event received and the state. The
state is defined in the implementation CanvasContourGui by the variable
ContourGUI::MouseMode _mouse-_mode. The value of _-mouse_mode is only set
by using the function CanvasContourGui::setMouseMode(ContourGUI::Mouse-
Mode mm). As well as assigning the state of the mouse interface, the function
defines the comment that is displayed in a text window for the purpose of
indicating to the user the significance of using the mouse.

The class CanvasContourGui has one constructor in which a pointer to
the class VisualSupport is set. The class VisualSupport is an abstract class
defined in the subdirectory contour. This class contains functions for the visu-
alization of the contour and the image; a wider range of functions than just the
mouse interface. In the original develop of this package, there were two imple-
mentations of VisualSupport, one for a Qt canvas and one for OpenGL (the
Qt interface to OpenGL). Due to the limited time available, the OpenGL imple-
mentation was dropped, whereas, the Qt canvas and the Qt image manipulation
routines were retained. Nonetheless, the effort to support two visualization tools
served to define the functions in VisualSupport as an abstraction of a visual-
ization support for the segmentation.

In practice, the visualization of the image and the contour is done with a
Qt canvas implemented by SliceCanvas . This class implements all of the
VisualSupport functions and contains a data member that is a pointer to
ContourGUI which is actually a CanvasContourGui. The VisualSupport
needed by the contructor of CanvasContourGui is this, the SliceCanvas
which contains the pointer to ContourGUI. The canvas implementation has a

56

helper class for the mouse interface, the class FigureEditor.

The FigureEditor uses the same instantiation of ContourGUI as the
SliceCanvas class.

By the way, the abstract class VisualSupport has the functions getMouse-
Mode and setMouseMode. The implementation in SliceCanvas is to call _contour-
_gui-getMouseMode and _contour_gui-setMouseMode where _contour_gui is an
instantiation of CanvasContourGui .

Some of the CanvasContourGui data members for which a explanation
may be useful are the following.

The mouse-contour interface needs to control the source of events with regard
to two functions void set_mouse_tracking(bool enable) and bool has_mouse_trac-
king() const. For the canvas interface, the source of mouse events is the Fig-
ureEditor. The class FigureEditor is derived from MouseEventSource
which is an abstract class defined in the file contour/mouse_event_source.hh
with only those two functions. The class CanvasContourGui has the variable
MouseEventSource* _mouse_event_source which actually points to an instantia-
tion of FigureEditor. The overall idea is that if a different GUI is used, such as
OpenGL, perhaps the necessary control of the source of events will be analogous
and therefore rather than implementation-specific calls, the function calls will
be made to the abstract class MouseEventSource.

The private logical variable bool _contour_op_finalized is for dealing with the
case in which the user starts a new operation without finishing the old operation,
which is rather easy to do. The user might be indicating that some points are to
be held fixed, the press the button that starts the implementation of dragging
points to new locations. For most operations, the second mouse button is used to
indicate that a particular type of operation is finished, whereas in this scenario
the user changed mode without pressing the second mouse button. If a new
operation begins and _contour_op_finalized is false, then some final steps are
done for the previous operation. In this regard, the background colors are of
particular relevance. As an option, the user can request that the background
display some fields that influence the active contour (the snake). Some of these
field depend on the actual point positions, such as a threshold image value
that is relative to local point positions. The calculation of these fields requires
several seconds, so is only done when switching modes of operation, for example,
when the second mouse button is pressed to indicate ”done”. Waiting twice for
updating of the background field colors can be frustating for the user, so it is
important that finalization be done once and only once when switching modes.

The variables int highlighted_index, prev_highlighted_index are used for high-
lighting points as the mouse moves from one point to another. The actual color
of a point depends on its state, for example, whether it has been declared fixed
(immobile). Being highlighted or not is orthogonal to being fixed or not. The
actual color of a point when being drawn is known by the point, so a point
needs to be informed as to whether it is should draw itself with the highlighted

57

color choice. With regard to the mouse position, by definition only one point
can be chosen at a given time and therefore only one point can be highlighted.
The actual algorithm is complicated because the highlighting depends on the
mouse_mode (the operation being performed), and moreover, the actual change
of color required that the contour be redrawn.

head2 Adding an evolution parameter
Files that need to be changed:
contour/evolve_params.hh
contour/evolve_params.C
contour/vis_evolve_params.hh
contour/vis_evolve_params.C
contour/simple_contour.hh

contour/simple_contour.C

double _tension;
double _viscosity;

contour/evolve_params.hh: has the parameters as data members.

contour/evolve_params.C: implements constructor, copy constructor and as-
signment operator.

contour/vis_evolve_params.hh: declares method void set_VAR(VAR_TYPE
VAR.in) and signal void signal_set_VAR/() where VAR is the name of the variable
which has type VAR _TYPE.

contour/vis_evolve_params.C: implements void set_VAR(VAR_TYPE VAR _in)
Also, handles setting current->_VAR in either void set VEP (int i, double value) or
void set VEP (int i, int value) and returning the value from VEPEntry get VEP (int
i) const

contour/simple_contour.hh: declares references to the variables in EvolvePa-
rams _evolve_params; Either double& _VAR; or int& _VAR; The constructor and
copy constructor defines the references -VAR(_evolve_params._VAR) Note that
the constructor, copy constructor and assignment operator of SimpleContour
set _vis_evolve_params._current to be the address of _evolve_params.

contour/simple_contour.C: in the function void init_vars() the initial value
of each VAR& is set, the minimum and maximum of the variable is set in
the data member VisEvolveParams _vis_evolve_params; The default value in
_vis_evolve_params._default is set to the initial value. Also, the name of the
variable as a QString is set in init_vars()

58

6.3 DICOM read

ImgSequence

The class ImgSequence reads a set of files that represent a DICOM image.
The name of any DICOM file needs to be given to the constructor ImgSe-
quence(const char* dicom_in). The last part of the file name should be a
number that the program strips off to get a prefix, then all files with the same
prefix plus a number are ordered into a list of files. A specific slice is selected us-
ing slice2image(int slice_number) where the first slice number is zero. After
the function call, the function usSlice() will return a reference of type

const std::vector<unsigned short>&

Only one slice is in memory at a given time, in order to minimize the memory
usage. The user can make copies and store all the slices, if for example, the
application requires thumbnail sketches of all the slices.

The actual reading of the DICOM files is done by functions defined in the
package DX_DICOM because that package has a mature version of a DICOM
reader. The DX _DICOM package uses the package CTN, but the functions of
ImgSequence do not use any CTN functions or CTN constants because the
DX_DICOM functions serve as wrappers to hide the details of CTN. However,
the header files and libraries for DX_DICOM, CTN, and DXIO are needed during
compilation. The package DXIO reads and writes IBM Data Explorer files for a
simple lattice. Even though Data Explorer is not used, there is an error during
linking because the library of DX_DICOM functions references functions in the
package DXIO.

59

Chapter 7

CONTOUR

7.1 CONTOUR: Image Filter

The image filters are independent of the segmentation program. Any set of
filters must implement the virtual functions of BasicImgFilter, which are

virtual int filterDoIt(int w, int h,
const std::vector<float>% sigwin_slice,
std::vector<float>& filtered_sigwin_slice);
virtual void open_parameter_window() ;

virtual void hide_parameter_window();

virtual void setMask(int w, int h,
const (BitArray& bit_array_in);

In addition, all filters can use the signal of the base class
void filter_changed(int id);

To simplify the many calls for emitting a signal, so that derived classes can
ignore the filter ID, there is defined the function

void emit_filter_changed();

which causes filter_changed(int id) to be emitted.

Moreover, the class BasiclmgFilter manages the filter identification num-
ber with the function

60

void setRunTimeID(int id);

All filters, including the base class BasicImgFilter

implement the copy constructor and assignment operator because the filters
are placed in a vector and may be copied during the push onto the vector.

The choice of which filterset is active and the choices of the filter parameters
are done by using a GUIL Each filterset implements its own GUI.

The filterDolt() function implements the filtering. External routines should
call this function (indirectly) by calling filterDolt_manager(). Since filterDolt()
must be called by the segmentation program for a particular slice or set of slices,
the segmentation program needs to know when a filter parameter has changed,
hence the signal filter_changed(int id).

While running the segmentation program, a user can change the filterset,
and as a consequence, a FiltersetManager is in the middle of the communi-
cation between the filtersets and the segmentation program. In particular, the
segmentation program calls FiltersetManager::filterDolt_manager() which
then calls filterDolt() for the filter that is active. With regard to communica-
tion in the other direction, a particular filter calls emit_filter_changed() which
then emits the signal filter_changed(int id), however, this signal is caught by
FiltersetManager and the segmentation part of the program should expect to
receive FiltersetManager::filter changed(). The FiltersetManager knows
which filterset is active whereas the segmentation part of the program sees the
same interface to the filter.

The filters use the convention that the values in the input image
const std::vector<float>& sigwin_slice

are between 0.0 and 255.0. This is motivated by the fact that the filters
already written usually make this assumption. In particular, the maximum
value is important when using the inversion filter. Even though the range is
limited, information is not lost because the type is floating-point. The filters
can be used on the original image before it is discretized. Moreover, in most

cases the filters will work correctly with an arbitrary range of values for the
field.

Two sets of filters have been constructed to test the package: files fil-
ter/img_filter01.hh and filter/img_filter01.hh, and files filter/img_filter02.hh and
filter /img_filter02.hh. The two classes ImgFilter01 and ImgFilter02 are nearly
identical. There are two sets of filters in order to test the ability to change the
filter sets while the program is running. The class ImgFilter01 (or ImgFil-
ter02) contains the image filter parameters. In this example implementation,
there is also the class ImgFilter01Params

61

(or ImgFilter02Params) which implements the GUI for changing the
parameters. (Despite the name, ImgFilter01Params does not store the pa-
rameters, that is done by ImgFilter01.)

There is a third filterset, class ImgFilter03, which is likely to be useful for
segmentation. This filterset provides the possibility of inverting the grayscale
(black become white, etc.); after which, there is the option of using a mask
the blacks-out a part of the image; there is a median filter; there are gaussian
smoothing filters with radii 3, 5, and 7; the penultimum filter is a gamma
correction; and the last filter is a histogram equalization with a tranfer function
that is a continuous range between the identity and full histogram equalization.

The mask that black-out a part of the image is set by setMask() of a given
filter, a function that is accessed by setMask_manager() of the FiltersetMan-
ager so that only the mask of the active filter is changed. The mask actually
specifies pixels that should not be masked and the ImgFilter03 has a slider
to select a radius beyond the specified pixels which should not be masked. The
logic of this procedure is that the pixels of the mask can be the contour points,
or the contour points plus some points to indicate the inside of the part selected
from the image. This could be useful in the first pass of segmentation in which
it is convenient to remove other features from the image. In particular, an rapid
approximate segmentation can be done that generates contours that simply give
an indication of the area of interest. The points of these contours can be given
to the filter and the user can select (using the GUI of the filter) a radius that
includes an image area slightly broader than the approximate contours. All of
the slices (the images) can then be written using the masking of the filter.

There are at least two advantages to doing segmentation using slices that
have first been masked. One advantage is that the dynamic range can be reduced
and a greater range of values can be given to the gray levels most relevant for
the segmentation. The actual segmentation is done with 8-bit data whereas
the original data could have an amplitude as large as 12 bits. As an example,
if an image includes bone whereas the area to be segmented is an artery, a
first pass that eliminates the bone can help to reduce the range of values to
those important for the artery so that in the second pass of segmentation the
important range does not suffer information loss when going from a DICOM file
to an 8-bit image or when going from a Data Explorer file of unsigned short to
8 bits. (A Data Explorer file can be of any primitive numerical type, the choice
of unsigned short for segmentation has been made because it is sufficient for all
medical images we expect to encounter.) A second advantage is realized when
viewing the dataset in three dimensions. The first pass of segmentation, even if
not precise, can clear away extraneous features that block the three-dimensional
inspection of the relevant part.

The files filter_window.hh and filter_window.hh provide an example driver
for image filters, FilterWindow.

62

The program logic of providing more than one filterset is demonstrated
by the class FiltersetManager in the files filter/filterset-manager.hh and fil-
ter/filterset_manager.C. The possible filter sets cannot be dynamically loaded,
but rather, all the possibilities are instantiated in the constructor of Filterset-
Manager. The class FilterWindow, which displays the image and controls
filtering, is an arbitrary construction in the sense that the class FiltersetMan-
ager is not required to know anything about the class that uses it. The public
methods of FiltersetManager are

void create_filterset_popup(QWidget* parent);
int filterDoIlt_manager(int w, int h,
const std::vector<float>4 sigwin_slice,
std::vector<float>& filtered_sigwin_slice);
int setMask_manager(int w, int h,
const (BitArray& bit_array_in);

and the public data members are

QPopupMenu* filterset_popup;
std::vector<BasicImgFilter*> filterset_vec;

and the signals

void no_filter_chosen(const QString& m);
void filterset_changed();

The function create_filterset_popup() needs to be given the widget parent
onto which the popup menu is placed. The class FiltersetManager cre-
ates the popup menu and keeps track of the id numbers. The function fil-
terDolt_manager() is a simple wrapper for BasicImgFilter::filierDolt() which
allows the FiltersetManager to decide which filterset to use. The signal
no_filter_chosen() is an error message and the signal filterset_changed() indi-
cates that the image should be filtered again because the filter set changed.

7.2 Mouse-Contour Interaction

Different graphical user interfaces will have different algorithms for changing the
contour when interacting with the mouse. For example, to zoom-in on a part of
an image using a QCanvas the original image is enlarged and as a consequence
the position of the mouse from a QMouseEvent is scaled proportionally. In
contrast, for an OpenGL pixmap there is a zoom function glPixelZoom() to
enlarge the display but the mouse coordinates from a QMouseEvent are based
on the original size.

63

ContourGUI

The class ContourGUI
is an abstract class of GUI functions directly related to the contour.

The though this class need not be restricted to mouse events, in practice the
mouse events provide the mouse-contour interaction.

One possible program organization would be to enable mouse events within
certain methods which, for example, create an initial contour or move a point
of the contour. Upon receiving the mouse event, the thread of control would
return to the specific algorithm for creating a contour or moving a point.

This implementation uses a different program organization. The primary
consideration for actual program organization is that for a given type of window,
there is a specific class which receives mouse events inside the window. The
methods of the specific class call methods of class ContourGUI.

For example, for a QCanvas mouse events are received by QCanvasView.
The actual implementation for a canvas uses the derived class FigureEditor
in which the functions

contentsMousePressEvent(),
contentsMouseMoveEvent() and
contentsMouseReleaseEvent()

call respectively

_contour_gui->mouse_press_event(),
_contour_gui->mouse_move_event() and
_contour_gui->mouse_release_event|()

where _contour_gui is a pointer of type ContourGUI.

As a second example, for OpenGL pixmap mouse events are received by
QGLWidget. The actual implementation for this type of window uses the
derived class MyGLDrawer in which the functions

MousePressEvent(),
MouseMoveEvent() and
MouseReleaseEvent()

call respectively
_contour_gui->mouse_press_event(),
_contour_gui->mouse_move_event() and

_contour_gui->mouse_release_event|()

64

where _contour_gui is a pointer of type ContourGUI .

The class ContourGUI defines an enumeration type MouseMode.
See the head2:enum MouseMode entry elsewhere in this document.
The class declares the virtual functions

virtual void mouse_move_event(QMouseEvent* e) = 0;

virtual void mouse_press_event(QMouseEvent* e) = 0;

virtual void mouse_release_event(QMouseEvent* e) = 0;

whose actual implementations depend on the window implementation.
The class also declares

virtual void setMouseMode(MouseMode mm) = 0;

virtual MouseMode getMouseMode() const = 0;

virtual QString getComment() const = 0;

virtual void init_operation() = 0;

The first method sets the mouse mode. The next two methods return the
current values of the mouse mode or the comment shown to the user concerning
the current mouse mode. The last method in the list does initialization for a
procedure based on the current mouse mode.

The sequence of calls for interacting with the contour forms a rather long
chain. The procedure of indicating some points to define an initial contour will
be used as an example. There may be a class that implements a panel of buttons
for initiating various types of interactions. The next step is simple, the class
that implements the panel needs to call a function that initiates the state of the
mouse interaction. By convention, that function is called runByHand() in a
class that derives from VisualSupport. The function runByHand() is not a
virtual function and therefore the class that contains the function’s class must
be explicit for the button’s callback. By convention, the function is placed in a
class that derives from VisualSupport because this is a fat class of the GUI.
(The actual classes are ContWind and SliceCanvas.)

An implementation of runByHand() is the following

void SliceCanvas::runByHand() {
setMouseMode (ContourGUI: :mm_addPoints) ;
_contour_gui->init_operation();

The call made to setMouseMode() happens to be a virtual function of
VisualSupport for convenience and has the simple implementation of

65

void SliceCanvas: :setMouseMode (ContourGUI: :MouseMode mm) {
_contour_gui->setMouseMode (mm) ;

X

Finally we have arrived at ContourGUI. The actual implementation of
ContourGUI::setMouseMode()

is shown below

void CanvasContourGui: :setMouseMode (ContourGUI: :MouseMode mm) A{
_mouse_mode = mm;
QString comment;
if (_mouse_mode == ContourGUI::mm_Ignore) {
QString s("");
comment = s;

}
// [...] other mouse modes
if (_mouse_mode == ContourGUI::mm_addPoints) {

QString s("M1 : add point, M2 : done");
comment = s;
}
_comment = comment;
_visual_support->GUI_use_comment (comment) ;

¥

The second operation invoked by runByHand () does any initialization that
may be required. An example of an implementation is shown below.

void CanvasContourGui::init_operation() {

if (_mouse_mode == ContourGUI::mm_Ignore) { }
// [...] other mouse modes
if (_mouse_mode == ContourGUI::mm_addPoints) {

_contours->refCurve() .clear();
}
}

The function refCurve() returns a reference to a workspace that will be
used to store the points that are added.

Note that the code segments shown for classes SliceCanvas and Can-
vasContourGui are for the canvas implementation and are the same for the
OpenGL implementation in the classes ContWind and GLContourGui.

Nothing more needs to be done until a mouse button is clicked over the
window that shows the image. Notice that we bounce back to a VisualSupport
class. But just for a moment to make the comment visible to the user.

66

Because CanvasContourGui and GLContourGui implement virtual func-
tions of ContourGUI, the number of functions are limited to reduce the editing
work needed when new contour operations are added. As possible, the graphical
user interface affects the contours using a class derived from class ContourGUI.
However, the fat GUI that inherits from VisualSupport has a pointer to the class
that holds the contours whereas the class derived from ContourGUI does not
have a pointer to the contours.

enum MouseMode

The mouse modes correspond to specific contour operations.

mm _Ignore

Ignore mouse events for the image window.

mm_initContours

Initialize contours.

mm_putSeed

Similar to initialize contours.

mm_passHere

Moves one point.

mm _fixHere

Selects one point that becomes fixed. It does not move despite forces from
the contour algorithm.

mm _releaseHere

Releases a point that was fixed.

mm_addPoints

Used for generating a contour from points specified by hand.

class CanvasContourGui : public ContourGUI {
public:
CanvasContourGui(VisualSupport* visual_support_in);
virtual function of ContourGUI
void mouse_move_event (QMouseEventx* e) ;
// virtual function of ContourGUI
void mouse_press_event (QMouseEvent* e);
// virtual function of ContourGUI
void mouse_release_event (QMouseEvent* e);
// virtual function of ContourGUI

67

void setMouseMode(ContourGUI: :MouseMode mm, QString comment) ;
// virtual function of ContourGUI
ContourGUI: :MouseMode getMouseMode() const;
// virtual function of ContourGUI

QString getComment () const;

private:

VisualSupport* _visual_support;
QCanvasItem* moving;

QPoint moving_start;

ContourGUI: :MouseMode _mouse_mode;

QString _comment;}

VisContours* getVisContours(); // needed or not?

};

class GLContourGui : public ContourGUI {
public:
GLContourGui(VisualSupport* visual_support_in);
// virtual function of ContourGUI
void mouse_move_event (QMouseEvent* e) ;
// virtual function of ContourGUI
void mouse_press_event (QMouseEvent* e);
// virtual function of ContourGUI
void mouse_release_event (QMouseEventx* e) ;
// virtual function of ContourGUI
void setMouseMode(ContourGUI: :MouseMode mm) ;
// virtual function of ContourGUI
ContourGUI: :MouseMode getMouseMode() const;
/// virtual function of ContourGUI
QString getComment () const;
// virtual function of ContourGUI
void init_operation();
private:
VisualSupport* _visual_support;
ContourGUI: :MouseMode _mouse_mode;
QString _comment;
QPoint moving_start;
int moving_index;

}

VisContours* getVisContours();

};

68

7.3 Introduction

Many public domain software packages use the GNU (Free Software Foundation,
Inc.) tools, procedures and conventions for the compilation and installation of
software. By following this convention, a new user knows the procedure for
software installation. For example, in the most simple case the user can type

./configure
make

make check
make install

to have software installed under the directory /usr/local, independently of
the computer architecture; as long as the architecture has been forseen by the
developer when preparing the configure shell script. In my own work, I often
use the command

./configure --prefix=destination_directory

where destination_directory is the directory under which the software will be
installed. For a very large number of public domain packages, I know that I can
control the installation directory by using the “—prefix” option.

In addition to the convenience for the user, the GNU tools such as autoconf
provide a convenient method for writing portable (multi-platform) software.

Test of C++

This document describes methods and tools for organizing multi-platform
software. Rather than describing a wide range of possibilities, this document
gives details concerning one specific procedure. By being specific, the recommen-
dations of this document can be used as guidelines for a software development
project. The recommendations go beyond the use of autoconf tools, for exam-
ple, there is a description of stow for handling the installation of many packages
under one hierarchy while retaining information about the package and version
of the files.

7.4 Overview

The following subsections give a broadbrush description of the topics covered in
this document.

69

ConfigTools

See the headl:Overview entry elsewhere in this document

In the initial years of CRS4, each architecture had an NFS mount to an
architecture-specific hierarchy called fusr/crs4. Later, there was added a single
mountpoint /u/crs/ with architecture-specific subdirectories.

Plain Old Documentation

The source of this document is in the POD format, defined by Larry Wall. This
format is used in the documentation of Perl modules. The format specifications
can be displayed with the command “man perlpod”. Conversion from POD for-
mat do Latex format is done with “pod2latex”. The original pod2latex program
has some errors, for example, the second-level header creates a “section” instead
of a “subsection”. As a consequence, a slightly modified version of pod2latex
was used to created this document.

The fundamental advantage of pod2latex is that it protects from Latex trans-
lation the symbols ‘4’ and ‘_’ (underline). These two symbols are used very often
in naming variables in shell scripts and Makefile files but for Latex these symbols
have meanings related to mathematical formulas. More generally, by using the
POD format a minimum of formatting symbols in the original text is sufficient
for obtaining a nicely formatted Postscript file; using Latex as an intermediate
and converting to Postscript with “dvips”.

Genoa Active Message MAchine (GAMMA)
(http://www.disi.unige.it /project/gamma/)

70

Bibliography

[1]

[2]

[3]

[4]

K. F. Lai, “Deformable Contours: Modeling, Extraction, Detection
and Classification,” Phd Thesis, FElectrical Engineering , University of
Wisconsin-Madison, 1994.

K. F. Lai & R. T. Chin, “On Regularization, Formulation and Initialization
of the Active Contour Models (Snakes),” Asian Conference on Computer
Vision, 1993, pp. 542-545.

K. F. Lai & R. T. Chin, “Deformable Contours: Modeling and Extraction,”
IEEE Int. Conf. on Comp. Vis. Patt. Recog., 1994, pp. 601-608.

K. F. Lai & R. T. Chin, “On Classifying Deformable Contours Using
the Generalized Active Contour Model,” Third Int. Conf. on Automation,
Robotics €& Comp. Vis., 1994, pp. 930-934.

D. H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary
Shapes,” Pattern Recognition, vol. 13, 1981, pp. 111-122.

A. A. Amini, T.E. Weymouth & R. C. Jain, “Using Dynamic Programming
for Solving Variational Problems in Vision,” IEEE Trans. Pat. Anal. Mach.
Intell., vol. PAMI-12, no. 9, 1990, pp. 855-867.

D. J. Williams & M. Shah, “A Fast Algorithm for ve Contours and Cur-
vature Estimation,” Computer Vision, Graphics, age Processing, vol. 55,
1992, pp. 14-26.

P. J. Burt & E. H. Adelson,“The Laplacian Pyramid a Compact Image
Code” IEEE Trans. on Commun., vol. COM-31, o. 4, 1983, pp. 532-540.

71

Appendix A

GSNAKE

A.1 About this manual

This manual is meant as a programmers’ reference to the GSNAKE API. It
covers all the classes and explains the use, arguments and return values of each
of the methods. All protected methods and members are not covered in the
manual.

Throughout the manual, all class names are in CAPITAL and typewriter
font, when the item being referred to is the object as an entity. When it is the
member or data structure of the object that is being referred, the name will be
in typewriter font.

At the end of the reference for each class, some example programs are pro-
vided. These are workable program segments for users to familiarize with the
workings and application of the API.

The manual is organised as follows:

e Chapter 1 explains the design of the APIL.
e Chapter 2 contains the references to each class and their methods.

e Chapter 3 covers the various utilities provided with the API.

A.2 How to Avoid Reading this Manual

The examples after the reference of each class, as well as the utilities pro-
grams, provide a rather rich collection of applications one can perform using
the GSNAKE API. One may start by looking at these programs, and treat this
manual as what it is : a reference manual.

72

A.3 Design of the GSNAKE API

The GSNAKE API is a set of fundamental codes, based on the Generalised
Active Contour Model [1], suitable for use in the area of feature extraction,
image detection and classification, and motion analysis.

The API consists of a set of objects built in C++. These are described in
the following section.

A.4 Class Design and Implementation

class IMAGE

IMAGE provides routines for manipulating and displaying image data. These
includes histogram conditioning, image correlation and image smoothing.

class EDGE

EDGE computes edge map of an image. It consists of two IMAGE objects that
marking the magnitude and direction of each edge point.

class PYRAMID
PYRAMID is built up of a series of EDGE and IMAGE objects in a pyramid form.
The higher level IMAGE is a reduced version of the lower image in that both

resolution and sample density are decreased. By computing and conditioning
edge map from each level of IMAGE, we obtain EDGE objects.

class MATRIX

MATRIX provides advanced routines for matrix addition, substraction, multipli-
cation, inversion and transpose. It is inherited with extra members and methods
from IMAGE class.

class SNAXEL

A SNAXEL is a point on a contour. It consists of methods for snaxel angle and
energy calculation.

73

class CONTOUR

CONTOUR is a linked list of SNAXEL originated at image origin or contour cen-
ter. It consists of shape matrix and internal energy term to represent shape
irregularities.

class GHOUGH

GHOUGH localizes CONTOUR of a particular shape from an IMAGE or EDGE by gen-
eralized Hough transform.

class GSNAKE

GSNAKE consists of PYRAMID for external energy calculation and CONTOUR for in-
ternal energy calculation. It localizes CONTOUR by generalized Hough transform,
minimizes energy by dynamic programming with stratified line search algorithm,
and regularizes parameters tradeoff by minmax criterion or local/global param-
eters selection strategy.

class MODEL
With sufficient image samples, MODEL trains a robust CONTOUR model with prior

knowledge of shape matrix and local regularization parameters. It is inherited
with extra members and methods from GSNAKE.

class CLASSIFY
CLASSIFY classifies various CONTOUR models and compute their corresponding

score from an image. Classifying methods include marginalization of the distri-
bution, MAP probability, match of deformable template and rigid template.

74

Appendix B

GSNAKE Class Library
Reference

B.1 IMAGE : The raw image object

IMAGE is a class for manipulating and displaying image data. Image data can
be stored, retrieved, copied, cut, and viewed for different purposes. In addition,
histogram processing, image correlation and Gaussian kernel generation are also
provided for image enhancement and smoothing purpose. An IMAGE object has
the following structure :

CLASS IMAGE {
protected :
float *data;
int row, col;

public :
XIMAGE *ximg;

Image data is built up of a matrix of size row x col, which can be generated
as an X window image.

B.1.1 IMAGE Constructor
Synopsis

IMAGE()

75

Description

The constructor initializes an image data of matrix size 0 x 0, and sets the X
window image pointer to NULL.

B.1.2 IMAGE Destructor
Synopsis

“IMAGE(Q)

Description

The destructor frees the memory allocated to the image data and the X window
image.

B.1.3 Resetting an IMAGE
Synopsis

reset ()

Description

reset allows the reuse of an IMAGE object. The memory allocated previously is
freed and the image data of matrix size 0 x 0 is initialized.

B.1.4 Initializing image matrix
Synopsis

int init(int _row, int _col);

Arguments

_row The number of rows in an image.
_col The number of columns in an image.

76

Returns

NOERROR Memory allocation is successful.
MEMORYERROR Otherwise.

Description

init allocates memory of type float and size _row x _col to image data.

B.1.5 Initializing Gaussian template
Synopsis

void initAsGauss()

Description

initAsGauss initializes the image data into a 3 x 3 Gaussian kernel which can
be used for image smoothing. A larger Gaussian kernel can be obtained by
correlating the template with itself. The content of kernel is as below :

0.049997 | 0.122466 | 0.049997
0.122466 | 0.299975 | 0.122466
0.049997 | 0.122466 | 0.049997

Table B.1: Gaussian generating kernel

B.1.6 Putting data into image matrix
Synopsis

void put(int m, int n, float val)

Arguments
m Row coordinate.
n Column coordinate.

val Floating point data

7

Description
put stores the floating point data into location (m,n) of the image matrix. The

user should ensure that the row and column coordinates are within the valid
range.

B.1.7 Getting data from image matrix
Synopsis

float get(int m, int n)

Arguments

m Row coordinate.
n Column coordinate.

Description

get returns the floating point data at location (m,n) of the image data. The
validity of the row and column coordinates are not checked.

B.1.8 Getting IMAGE row and col
Synopsis

int getRow()
int getCol()

Returns

Row or column size of the image data.

Description

get returns the row and column size of the image matrix.

78

B.1.9 Printing image data
Synopsis

void print()

Description

print displays onto the screen all the values of the image matrix.

B.1.10 Displaying image
Synopsis

void show(unsigned char blowup = 1, int num,
int h_offset = 0, int v_offset)

Arguments
blowup Image magnification factor.
num The number of times the length of the window to be increased.

h offset Horizontal offset of the image against the window origin.
v_offset Vertical offset of the image against the window origin.

Description

show displays the image data on an X window. When h_offset and v_offset
are not specified or set to 0, an X window of the image size will be created.
Otherwise, no window will be generated and the image will be shown on an
existing window. The parameter num allows the user to create a larger window
so that more than one image can be displayed on the same window. For instance,
a second image can be shown next to the original image by calling the method
show with num = 1 and h_offset = column of the original image.

B.1.11 Reading image data from file
Synopsis

int read(char *filename)

79

Arguments

filename Image file name.

Returns

NOERROR Successful read operation.
MEMORYERROR Memory allocation failure.
FILEIOERROR File I/O error.

Description

By using the appropriate filter, read can access the file of type SUN raster (_ras)
or binary (_bin). Memory allocation is done automatically. However, reading
of incorrect file format will cause memory allocation error. For a SUN raster
colour image file, the image will probably need to be conditioned before it can
be viewed clearly.

B.1.12 Writing image data to file
Synopsis

int write(char *filename,int filetype = _ras)

Arguments

filename Image file name.
filetype File type, either _bin or _ras.

Returns

NOERROR Write is successful.
MEMORYERROR Unable to create write buffers in memory.
FILEIOERROR File interface error.

Description

write converts the floating point image data to unsigned characters and linearly
mapped them to the full range of 0 to 255 before they are written to the file
specified. If the file is of SUN raster format, the raster file header, consisting of
8 bytes of integers, will be written as below :

80

ras_magic = 0x59a66a95 (Magic number of sun raster file)

ras_width = column size (Image column)

ras_height = row size (Image row)

ras_depth =8 (Depth of colour plane)
ras_length = row * col (Size in bytes of image)
ras_type =1 (01d or new format raster file)
ras_maptype = 0 (Colour Map type)
ras_maplength= 0 (Colour Map length)

B.1.13 Histogram conditioning of image
Synopsis

void condition(double low_pct=0.9, double high_pct=0.95,
double low_val=0.2, double high val=0.9,
double imm_pow=1.0)

Arguments

low_pct, high pct Percentage range which the image pixels are to be mapped from.
low_val, high val Intensity range over which the pixels are to be mapped to.
imm pow Exponential power used by the transformation function.

Description

condition performs image conditioning based on the histogram specification of
an image. The transformation function is as following :

Crlow_val .
low_pct ,Ck < low_val

(high_val — low_val)(—Sk—tow=pel__yimm_pow 4 |oy) pal

Tk = high_pct—low_pct
lowwal < C < high_val
(1- high_val)(%)imm-pow + high_val ; Otherwise
(B.1)

where C} is the culmulative distribution function of histogram. Notice that
histogram equalization can be achieved by setting low_pct = 0, high pct =1,
low.val =0, high val =1 and imm pow = 1.

B.1.14 Image correlation
Synopsis

IMAGE *correlate (IMAGE *InputImg, int RowStep, int ColStep,
char verbose=0)

81

Arguments
*InputImg Pointer to the correlating image template.

RowStep, ColStep Pixel spacing where the correlating template will be
shifted each step.

Returns

Pointer to a new correlated image. Returns NULL if memory allocation failed.

Description
correlate performs pixel-to-pixel correlation by calculating the inner product

between the image template and data. The template will be shifted horizontally
and vertically by ColStep and Rowstep each time.

B.1.15 X window image generation
Synopsis

void generateX(unsigned char blowup=1)

Arguments

blowup Image magnification factor.

Description

generateX creates an X image without displaying it on the screen.

B.1.16 Cutting an image segment
Synopsis

IMAGE *IMAGE::cut(int sx, int sy, int height, int length)

Arguments
sx, sy Top left corner of the new copied image.

height Height of the new copied image.
length Length of the new copied image.

82

Returns

Pointer to a new copied image. Returns NULL if memory allocation fails.

Description
cut allows an image segment to be cut out from the image data. If the di-

mensions given are larger than the original image, cut will select the maximun
possible dimension which originated at (sx, sy).

B.1.17 Copying an image
Synopsis

IMAGE *IMAGE: :copy()

Returns

Pointer to a new copied IMAGE object. Returns NULL if memory allocation
fails.

Description

copy duplicates the IMAGE object.

B.1.18 Filling of an area of image
Synopsis

int fill(float val, int sx=0, int sy=0, int length=0, int height=0)

Arguments

val Pixel value.

sx, sy Top left corner of the filled image segment.
height Height of the filled image segment.

length Length of the filled image segment.

83

Returns

NOERROR Segment filled successfully.
PARAMERROR Illegal parameter values used.

Description

£i11 initializes an image area to the given pixel value.

B.1.19 Example : Reading, writing and correlation of im-
ages

This program performs correlation between the input image and template. The
correlated image will be displayed on an X window and written to an output
file.

void testmain(char *imgfile, /* input image file */
char *tmpfile, /* image template */
char *outfile, /* output image file */
int mag) /* magnification factor */

IMAGE testl,test2;
IMAGE *test3;

/* Read test images */
if (testl.read(imgfile)) exit(-1);

printf ("Showing test image : %s",imgfile);
test1l.show(mag) ;

/* If user did not specify template image, use a gaussian
template */
if (tmpfile) {
if(test2.read(tmpfile)) exit(-1);
}
else
test2.initAsGauss();

test2.show(mag) ;

printf ("\nCorrelating image..");
test3=testl.correlate(&test2,2,2,1);

84

/* Show all three images horizontally */
/* Allocate window space for three images */
testl.show(mag,3,0,0);

/* Show images with offsets */
test2.show(mag,1,testl.getCol());
test3->show(mag,1,test2.getCol()+testl.getCol());
printf ("\nPress enter to continue ");

getchar() ;

/* write result to file */

if (outfile)
test3->write(outfile) ;

else
test3->write("out.bin");

printf ("End of test.");
xwin_close();

First, an input image will be read. If there is no template image, initAsGauss
will create a 3 by 3 Gausian kernal. The resulting image, test3, is returned by
correlate and displayed together with the input image and template by show.

B.1.20 Example : Histogram specification of an image

void testmain(char *imgfile, /* input image file */
int blowup, /* magnification factor */
float 1lp , float hp, /* percentage range */
float lv, float hv, /* intensity range */
float ep) /* exponential power */

IMAGE myimage;

if (!(myimage.read(imgfile))) {

printf ("Displaying image \n\n");

printf ("Histogram Specification parameters :\n");

printf ("\n Low Percent:)f High Percent:%f",1lp,hp);
printf ("\n Low Value :%f High Value :%f",lv,hv);
printf ("\n Exponent :f Magnification:%d",ep,blowup) ;

myimage.show(blowup,2) ;
myimage.condition(lp,hp,lv,hv,ep);
printf ("Displaying conditioned image ... Press enter to continue\n");

85

myimage.show(blowup,1,myimage.getCol()*blowup) ;
getchar();
xwin_close();

Histogram specification is done by calling condition. With appropriate
input parameters, it can either perform noise reduction or image enhancement.
In this program, the conditioned and input image will be displayed side by side
on an X window.

B.1.21 Example : Cutting and copying of image segments

void testmain(char *imgfile, /* input image file */
char *outfile, /* output image file */
int mag) /* magnification factor */

IMAGE testi;
IMAGE *test2,*test3;

int sx, sy, length, height;

/* Read image file */
if (testl.read(imgfile)) exit(-1);

printf ("Showing testl : %s",imgfile);
testl.show(mag) ;

/* Using X windows to select an image segment */
xwin_SelRegion(&sx,&sy,&length,&height) ;
test2 = testl.cut(sx/mag ,sy/mag ,length/mag, height/mag);

/* Copy imagex/
test3 = test2->copy();

/* Show images in line */

printf ("\nShowing cut image and copied image ");
test2->show(mag,?2) ;
test3->show(mag,1,test2->getCol());

printf ("\nPress enter to continue...");
getchar() ;

if (outfile) {

printf ("\nWriting to file %s",outfile);
test3->write(outfile);

86

}

printf ("End of test..");
xwin_close();

This program uses X window interface, xwin SelRegion, to select an im-
age segment and then cut it. This segment is finally copied to another image
segment.

B.2 EDGE : Edge Gradient

EDGE is a class for operating image intensity to produce an edge map marking the
location, strength and direction of edge points. The intensity gradient vectors
are computed by fitting planes in 2x2 windows using the least squares method.
For example, for a 2x2 image window as shown in Table 1.2, we have :

Jin | fi2
for | foo

Table B.2: 2 x 2 image window.

dy = %{(le + fa2) — (f11 + f12)} (B.2)
dy = %{(flz + f22) — (fi1 + fo1)} (B.3)

Thus the magnitude of intensity gradient at location fi; is given by (d;c2 + dy2) %,

. . . —1d
while the angle is given by tan™"7%.

EDGE has the following defination :

CLASS EDGE {

protected :
IMAGE #*Mag; /* magnitude */
IMAGE *Ang; /* angle */

EDGE object stores magnitude and direction of the edge gradient in the form
of two images. This make them easy to experiment with various functions
provided by IMAGE class.

87

B.2.1 EDGE constructor
Synopsis

EDGE ()

Description

The constructor initializes the edge magnitude and angle image pointers to
NULL.

B.2.2 EDGE destructor
Synopsis

~EDGE ()

Description

The destructor frees memory allocated to the edge magnitude and angle image
pointers.

B.2.3 Resetting an EDGE object
Synopsis

void reset()

Description

reset allows the reuse of EDGE object. It frees memory allocated and set the
edge magnitude and angle image pointers to NULL.

B.2.4 Retrieving magnitude and angle of an edge point
Synopsis

float getMag(int m, int n)
float getAng(int m, int n)

88

Arguments

m, n Row and column coordinates of interest.

Returns

Edge magnitude or angle at location (m, n) of the edge matrix.

Description

These methods allow accessing of the edge data. Attempts to get data from
invalid coordinate will result in garbage data.

B.2.5 Storing magnitude and angle of an edge point
Synopsis

void putMag(int m, int n, float val)
void putAng(int m, int n, float val)

Arguments

m, n Row and Column coordinates of interest.
val Data to be stored in location (m, n).

Description

These methods store data in location (m, n) of edge magnitude or angle.

B.2.6 Displaying edge map
Synopsis

void show (unsigned char magnify = 1, int h_offset=0,
int v_offset=0)

Arguments
magnify Magnification factor of the displayed image.

h offset Horizontal offset of the image against the window origin.
v_offset Vertical offset of the image against the window origin.

89

Description

show generates and displays an X image for both the edge magnitude and angle
images. show will raise an X window for the display if the horizontal and
vertical offsets are both 0. Otherwise, it will draw the specified X image without
generating an X window. In this case, he user will have to ensure that an X
window is up before displaying the image.

B.2.7 Calculating the edge map
Synopsis

int compute(IMAGE *img, int verbose=1, double low_pct, double
high_pct, double low_val, double high_val, double

imm_pow)
Arguments
*img Input image in which the edge is to
be computed.
verbose Verbose Flag. On = 1 and off = 0.

low.pct, highpct Percentage range which the image pixels are to be mapped from.
low.val, high val Intensity range over which the pixels are
to be mapped to.

imm pow Exponential power of the mapping function.
Returns
NOERROR No error.

MEMORYERROR Memory allocation error.

Description

compute generates the edge gradient magnitude and angle images by least square
estimation. To increase robustness, we perform image conditioning for edge
magnitude. The parameters (high_pct = 0.95, low_pct = 0.9, highwal = 0.9,
low_val = 0.2) were found empirically to produce good conditioning image.

90

B.2.8 Getting row and column of EDGE
Synopsis

int getRow(int MagData=1)
int getCol(int MagData=1)

Arguments

MagData Indicates the choice of either magnitude (1) or angle (0) information.

Returns

Row and column size of the magnitude or angle images.

Description

These methods provide a means of getting the row and column information.

B.2.9 Example : Edge computation

void testmain(char *imgfile, /* image file */
int mag) /* magnification factor */

{

IMAGE myimage;
EDGE myedge;

if (imgfile) myimage.read(imgfile);
else {
/* Create a sample image of 3 rows of different intensities x/

int i,j,row,col;

row = 90;
col 90;

printf ("\nCreating demo image...\n");
myimage.init (row,col);

for (i=0;i<row;i++)
for(j=0;j<col;j++)

91

myimage.put(i,j,20);

for (i=20;1<70;i++)
for(j=20;3j<70;j++)
myimage.put(i,j,70);

for (i=30;i<60;i++)

for(j=30;3j<60;j++)
myimage.put(i,j,150);
}

myimage .show(mag) ;
printf ("\nShowing image. Press enter to see edge .");
getchar();

/* Computing and showing edge */

/* Default parameters are used. Verbose mode */
myedge . compute (&myimage, 1);

myedge . show(mag) ;

printf ("\nPress enter to continue.");
getchar();

printf ("End of test.\n");

This program creates IMAGE and EDGE classes. If no image file is specified, a
demo image will be generated. By calling compute and show, the edge gradient
is calculated from the input or sampple image and then displayed on an X
window.

B.3 PYRAMID : Pyramid of Images

PYRAMID is built up of a series of edge map and Gaussian images, which are
generated from the raw image, in the form of EDGE and IMAGE objects.
Construction of Gaussian pyramid images [7] is done by image correlation with
Gaussian generating kernel. In this case, the higher level correlates image is
a reduced version of the lower level image in that both resolution and sample
density are decreased. For instance, a Gaussian image at level 1, g;, can be
expressed as :

a(i,i)= > Y w(m,n)g 1(2i+m,2j+n) (B.4)

m=—1n=-1

where w(m, n) is a 3 x 3 Gaussian generating kernel. An PYRAMID object are
defined as below :

92

class PYRAMID {
protected :
short numlLevel ; /* number of level */
EDGE *xedgemap ; /* edge map at each level */

IMAGE *x*gaussImg ; /* gaussian smoothed image */

public :
IMAGE *rawImg; /* raw image */

};

B.3.1 PYRAMID Constructor
Synopsis

PYRAMID()

Description

The constructor initializes the edge map, Gaussian pyramid and raw images to
NULL, as well as sets the pyramid to level 0.

B.3.2 PYRAMID Destructor
Synopsis

“PYRAMID()

Description

The destructor frees the memory allocated to edge map, Gaussian pyramid and
raw images.

B.3.3 Resetting PYRAMID object
Synopsis
reset()

reset allows the reuse of an PYRAMID object. It frees the memory allocated to
the edge map and Gaussian images for each level of the pyramid.

93

B.3.4 Generating pyramid images

Synopsis

generate(short level, int verbose=0,double low_pct=0.9,
double high_pct=0.95, double low_val=0.2,
double high_val=0.9, double imm_pow=1.0,

EextTYPE =

Arguments

level

verbose

low_pct, high pct
low_val, high.val

_EDGE)

The number of Gaussian pyramid levels to be generated.

An option to enable verbose operation mode.

Percentage range which the image pixels are to be mapped from.
Intensity range over which the pixels are to be mapped to.

imm_pow Exponential power for the mapping function.
EextTYPE Type of external energy, includes intensity (INTENSITY), edge
magnitude only ((EDGEMAG) and edge map (_(EDGE) image energy.
Returns
NOERROR Successful pyramid generation.

MEMORYERROR | Memory allocation failure.

Description

generate creates a pyramid of Gaussian images by correlating the raw image
with a Gaussian kernel, and computes edge gradient based on the EextTYPE
specified. Edge direction map will not be generated if _EDGE is not used. To
account for robustness, we use image conditioning, condition, for the edge
magnitude. The parameters (high_pct = 0.95, low_pct = 0.9, high_val = 0.9,
low_val = 0.2) were found empirically to produce a good conditioning image.

B.3.5 Accessing edge map

Synopsis

EDGE *getEdge (short level_id)

Arguments

level id | Pyramid level of interest.

94

Returns

Pointer to an edge image of level specified. Returns NULL if the level specified
is invalid.

Description

getEdge allows accessing of an edge image of level specified, in which the level
must be within the range of 0 to the highest possible pyramid level availble.

B.3.6 Accessing Gaussian image
Synopsis

IMAGE *getGauss(short level_id)

Arguments

level id | Pyramid level of interest.

Returns

Pointer to a Gaussian image of level specified. Returns NULL if the level specified
is invalid.

Description

getGauss allows accessing of a Gaussian image of level specified, in which the
level must be within the range of 0 to the highest possible pyramid level availble.

B.3.7 Getting pyramid level
Synopsis

short getLevel(void)

Returns

Number of levels of Gaussian pyramid. The highest level is given as level-1,
since the lowest level is 0.

95

B.3.8 Print Gaussian pyramid data
Synopsis

void print(int level)

Arguments

level | Pyramid level of interest.

Description

print displays onto the screen all the data of an edge image of level specified.

B.3.9 Displaying the pyramid of images
Synopsis

void show(unsigned magnify,int level=1)

Arguments

magnify | Image magnification factor.
level Levels of the Gaussian pyramid required for display.

Description

show displays pyramid of images, include edge and Gaussian images, from the
lowest level to the level specified.

B.3.10 Duplicating a pyramid
Synopsis

duplicate(PYRAMID *pyramid)

Arguments

*pyramid | Pointer to a source pyramid.

96

Returns

NOERROR Successful duplication.
MEMORYERROR | Memory allocation failure.

Description

duplicate copies the source pyramid into PYRAMID itself.

B.3.11 Putting root image into PYRAMID
Synopsis

int putRawImg(char *filename)
void putRawImg(IMAGE *img)

Arguments

*filename | Souce image filename.

*img Pointer to a source IMAGE object.
Returns
NOERROR Successful read operation.

MEMORYERROR | Memory allocation failure.
FILEIOERROR | Unable to read from file.

Description
putRawImg reads or copies the source image as its raw image. If a raw image

has already existed, putRawImage will destroy the current one and copies the
source image as the new raw image.

B.3.12 Example:Building of pyramid from image

This program generates pyramid of images from an image file and shows them
on an X window.

void testmain(char *imgfile, /* image file */
int level, /* Gaussian pyramid level */
int mag) /* magnification factor */

97

PYRAMID mypyramid;
if (mypyramid.putRawImg(imgfile)) {

printf ("Unable to read image file.");

exit(-1);
}
else {
/* generating pyramid to default conditioning */
/* parameters in verbose mode */
mypyramid.generate(level, 1);
mypyramid.show(mag, level);
getchar();
xwin_close();
}

generate uses default histogram conditioning paramters and verbose ’on’
mode to compute and generate edge map and Gaussian images at each level of
pyramid, while show displays them in a hierarchical manner.

B.3.13 Example:Accessing a particular level image

void testmain(char *imgfile, /* image file */

int pymlevel, /* pyramid levels */
int i_level, /* level of interest */
int mag) /* maginification factor */
{
IMAGE myimagel,
xmyimage2; / IMAGE object */
PYRAMID mypyramid; /* PYRAMID object */
EDGE *myedge; /* EDGE object */

if (myimagel.read(imgfile)) {
printf ("\nUnable to get image.\n");
exit(-1);

}

/* Placing image into pyramid object by using another
image */
mypyramid.putRawImg(&myimagel);

98

/* generating pyramid by default conditioning
parameters */
mypyramid.generate(pymlevel, 1);

if (ti_level)
i_level = mypyramid.getLevel() - 1;

/* get edge map and Guassian images of interest */
myimage2 = mypyramid.getGauss(i_level);
myedge = mypyramid.getEdge(i_level);

/* Showing gaussian image at level */
if (myimage2 && myedge) {

printf ("\n Showing level d Gaussian image",
i_level);

myimage2->show(mag*i_level);

printf ("\nPress enter to continue .");

getchar();

printf ("\nShowing level %d edge map", i_level);
myedge->show(mag*i_level);

printf ("\nPress enter to continue.");
getchar();

else
printf ("\nLevel specified is invalid.");

printf ("\nEnd of test\n");

This example demonstrates how to access and display an edge map and
Gaussian images of level of interest by getGauss and getEdge.

B.4 MATRIX : Simple matrix calculation

Matrix class provides advanced matrix manipulation routines which include
addition, substraction, multiplication, tranpose and inversion for an IMAGE
object. Matrix is inherited with extra methods from IMAGE class.

class MATRIX : public IMAGE {
/* no extra variable */

};

99

B.4.1 Print matrix data
Synopsis

void MATRIX::dump(char *header = NULL)

Arguments

header | Title of matrix

Description

print display on the screen all the value of matrix data, as well as the title of
matrix if it is specified.

B.4.2 Initializing matrix
Synopsis

MATRIX: :init(short _row, short _col, char identity = 0)

Arguments
_row, _col | The size of matrix, _row x _col.

identity A flag (1:on and 0:0ff) to indicate whether to create an identity
matrix.

Returns

NOERROR Successful memory allocation.
MEMORYERROR | Otherwise.

Description

init allocates memory of type float and size _row x _col to a matrix. If identity
is on, an identity matrix will be created.

100

B.4.3 Matrix transpose
Synopsis

MATRIX * MATRIX::transpose(void)

Returns

Pointer to a transposed matrix. Returns NULL if memory allocation fails.

Description

transpose creates a new matrix of size col x row and transposes the image data
from row to column and visa versa.

B.4.4 Matrix addition
Synopsis

MATRIX * MATRIX::operator+ (MATRIX& mtx)

Arguments

mtx | Matrix for addition.

Returns

Pointer to an added matrix. Returns NULL if memory allocation fails or the
size of mtx is different from the size of original matrix.

Description

+ performs addtion between the mtx and the original matrix.

B.4.5 Matrix substraction
Synopsis

MATRIX * MATRIX::operator- (MATRIX& mtx)

101

Arguments

mtx | Matrix for substraction.

Returns

Pointer to a substracted matrix. Returns NULL if memory allocation fails or
the size of mtx is different from the size of original matrix.

Description

- substracts the original matrix from mtx.

B.4.6 Matrix multiplication
Synopsis

MATRIX * MATRIX::operator* (MATRIX& mtx)

Arguments

mtx | Matrix for multiplication.

Returns

Pointer to a multipled matrix. Returns NULL if memory allocation fails or the
row of mtx is different from the column of original matrix.

Description

* performs multiplication between the mtx and the original matrix.

B.4.7 Swapping rows of matrix
Synopsis

MATRIX: :swapRow(short i, short j)

102

Arguments

i, j | Rows to be swapped.

Returns

NOERROR Successful operation.
PARAMERROR | Invalid row or out of range.

Description

swapRow swap the matrix data of row i and j.

B.4.8 Matrix inversion
Synopsis

MATRIX * MATRIX::inverse(void)

Returns

Pointer to a inversed matrix. Returns NULL if memory allocation fails or the
original matrix data is of a singular matrix or not a square matrix.

Description

inverse applies Gaussian elimination algorithm to perform matrix inversion.

B.5 SNAXEL : The contour model unit

SNAXEL is a class for calculating tangent and normal vectors, internal, external
and total energies of a snaxel. A series of SNAXEL objects can form a complete
contour. It is defined as below :

class SNAXEL {

protected :
double row, col ; /* snaxel coordinate */
double alpha, beta ; /* shape coefficients */

103

double lambda ; /* local regularization
parameters */

double Eint, Eext ; /* internal/external energy */
double Esnaxel; /* snaxel energy */

SNAXEL *next; /* next snaxel */

SNAXEL *prev; /* previous snaxel */

};

Each SNAXEL object is internally connected with its two neighbouring snax-
els so as to form a complete chain of contour. Besides, it consists of shape co-
efficients and local regularization parameter for the ease of energy calculation.

B.5.1 Computing mean position
Synopsis
void meanPosition(SNAKEMODE mode, double cg_row,

double cg_col, SNAXEL *head, SNAXEL *tail,
double *meanrow, double *meancol)

Arguments
mode Snake mode of a contour - open or closed.
cg.row, cg-col Coordinate of the centre of gravity of a contour.
avglen Average length of snaxels.
head Pointer to the head of a contour.
tail Pointer to the tail of a contour.

meanrow, meancol | Coordinate of the mean position.

Description

meanposition calculates the mean position of snaxels and stores the coordinates
in the locations pointed to by meanrow and meancol. The mean position can be
referred to as the position of zero internal energy and calulated as following :

o;u;, + Biu,’ﬁ (B.5)

where u;, and u;, are the neighbouring snaxels in the contour-centered coordi-
nate formed. «; and §; are the shape coefficients.

104

B.5.2 Computing tangent vector
Synopsis

void getDirectionVec(SNAKEMODE mode,
SNAXEL x*head, SNAXEL *tail,
double *UvO_x, double *UvO_y,
double *Uvl_x, double *Uvl_y)

Arguments
mode Snake mode of a contour - open or closed.
head Pointer to the head of a contour.
tail Pointer to the tail of a contour.

Uv0x, UvO_y | Unit vector of neighbouring snaxel (alpha).
Uvlx, Uvliy | Unit vector of neighbouring snaxel (beta).

Description

getDirectionVec calculates two unit vectors uv0 = (wv0_z,uv0_y) and wvl =
(uvl_z,uvl_y), which can be used to compute the tangent vector. The tangent
vector, t;, is given as follows :

U; — Uj—1 Ui+l — Uj
tz’ — [[i+ [(BG)
llwi —wioall (luitr — will
where u is the snaxel in contour-centered coordinate formed, % is wv0
£ 11—

Uit1—Us 3
nd % 1.
and Tuisi—ui] 18 WV

B.5.3 Computing normal vector
Synopsis
void getNormalVec (SNAKEMODE mode,

SNAXEL xhead, SNAXEL *tail,
double *nv_x, double *nv_y)

Arguments
mode Snake mode of a contour - open or closed.
head Pointer to the head of a contour.
tail Pointer to the tail of a contour.

nvx, nv_y | Coordinate of normal vector.

105

Description

getNormalVec calculates the unit vector which is normal to the tangent vector
of snaxel and stores the result in the locations pointed to by nv_x and nv_y.

B.5.4 Calculating the SNAXEL angle
Synopsis

double getNormalAng(SNAKEMODE mode, SNAXEL xhead, SNAXEL *tail)

Arguments
mode | Snake mode of a contour - open or closed.

head | Pointer to the head of a contour.
tail | Pointer to the tail of a contour.

Returns

Angle of snaxel in radians.

Description

getNormalAng computes the angle which is normal to the tangent vector of a
snaxel.

B.5.5 Showing snaxel
Synopsis

void show(IMAGE *img, short 0ld_Row, short 01d_Col,
int pt_Xoffset = 0, int pt_Yoffset = 0)

Arguments
*ximg Background image on which the SNAXEL is to be
shown.
01d_Col, 0ld Row Coordinate of a snaxel before deformation.

pt Xoffset, pt_Yoffset | Offset position of a snaxel.

106

Description

show displays a snaxel on top of the background image. This is done by resetting
the dot at [01d_col, 01d_Row] to the background image data, and then placing
a dot at the current snaxel position. The offset position need to be specified if
the background image occupies only certain portion of an X window. The user

should ensure that the background image have been displayed before calling
show.

B.5.6 Interface row and column information
Synopsis

double getRow(void)

double getCol(void)

void putRow(double _row)
void putCol(double _col)

Returns

Snaxel coordinate.

Description

These methods facilitate the retrieval and accessing of snaxel co-ordinate.

B.5.7 Interface snaxel energy information
Synopsis

double getEint(void)

double getEext(void)

double getEsnaxel(void)

void putEsnaxel(double _Esnaxel)

void putEint(double _Eint)
void putEext(double _Eext)

Returns

Internal, external or total snaxel energy.

107

Description
These methods facilitate the retrieval and accessing of snaxel energy informa-

tion.

B.5.8 Interface parameter information
Synopsis

double getAlpha(void)

double getBeta(void)

double getLambda(void)

void putAlpha(double _alpha)
void putBeta(double _beta)
void putLambda(double _lambda)

Returns

Alpha (@), beta (8) or lambda ().

Description

These methods facilitate the retrieval and accessing of snaxel parameters.

B.5.9 Interface pointers to neighbouring snaxels
Synopsis

SNAXEL *getNext(void)

SNAXEL *getPrev(void)

SNAXEL *getNext (SNAKEMODE mode, SNAXEL *head)
SNAXEL *getPrev(SNAKEMODE mode, SNAXEL *tail)
void putPrev(SNAXEL *_prev)

void putNext(SNAXEL *_next)

108

Arguments

mode | Snake mode of a contour - opened or closed.
head | Pointer to the head of a contour.

tail | Pointer to the tail of a contour. 1—1
_prev | Pointer to the previous snaxel.

mnext | Pointer to the next snaxel.

Returns

Pointer to previous or next snaxel.

Description

These methods facilitate the retrieval and accessing of the neighbouring snaxels.
If snake mode is specified, the following will be done :

1. For an open snake

e getPrev retrieves or accesses the previous snaxel if it is not the head
of a contour. Otherwise, the third snaxel will be retrieved or accessed.

o getNext retrieves or accesses the next snaxel if it is not the tail of
a contour. Otherwise, the snaxel retrieved or accessed is that of two
snaxels before.

2. for a closed snake

e getPrev retrieves or accesses the previous snaxel if it is not the head
of a contour. Otherwise, the tail of a contour will be retrieved or
accessed.

o getNext retrieves or accessed the next snaxel if it is not the tail of a
contour. Otherwise, the head of a contour will be retrieve or accessed.

B.5.10 Example : Using mean position to calculate Inter-
nal energy

This example demonstrates how the internal energy of a snaxel is calculated.
The internal energy measures the deviation of a snaxel from its mean position
after deformation.

void testmain(char *confile, /* standard contour file */
int mag) /* magnification factor */

{

109

SNAXEL *sptr; /* SNAXEL object */

CONTOUR mycontour; /* CONTOUR object */

double 1_inf; /* infinity norm */

double meanrow, /* mean position of snaxel */
meancol;

double avglen; /* average length of snaxel */

double Eint; /* Internal energy */

double cg_row, /* center of gravity (CG) */
cg_col;

register short i;

/* Read and show the contour */
if (mycontour.read(confile)) exit(-1);

mycontour.display(mag) ;

/* Compute the average distance between snaxels and CG*/

mycontour . computeCG() ;

avglen = mycontour.computeAvgLength();

cg_row = mycontour.getCgRow();

cg_col = mycontour.getCgCol();

printf ("\nCentre of gravity at row %d col %d\n",
ROUNDOFF(cg_row), ROUNDOFF(cg_col));

mycontour . imageCentered() ;

/* Calculating the internal energy for each snaxel */
for (i=0, sptr=mycontour.getHead(); sptr;
sptr=sptr->getNext () ,i++)
{
if (fabs(sptr->getAlpha()) < VERY_SMALL &&
fabs(sptr->getBeta()) < VERY_SMALL)
Eint = 1.0;

/* compute shape coeff. (alpha & beta) with
infinity norm */
sptr->meanPosition(mycontour.getMode(), cg_row,
cg_col, mycontour.getHead(), mycontour.getTail(),
&meanrow, &meancol);
1_inf = MAX(fabs(meanrow - sptr->getRow()),
fabs(meancol - sptr->getCol()));
Eint = SQR(1_inf / avglen);
printf ("\nSnaxel %d energy = %f",i,Eint);
}

printf ("\nEnd of test.");

110

printf ("\nPress enter to continue.");
getchar();
xwin_close();

meanPosition measure the mean position of current snaxel, while infinity
norm measures the deviation of a snaxel.

B.5.11 Example : Verifying vector calculations

void testmain(char *confile, /* standard contour file */

int mag) /* magnification factor */
{
SNAXEL *sptr; /* SNAXEL object */
CONTOUR mycontour; /* CONTOUR object */
double uv_x, uv_y, /* tangent vector */

uv0_x, uvO_y,
uvl_x, uvl_y;

double nv_x, nv_y; /* normal vector */
double Amodel, /* tangent angle */
Anorm; /* normal angle x*/

register short i;

/* Read and show the contour */
if (mycontour.read(confile)) exit(-1);

/* Compute the average distance between snaxels and CG*/
mycontour . computeCG() ;
mycontour. imageCentered() ;

/* Calculating the internal energy for each snaxel x/
for (i=0, sptr=mycontour.getHead(); sptr;
sptr=sptr->getNext (), i++) {
sptr->getDirectionVec(mycontour.getMode (),
mycontour.getHead (),
mycontour.getTail(),
&uv0_x,&uv0_y,&uvl_x,&uvl_y);

/* tangent vector at current snaxel */
uv_x = uvO_x + uvl_x;
uv_y = uvO_y + uvl_y;

Amodel = ATAN2(uv_x, uv_y);

sptr->getNormalVec (mycontour.getMode(),

111

mycontour.getHead (),
mycontour.getTail(),
&nv_x,&nv_y);

Anorm = ATAN2(nv_x,nv_y);

/* for verification, angle should be 90 degree
apart */
printf ("\nAngle : %3.6f\t Normal : %3.6f",
ANGLE (Amodel) , ANGLE(Anorm));
X

mycontour.display(mag) ;

printf ("Press enter to continue ");
getchar();

printf ("\nEnd of test.\n\n");
xwin_close();

This program calculates the tangent and normal angle of each snaxel. get
DirectionVec calculates the tangent vector at each snaxel, while getNormalVec
rotates the tangent direction by 90 degree so as to compute the normal vector.

B.6 CONTOUR : A deformable template object

CONTOQUR is a collection of SNAXEL objects forming a deformable template. It has
the following structure :

class CONTOUR {

protected :
SNAXEL *head; /* head of snake */
SNAXEL *tail; /* tail of snake */
SNAKEMODE mode; /* opened or closed snake */
short numsnaxel; /* number of snaxel */
double cg_row, cg_col; /* center of gravity */
double avglen; /* ave. power (length) of snake */
double sig_nu_sqr; /* white noise variance on gradient
power x/
double Z; /* normalizing constant */
short direction; /* [0/-1/+1] preset gradient

direction */

112

CONTOUR is a linked list of SNAXELS originated at image origin or the reference
point (cg_col, cg_row). Each contour can have a gradient direction (direction)
that pointing outward (+1) or inward (-1). avglen refers to [(U) in equation
(3.9), sig nu_sqr refers to a% in equation (3.24), and Z refers to Z; in equation
(4.35) of [1].

B.6.1 CONTOUR constructor
Synopsis

CONTOUR (void)

Description

The constructor initializes the number of snaxels, white noise variance (o7) and
contour direction to 0, sets normalizing constant to 1. and directs the head and
tail to NULL.

B.6.2 CONTOUR destructor
Synopsis

~“CONTOUR (void)

Description

The destructor frees the memory allocated to snaxels which form a complete
chain of contour.

B.6.3 Resetting a CONTOUR
Synopsis

void reset()

Description

reset allows the reuse of an CONTOUR object by freeing up the memory allocated
to snaxels and setting the head and tail to NULL.

113

B.6.4 Automatic initialization of closed contour
Synopsis

int init(short _cg_row, short _cg_col,
double radius, short numpts = 16)

Arguments

—cgrow, _cg-col | Centre of circle.

radius Radius of circle.

numpts Number of snaxels.
Returns

NOERROR Successful operation.

MEMORYERROR | Memory allocation failure.

Description

init creates a circle with numpts snaxels and sets its mode to _CLOSED, that
is, a contour with its head and tail internally connected.

B.6.5 Automatic initialization of open contour
Synopsis

int init(short sx, short sy, short ex, short ey,
short numpts = 16)

Arguments
sx, sy | The starting point of a line.

ex, ey | The ending point of a line.
numpts | Number of snaxels.

Returns

NOERROR Successful operation.
MEMORYERROR | Memory allocation failure.

114

Description

init creates a line with numpts snaxels and sets its mode to _.OPENED, that
is, a contour with unconnected head and tail.

B.6.6 Manual initialization of a contour
Synopsis
int init(IMAGE *ximg, unsigned char blowup = 1,

INITMODE theINIT = _CLICKMOUSE,
SNAKEMODE _mode = _CLOSED,int spacing)

Arguments
*ximg Reference image.
blowup | Image magnification factor.

theINIT | Contour initialization method, _DRAGMOUSE or _.CLICKMOUSE
_mode Snake mode of a contour, _OPENED or _CLOSED.

Returns

NOERROR Successful operation.
MEMORYERROR | Memory allocation error.

Description
init creates a contour of either through clicking (_CLICKMOUSE) or dragging
(_LDRAGMOUSE) by mouse. By displaying the reference image on an X window, the

user then specifies the desired snaxels. Since the snaxels are joined sequentially,
the selection of the snaxels must be in order.

B.6.7 File interface methods
Synopsis

int read(char *filename)
int write(char *filename)

Arguments

*filename | Contour file.

115

Returns

NOERROR Successful read or write operation.
MEMORYERROR | Memory allocation failure.
FILEIOERROR | Unable to read from or write to file.

Description

read and write provide file manipulation routines for accessing a contour file.
The format, which is in text form, is as following :

Field Datatype

Magic number 1010 (hex)

Mode -OPENED (0) or .CLOSED (1)
Number of snaxels Integer number

White noise variance Exponential notation

Snaxel coordinates (column, row) Double

Shape matrix (a, 3) Double

Regularization parameter (\) Double

Normalizing constant Exponential notation.

B.6.8 Learning shape matrix
Synopsis

void computeShape()

Description

computeShape models and calculates the shape matriz of a contour as in (Eqn
3.3 of [1]). @ and 3 are computed as following :

-1
ai — 'Z.Z'C.V 'Z.ZB Xi B.7
[ﬂi] [yz'ﬂ yiﬂ] [yi] (B7)
B.6.9 Computing normalizing constant for classification
purpose

Synopsis

void computeZ()

116

Description
computeZ compute normaling constant Z; by Monte Carlo estimation. Z; must

be calculated during the training stage of classification. Supposes a family of
contours U € §2;, then

Z; = Z exp(—Eint (U)) (B.8)
UeQ;

B.6.10 Computing the average vector distance 1(U) be-
tween snaxels

Synopsis

double computeAvgLength()

Returns

Average distance of snaxels.

Description

computeAvgLength calculates the average distance between snaxels, [(U), as
following :

1 n
(U) =~ > lluiss = will” (B.9)
i=1

I(U) is also the normalising constant used for internal energy calculation.

B.6.11 Regenerating shape matrix
Synopsis

int regenerate()

Returns

NOERROR Successful operation.
MEMORYERROR | Memory allocation failure.
PARAMERROR | Parameter error.

117

Description

regenerate generate the complete chain U from shape matriz A by matrix in-
version if the last two snaxels on U is available. This is possible by decomposing

A into an (n — 2) X (n — 2) invertible submatrix A, such that,

AU.+b=0
where
0
b=

_ﬂn—2un—1
Up—1 — ﬂnun

Thus the regenerative contour U, is,

U, = —A7'b

B.6.12 Conversion of Coordinates
Synopsis

void imageCentered()
void contourCentered()

Description

(B.10)

(B.11)

(B.12)

imageCentered defines a contour as the vector containing an ordered set of
points, V' = [v1,v2,...,v,], where each v; has its origin at (0, 0) of an image.
In contrast, contourCentered defines a contour as U = [uy,us,...,u,]|, where
each u; = v; — g represents the displacement from the center of gravity g of a

contour.

B.6.13 Calculating the internal energy of an individual

snaxel
Synopsis

double EInternal (SNAXEL *sxptr)

Arguments

sxptr | Targeted snaxel.

118

Returns

Internal energy of the targeted snaxel.

Description

EInternal computes the internal energy of a snaxel as (Eqn 3.21 of [1]).

B.6.14 Affine transformations of contour
Synopsis

void rotate (double angle)
void translate (int dx, int dy)
void scale (double sx, double sy)
void dilate (double idx, double idy)
void affineTransform(double sx, double sy, double rt,
double tx, double ty, double idx, double idy)

Arguments
angle Rotation angle in degrees.
dx, dy Translation vector.
SX, sy Scaling factor.

idx, idy | Dilation factor.

Description

These methods provides routines for global deformations of a contour so that
user can observe the effects of rigid motion on the shape matriz.

B.6.15 Computing the centre of gravity of contour
Synopsis

void computeCG()

119

Description

computeCG calculates the centre of gravity of a contour, CG(U), as below :

CGU) = % S (B.13)

B.6.16 Duplicating a contour
Synopsis

CONTOUR *duplicate(CONTOUR *target=NULL, short snx=0)

Arguments

target | Targeted contour.
snx Flag (0:off, 1:0on) to indicate copying of snaxels only.

Returns

Pointer to a new created contour if target is NULL or pointer to the target
contour if otherwise. Returns NULL if memory allocation error

Description

duplicate creates an exact duplication of its contour if target is NULL. Other-
wise, it will copy its content or snaxels information only to the target contour,
depending on the snx flag. Copying of snaxels will not be allowed if both con-
tours have different number of snaxels.

B.6.17 Retrieving and accessing of a contour content
Synopsis

SNAXEL *getHead(void)

SNAXEL *getTail(void)
SNAKEMODE getMode (void)

void putMode (SNAKEMODE _mode)
short getNumSnaxel(void)
double getCgRow(void)

double getCgCol(void)

double getZ(void)

120

void putCgRow(double _row)

void putCgCol(double _col)

double getSigNuSqr (void)

void putSigNuSqr(double _sig_nu_sqr)
void putDirection(short _direction)
void putZ(double _Z)

Arguments
_mode Snake mode of a contour.
_row, _col | Center of gravity.

_sigmu_sqr | White noise variance.
_direction | Snake direction.

Returns

Head or tail of contour, snake mode, center of gravity, white noise variance (0127),
snake direction, or normalizing constant.

Description

These methods facilitate the retrieval and accessing of contour details.

B.6.18 Displaying contour shape
Synopsis

void display(short mag = 1);

Arguments

mag | Image magnification factor.

Description

display shows the shape of a contour, which will always be in the center of an
X window.

121

B.6.19 Showing a contour on another image
Synopsis

void show(IMAGE *backgnd, unsigned char blowup=1,
int pt_Xoffset=0, int pt_Yoffset=0, short expand=1);

Arguments
backgnd Background image.
blowup Image magnification factor.
pt Xoffset, pt_Yoffset | Offset of a contour against a window origin.
expand Expanding factor.
Description

show display an expanded contour on top of the background image by an offset
of (pt_Xoffset, pt_Yoffset).

B.6.20 Example : Initialization of contours

This program performs the initialization of an opened and closed contour.

void testmain(SNAKEMODE smode, /* snake mode */
int Sx, int Sy, /* starting point of a
line */
int Ex, int Ey, /* ending point of a
line */
double Radius, /* radius of circle */
short num_points, /* number of snaxels */
int mag) /* magnification factor */
{
CONTOUR mycontour; /* CONTOUR object */
SNAXEL *sptr; /* SNAXEL objcet */

register short i = 0;

/* Initialize an arbitrary close snake */
if (smode == _CLOSED)

mycontour.init(Sy, Sx, Radius, num_points);
else

mycontour.init(Sx, Sy, Ex, Ey, num_points);

// The average length of snaxel must be calculated first.

122

mycontour . computeAvgLength() ;

printf ("\nContour information : \n");
mycontour.print();

printf ("\nPress enter to display contour.");
getchar();

mycontour.display (mag) ;

// Internal energy of snake without deformation should be 0
printf ("\nInternal energy.");
for (sptr=mycontour.getHead(); sptr; sptr=sptr->getNext(),
i++)
printf ("\nEmodel of snaxel %d = %f",
i, mycontour.EInternal(sptr));

printf ("\nPress enter to continue");
getchar() ;

printf ("\nEnd of test.\n");

getAvgLength must be called before the internal energy calculation so as to
compute the average distant of snaxels. A contour should have internal energy
of zero if no deformation happens.

B.6.21 Example : Affine transformations of contour

This program demonstrates the affine invariance of shape matrix. The internal
energy before and after the transformation should be of the same.

void testmain(char *confile, /* contour file */
int mag, /* magnification factor */
double angle, /* rotation angle */
int tx, int ty, /* translation vector */
double sx, double sy, /* scaling factor */
double dx, double dy, /* dilution vector */
char *outfile) /* output file */
{
CONTOUR mycontour; /* CONTOUR object */
SNAXEL *sptr; /* SNAXEL object */

register short i;
double temp;

/* read a contour file */
if (mycontour.read(confile)) exit(-1);

123

mycontour.display(mag) ;

// Calculate average length and internal energy of snaxel
temp = mycontour.computeAvglLength();
mycontour . computeShape() ;
mycontour.print();
for (i=0, sptr=mycontour.getHead();
sptr; sptr=sptr->getNext(), i++)
printf ("\nEmodel of snaxel %d = %f", i,
mycontour.EInternal (sptr));
printf ("\nPress enter to continue");
getchar();

/* affine transformation should be done in contour centered
formed */

mycontour . contourCentered() ;

mycontour.affineTransform(sx, sy, angle, tx, ty, dx, dy);

printf ("\nShowing contour after transformations.");

mycontour . imageCentered() ;

mycontour . computeCG() ;

mycontour.display(mag) ;

printf ("\nPress enter to continue");

getchar();

/* internal energy should be invariant to affine
transforms */
printf ("\nPerforming internal energy calculation after
transforms.\n");
for(i=0, sptr=mycontour.getHead(); sptr;
sptr=sptr->getNext (), i++)
printf ("\nEmodel of snaxel %d = f", i,
mycontour .EInternal (sptr));

/* Performing shape learning */

printf ("\nContour and snaxel coefficients after learning.");
printf ("\nAverage distance: %f\n",temp);
mycontour . computeShape () ;

mycontour.display();

mycontour.print();

printf ("\nPress enter to continue");

getchar();

/* write contour to output file */

if (outfile) {
printf("\nWriting contour to file %s", outfile);

124

mycontour.write(outfile);

B.6.22 Example : Coordinate conversion of contour

This program shows the manual initialization of a contour with mouse. Besides,
imageCentered and contourCentered convert snaxels coordinates from contour
centered form to image centered form and vice versa.

void testmain(char *imgfile, /* image file */
INITMODE imode, /* manual initialization
mode */
SNAKEMODE smode, /* snake mode */
int numpts, /* number of snaxels x/
int mag) /* image magnification
factor */
{
CONTOUR mycontour; /* CONTOUR object */
SNAXEL *sptr; /* SNAXEL object */
IMAGE myimage; /* IMAGE object */

register short i;
/* Read and show image */
if (myimage.read(imgfile)) exit(-1);

myimage.show (mag) ;

// Generating line or circle based on image automatically
if (imode == _LOADTEMPLATE) {

int row, col;

row = myimage.getRow() ;

col = myimage.getCol();
if (smode == _CLOSED)
mycontour.init(row/2, col/2,
(double)MIN(row,col) /4.0,numpts);
else
mycontour.init((short) (col/4), (short) (row/4),
(short) (3*col/4), (short) (row/2), numpts);
}
else {

125

/* Initialise contour with mousex*/
mycontour.init(&myimage, mag, imode, smode);

}

mycontour.display (mag) ;
printf ("\nPress enter to continue.");
getchar();

/* first calculate Cg of contour x/

mycontour . computeAvgLength() ;

mycontour . computeShape () ;

mycontour . computeCG() ;

printf ("\nCG Row= %f CG col = %f",
mycontour.getCgRow() , mycontour.getCgCol());

/* Converting co-ordinate form */
printf("\n * Getting contour centered co-ordinates *\n");

mycontour . contourCentered() ;
mycontour.print();
for (sptr=mycontour.getHead(), i=0; sptr;
sptr=sptr->getNext (), i++)
printf ("\nInternal energy of snaxel %d = %f",
i, mycontour.EInternal(sptr));

printf ("\nPress enter to continue.");
getchar();

printf ("\nConverting back to image centered\n\n");
mycontour. imageCentered() ;
mycontour.print();
for (sptr=mycontour.getHead(), i=0; sptr;
sptr=sptr->getNext (), i++)
printf ("\nInternal energy of snaxel %d = f",
i, mycontour.EInternal(sptr));
printf ("\nEnd of test.\n");

B.6.23 Example : Duplication of contour

This program shows the different modes of contour duplication.

void testmain(char *filel, char *file2)

126

CONTOUR conil;
CONTOUR *con3 = NULL;
CONTOUR con?2;

printf ("\nReading contour 1 from %s", filel);
printf ("\nReading contour 2 from %s",file2);
if ((conl.read(filel)) || (con2.read(file2))) exit(-1);

printf ("\n\nx*** Contour 1 co-ordinates ***x\n");
conl.print();

printf ("\n\n**** Contour 2 co-ordinates ****\n");
con2.print();

printf ("\nPress enter to continue");

getchar();

printf ("\nCreating new contour from contour 1.");
con3 = conl.duplicate(con3);
con3->print();

printf ("\nCopying snaxel information only from contour 2");
con3 = con2.duplicate(con3, 1);

printf ("\nPrinting contour information\n");

conl.print();

con3->print();

getchar() ;

The output of the program should show that con3 have properties such as
sigma x and avglen that of conl and have snaxel information that of con2.

B.7 GHOUGH : Generalised Hough Transform
Object

Based on generalized Hough transform (GHT) [5], GHOUGH is a class for localizing
objects of a particular shape from an input image or edge map. It is defined as
follows :

class GHOUGH {
protected :

IMAGE **Planes; /* Planes of accumulator
cells */

127

CONTOUR **Template; /* Templates under
transformations */

double *x*Angle; // desired gradient angles

int NumPlane; /* actual # of planes */

int Qx, Qy; /* X, Y resolutions of
planes */

double QR, Qrxy; /* scale resolutions */

double Qt; /* theta resolutions */

double Qdx, Qdy, Qc; /* dilation resolutions */

int NR, Nrrxy, Nt, Ndx, Ndy; /* # of cells in each of
the axis */

double R; /* scaling factor */

double THETA; /* initial angle for ref.
line angle */

int plane_max; // store index for blanking

int row_max;
int col_max;

};

Our implementation is capable of localizing contour which may have under-
gone affine transformation. We separate affine transformation, 7', into scaling
change, T(R), and dilation matrix, T(d), centered at 1, and rotation matrix,
T(t), indexed by THETA centered at 0, as follows :

T=T(R)T ()T (d) (B.14)
where

=Ry Jmaro= [y Jmaro =[5

The Q value control the resolution of transformation, while N values control
the number of cells or allowable range. For a given reference contour, the total
instances of transformation generated are (NR)(Nrzy)(Nt)(Ndz)(Ndy).

B.7.1 GHOUGH constructor
Synopsis

GHOUGH(int _Qx=1, int _Qy=1,
int _NR=1, double _QR=0.25,
int _Nrxy=1, double _Qrxy=0.25,
int _Nt=1, double _Qt=RADIAN(10),
int _Ndx=1, double _Qdx=0.1,
int _Ndy=1, double _Qdy=0.1,
double _R=1.0, double _THETA=0.0)

128

Description

The constructor initializes the values of transformation parameters.

B.7.2 GHOUGH destructor
Synopsis

~GHOUGH ()

Description

The destructor frees the memory allocated to Template, Planes and Angle,
and resets the plane indexing values.

B.7.3 Resetting GHOUGH object
Synopsis

reset ()

Description

The destructor frees the memory allocated to Template, Planes and Angle,
and resets the plane indexing values.

B.7.4 Finding one contour
Synopsis

CONTOUR *localize(CONTOUR *reference, IMAGE *img)
CONTOUR *localize(CONTOUR *reference, EDGE *edgeMap)

Arguments
reference | Reference contour.

xedgeMap | Edge map.
*img Gaussian image or intensity image.

129

Returns

Localized contour.

Description

localize performs general Hough transform to locate the desired image fea-
ture. It generates various instance of transformation contours and correlates
them with the underlying image or edge map. The instance which consists of

maximun count at center of gravity after correlation, is considered as the best
fit of template.

B.7.5 Finding multiple contours
Synopsis

CONTQUR **localize(CONTOUR *reference, IMAGE *img, int numFind)
CONTOUR **localize(CONTOUR *reference, EDGE *edgeMap, int numFind)

Arguments

reference | Reference contour.
xedgeMap | Edge map.

*img Gaussian image or intensity image.
numFind Number of localized contours.
Returns

List of localized contours.

Description

localize performs general Hough transform to locate multiple desired image
features. It generates various instance of transformation contours and correlates
them with the underlying image or edge map. The instances which consist of
first numFind maximun count at center of gravity after correlation, are consid-
ered as the best fit of templates and will be stored in decreasing order.

130

B.7.6 Example : Localization of a contour

The following example demonstrates the match of a rigid contour with the
underlying image by generalized Hough transform.

void testmain(char *imgfile, /* image file */
char *cfile, /* contour file */
int mag, /* magnification factor */
short level) /* pyramid level */
{
PYRAMID mypyramid; /* PYRAMID object */
EDGE *xedgemap; /* EDGE object x/
CONTOUR mycontour; /* CONTOUR object */
CONTOUR *localised; /* CONTOUR object */
SNAXEL *sptr; /* SNAXEL object */
GHOUGH GHT_OBJ; /* GHOUGH object */
int row, col; /* image of col x row */

if (mypyramid.putRawImg(imgfile))
exit (-1);

if (mycontour.read(cfile))
exit(-1);

/* Generate pyramid in verbose mode to level 3 */
mypyramid.generate(level, 1);

/* Get highest level in pyramid */

printf ("\n Perform localization ... wait\n");
edgemap = mypyramid.getEdge(level - 1);

localised = GHT_0BJ.localize(&mycontour, edgemap) ;

/* show image */
mypyramid.rawImg->show(mag) ;
for (sptr=localised->getHead(); sptr; sptr=sptr->getNext())
sptr->show(mypyramid.rawImg,
ROUNDOFF (sptr->getRow ()) *mag,
ROUNDOFF (sptr->getCol())*mag) ;

printf ("\nPress enter to end.");
getchar();

generate builds one level of edge map and Gaussian pyramid images. With
edge map as an input image, localize places a contour on the image feature
of interest.

131

B.7.7 Example : Localization of multiple contours

void testmain(char *imgfile, /* image file */
char *cfile, /* contour file */
short numgsnake, // number of desired snakes
int mag, /* magnification factor */
short level) /* pyramid level */
{
PYRAMID mypyramid; /* PYRAMID object */
EDGE *xedgemap; /* EDGE object */
CONTOUR mycontour; /* CONTOUR object */
CONTOUR **localised; /* CONTOUR object */
SNAXEL *sptr; /* SNAXEL object */
GHOUGH GHT_OBJ; /* GHOUGH object */
int row, col; // image of col x row
int ratio;

if (mypyramid.putRawImg(imgfile))
exit (-1);

if (cfile) {
if (mycontour.read(cfile))
exit(-1);
X
else {
/* Initialise a closed contour in the centre of the test image

Radius of circle = smaller of row and col divide by 5.
The values are arbitrary */

row = mypyramid.rawImg->getRow();

mypyramid.rawImg->getCol();

col

mycontour.init(row/2,col/2, (double) MIN(row,col)/5,8);
}

/* Generate pyramid in verbose mode to level 3 */
mypyramid.generate(level, 1);
mypyramid.show(mag,level) ;

printf ("\nPress enter to continue.");
getchar();

132

printf ("\nCo-ordinates before transform\n ");
mycontour.print();
mypyramid.rawImg->show(mag) ;

for (sptr=mycontour.getHead();sptr;sptr=sptr->getNext())
sptr->show(mypyramid.rawIng,
ROUNDOFF (sptr->getRow ()) *mag,
ROUNDOFF (sptr->getCol())*mag) ;

printf ("\nPress enter to continue.");
getchar();

/* Use external energy input Edge.The edge object used is the
highest level one because the search area will be the
smallest */

ratio = mypyramid.getLevel()-1;

/* Reduce contour to size of highest edge */
mycontour . expand (LEVEL (-ratio));

/* Get highest level in pyramid */
edgemap = mypyramid.getEdge(ratio);
localised = GHT_0BJ.localize(&mycontour, edgemap, numgsnake) ;

register short i;
for (i=0; i< numgsnake; i++) {
printf ("\nLocalised contour [%d] on image.\n", i);

/* Get the localised gsnake. */

/* Contour will be in natural image size */
localised[i]->expand (LEVEL(ratio));
localised[i]->print();

mypyramid.rawImg->show(mag) ;
for (sptr=localised[i]->getHead(); sptr;
sptr=sptr->getNext ())
sptr->show(mypyramid.rawlng,
ROUNDOFF (sptr->getRow ()) *mag,
ROUNDOFF (sptr->getCol())*mag) ;
printf ("\n\nPress Enter to Continue\n");
getchar();

133

In this program, generate builds a pyramid of edge map and Gaussian
images, which are treated as input to general Hough transform (GHT). Since
GHT performs only at the highest level of pyramid so as to reduce computational
time, expand reduces the size of contour by LEVEL (ratio). localize then finds
the numgsnake of image features of interest.

B.8 GSNAKE : Generalized Active Contour Mo-
del

GSNAKE is a class for modeling and extracting arbitrary deformable contours.
It consists of PYRAMID for external energy calculation and CONTOUR class for
internal energy calculation. GSNAKE has the following structure :

class GSNAKE : public PYRAMID,
public CONTOUR {

protected :
double global_lambda; /* global regularization
parameters */

double Eint; /* Total internal energy of
snake */

double Eext; /* Total external energy of
snake */

double Esnake; /* Total snake energy */

EEXTTYPE EextType; /* external energy type */

EDGE *EdgeMap; /* edge map in current pyramid
level */

IMAGE *GaussImg; /* gaussImg in current pyramid
level x/

};

We initialize GSNAKE using generalized Hough transform (section 3.3 of
[1]) and minimize its energy using dynamic programming with stratified line
search (section 3.4 of[1]). The internal energy, Eint, measures deviation in
shape irregularities, while the external energy, Eext, adjust the contour model
to match the underlying image feature. Based on parameter selection strategy
(section 2.2 of [1]), glabal lambda, we regularize the tradeoff between Eint
and Eext, and compute the total energy, Esnake. Our implementation allows
user to select minimax criterion (_LOCAL_MINMAX), local regularization parame-
ter (_LOCAL_LAMBDA) or global lambda parameter selection strategy (within the
range of 0.0 to 1.0). EextType is the type of external energy used, which in-
cludes edge gradient (_EDGE), edge magnitude (_EDGEMAG) and image intensity
(_INTENSITY).

134

B.8.1 GSNAKE constructor
Synopsis

GSNAKE (EextTYPE etype = _EDGE, double glambda = _LOCAL_MINMAX)

Arguments
etype External energy type, includes intensity (_(INTENSITY), edge
magnitude only ((EDGEMAG) and edge gradient (_.EDGE) image
energy.
glambda | Regularization parameter selection strategy, includes minmax

criterion (_(LOCAL_MINMAX) and local regularization
(_.LOCAL_LAMBDA).

Description
The constructor selects minimaz criterion as its parameter selection strategy,

and uses edge gradient as its external energy type if user does not specify ex-
plicitly.

B.8.2 GSNAKE destructor
Synopsis

~“GSNAKE (void)

Description

The destructor initializes EdgeMap and GaussImg to NULL.

B.8.3 GSNAKE destructor
Synopsis

void reset(void)

Description

reset initializes EdgeMap and GaussImg to NULL

135

B.8.4 Generating pyramid images
Synopsis

int genPyramid(short level, short verbose)

Arguments

level Levels of pyramid to be generated.

verbose | Verbose operation mode.
Returns
NOERROR Successful Operation.

MEMORYERROR | Memory allocation error.

Description

genPyramid generate PYRAMID object based on EextType specified. To in-
crease robustness, we use histogram equalization parameters (high_pct = 1.0,
low_pct = 1.0, highwal = 1.0, lowval = 1.0) for external energy of type
INTENSITY, and use default condition parameters (high_pct = 0.95, low_pct =
0.9, highwal = 0.9, low_val = 0.2) for external energy of type -EDGE and

_EDGEMAG.

B.8.5 Localization of contour
Synopsis

int localize(int _Qx=1, int _Qy=1,
int _NR=1, double _QR=0.25,

int _Nrxy=1, double _Qrxy=0.1,
int _Nt=1, double _Qt=RADIAN(10),

int _Ndx=1, double _Qdx=0.1,
int _Ndy=1, double _Qdy=0.1,

double _R=1.0, double _THETA=0.0)

136

Arguments

Qx, Qx
_NR

-QR

Nrxy
_Qrxy

_Nt

-Qt

Ndx, Ndy
_Qdx, _Qdy
R

_THETA

Returns

NOERROR

MEMORYERROR

Description

Based on resolution and allowable range of transformation specified by users,
localize performs rigid match of a contour with the underlying image by gen-
eralized Hough transform (GHT). If Gaussian image and edge map do not exist,
it will generate level 1 PYRAMID. Localization will only be performed at highest
level of pyramid so as to reduce computational time. To increase accuracy, it

X and Y resolution of GHOUGH accumulator space.
Number of cells in scale change axis.
Resolution for scale change.

Number of cells in diagonal stretching change.
Resolution for diagonal stretching.

Number of cells in rotation axis.

Resolution of rotation (in radian).

Number of cell in X and Y of dilution axis.

X and Y resolution of dilution.

Scaling factor.

Initial angle for reference line gsnake.

Localisation performed successfully.

Unable to allocate memory for GHOUGH objects.

activates fineLocalize if _Qx or _Qy is greater than 1.

B.8.6 Fine localization of GSNAKE template

Synopsis

void finelocalize(int _gx = 1, int _qy = 1,
int _cg_col = 0, int _cg_row = 0);

Arguments

%, qy

X and Y resolution of translation.

—cg-—col, _cgrow | Coordinate of center of gravity.

137

Description

finelocalize moves the localized contour in a small area of qx x qy. It
calculates external energy during each move and then relocates the contour at
place of lowest energy. To increase efficiency, user can also place contour at
location with center (_cg_col, _cg_row) before moving. This is useful when
the contour can be in a fixed and small locality.

B.8.7 Minimization of GSNAKE

Synopsis

int minimize(int segmentSpacing = 5, int numSearchSegment = 5,
int snaxelSpacing = 5, unsigned char blowup = 1,
int verbose = 0, double thelLambda = _DEFINED_LAMBDA,
int showImg = 1, int img_Xoffset = 0,

int img_Yoffset = 0);

Arguments
segmentSpacing Coarse search spacing.
numSearchSegment Number of searched segments around snaxel.
snaxelSpacing Snaxel spacing,.
blowup Image magnification factor.
verbose Verbose Flag.
theLambda Lambda value.
showImg Indication (0:off 1:0n) of whether image is to
be shown.
img Xoffset, img Yoffset | Offset of a contour from an showing image.

Description

Based on dynamic programming with stratified line search algorithm, minimize
performs coarse to fine energy minimization. As minimization progresses from
the highest to lowest pyramid level, it inserts new snaxels at interval of snaxelSpa
cing between two snaxels. The showImg, img Xoffset and img Yoffset allow
greater flexibility when applying minimization over a small region of image. In
this case, we can cut image into portions and only perform minimization on
portion of interest.

B.8.8 Marginalizing gsnake to get probablity

double marginalize(int nhoodTangent, int nhoodNormal)

138

Arguments

nhoodTangent | Number of searched segments along the tangent axis of snaxel.
nhoodNormal | Number of searched segments along the normal axis of snaxel.

Returns

Probability of match.

Description
marginalize sums probablities and finds location that maximize probablity

of matched contour operation. The summation is done in a small region of
nhoodTangent x nhoodNormal around a contour.

B.8.9 Calculating total energy of a gsnake
Synopsis

double ESnake(short level, int verbose = 0);

Arguments

level Pyramid level of interest.
verbose | Flag (0:off 1:on) to operate verbose mode.

Returns

Total energy of GSNAKE.

Description

ESnake compute the total energy of gsnake by regularizing the internal and
external energy of each snaxel.

B.8.10 Calculating total energy of a snaxel
Synopsis

double ESnaxel(SNAXEL *now,
BOOLEAN store = _FALSE, int verbose = 0);

139

Arguments
xsxptr | Pointer to target snaxel.

store Flag to indicate whether to store snaxel energy.
verbose | Flag (0:off 1:on) to operate verbose mode.

Returns

Snaxel energy. Returns 1.0 if the snaxel coordinate is invalid.

Description

Esnaxel calculates the total energy of a snaxel by regularize its internal and
external energy.

B.8.11 Calculating internal energy of a snaxel

B.8.12 Caluclating Internal energy at snaxel co-ordinates

double EInternal (SNAXEL *now)

Arguments

now | Pointer to target snaxel.

Returns

Internal energy of a snaxel.

Description

EInternal computes the internal energy of a snaxel.

B.8.13 Calculating external energy of a snaxel
Synopsis

double EExternal (SNAXEL *now) ;

140

Arguments

*now | Pointer to the target snaxel.

Returns

External energy of a snaxel.

Description
Eexternal calculates the external energy of snaxel. If EextType is _INETNSITY,
it will return value 1 — intensity. If _[EDGEMAG, it will return value 1 — edgeMag.

Otherwise, it will consider both magnitude and direction of an edge point (Eqn
3.18 of [1]).

B.8.14 Showing GSNAKE
Synopsis

void showLine(unsigned char blowup=1, int Xoffset=0, int Yoffset= 0)

Arguments

blowup Image Magnification factor.
Xoffset, Yoffset | X and Y offset for image display.

Description

showLine draws lines between snaxels so as to form a complete contour. The
offset values help in showing a contour at various image position.

B.8.15 Displaying gsnake and image

Synopsis

void show(unsigned char blowup =1,short expand = 1,
int showImg = 1,
int img_Xoffset = 0, int img_Yoffset = O,

int pt_Xoffset = 0, int pt_Yoffset = 0);

141

Arguments

blowup Image magnification factor.

expand Contour expansion factor.

showImg Flag tp indicate whether the raw image is to
be shown.

img Xoffset, img Yoffset | X and Y offset of image position.
pt Xoffset, py_Yoffset X and Y offset of snaxel position.

Description

show displays snaxel coordinate on the raw image. If showImg and img_offset
are not specified, the raw image and snaxel coordinate will be shown on an X
window. Otherwise, they will be shown on top of an existing image with offset

(img Xoffset, img Yoffset). The pt Xoffset and pt_Yoffset are necessary
when showing an expanded contour.

B.8.16 Manual deformation of a contour
Synopsis

void deform(short blowup = 1, short expand = 1)

Arguments

blowup | Image magnification factor.
expand | Contour expansion factor.

Description
deform allows manual deformation of a contour shape. By using a mouse, the

user can adjust and move individual snaxel around. The expansion factor is
necessary when dealing with an expanded contour.

B.8.17 Duplicating a GSNAKE
Synopsis

GSNAKE *duplicate(GSNAKE *target= NULL)

142

Returns

e Pointer to new GSNAKE if target is NULL. Otherwise, target will be
returned.

e NULL if memory allocation fails.

Description
duplicate creates an exact duplication of itself including CONTOUR and PYRAMID
if target is NULL. Otherwise, only GSNAKE parameters and CONTOUR but not

PYRAMID are copied. The rationale for this is that the external energy input
should be that of the target GSNAKE.

B.8.18 Getting external energy input type
Synopsis

EextTYPE getEextType(void)

Returns

External energy type.

Description

getEextType returns the external energy input type. The current state of
EextType will determine the input type in any function requiring external en-
ergy input.

B.8.19 Getting and writing the regularization parameter
Synopsis

double getGLambda(void)
void putGLambda(double _lambda)

Description

These methods facilitate the reading and writing of the regularization parame-
ter. The regularization parameter can also be set at GSNAKE constructor.

143

B.8.20 Retrieving internal and external energy
Synopsis
double getEsnake(void)

double getEint(void)
double getEext(void)

Returns

Internal or external energy value.

Description

These methods provide facility for accessing the energy values of GSNAKE.
Since these values are stored during energy calculation routines, they may not
be the most updated values.

B.8.21 Example: Localization and minimization of GSNAKE

A previous example in the section on GHOUGH demonstrated the localization of
a contour on an image. However, with GSNAKE, all these are performed simply
by invoking the class methods.

void testmain(char *imgfile, /* image file */
char *confile, /* contour file */

int level, /* pyramid level */

short mag, /* image magnifiaction factor x*/
int sspacing, /* snaxel spacing */

int ispacing, /* search segment spacing */

int nhood, /* number segment */

double lambda, /* regularization parameter */
EEXTTYPE Etype) /* external energy type */

GSNAKE mysnake(Etype) ;
/* If no image file or contour file, cannot continue */
if ((mysnake.putRawImg(imgfile)) ||
(mysnake.CONTOUR: :read(confile)))
exit(-1);

/* Displaying the operating parameters */
printf ("\n*x*x*x*x Operating Parameters *okokksokskokkokxok\n") ;

144

printf ("\nImage : %s Contour : %s ", imgfile, confile);
printf ("\nSearch Spacing : %d Insertion spacing : %d",

sspacing, ispacing);
printf ("\nSearch Nhood : J%d, Lambda : %f",nhood, lambda);
printf ("\nExternal Energy input : ");

switch (Etype) {
case _INTENSITY :
printf ("Intensity");
break;

case _EDGE :
printf ("Edge energy");
break;

case _EDGEMAG :
printf ("Edge magnitude only");
break;

¥

if (verbose) printf("\nVerbose mode on");
Printd ("N \mkokskskokskok sk skokokokok ok ok sk skok ok skok kR ok kokkokok ok sokxok\n\n") ;

mysnake.generate(level, 1);
mysnake.PYRAMID: : show(mag, level);
printf ("\nPress enter to continue");
getchar();

printf ("\nPerforming localization and minimisation");

mysnake.GSNAKE: :localize();

mysnake.GSNAKE: :minimize (sspacing, nhood, ispacing, mag,
verbose, lambda, 1);

printf ("\nEnd of test. Press enter. ");

getchar();

This program first reads a contour file and filters an image file as its rawImg.
Based on the operating parameters, a pyramid is generated and localize and
minimize methods are invoked. The contour used for localization and minimiza-
tion should preferably be generated from the image itself. This is due to the
problem of mismatching coordinates. For example, two contours with the same
shape but with coordinates differing by 100 points might not be localized on
the same features, depending on the localization parameters. If the localization
parameter is too large, the program may take extremely long time. Besides, if
the contour is larger than the image, it will probably result in an error.

145

B.8.22 Example : Energy calculation I

This program performs internal, external and total energy calculation of a
gsnake before and after manual deformation.

void testmain(char *imgfile, /* image file */

int level, /* pyramid level */
int mag, /* magnification factor */
char *outfile) /* output file */
{
int row, col; /* image of size colxrowx/
GSNAKE mysnake; /* GSNAKE object */
SNAXEL *sptr; /* SNAXEL object */

short register i;
if (mysnake.putRawImg(imgfile)) exit(-1);
mysnake .PYRAMID: :rawImg->getRow() ;

col = mysnake.PYRAMID: :rawImg->getCol();
mysnake.generate(level,1);

row

/* Autoinitialising of a closed snake */

/* centre at cg of image, radius= smaller of row/col
divide by 4 */

printf ("\nCreating template from image dimension ..");

mysnake.CONTOUR: :init (row/2, col/2, (double)MIN(row,col)/4);

printf ("\nPerforming localisation of contour.");

mysnake.localize();

printf ("\nLocalized !");

printf ("\nPress enter to continue ..");

getchar();

printf (" [col row]\tEint\tEext\tEtotal\tLambda\n") ;

printf ("--————--- \t-——-\t----\t-—-——-- \t-——-—- \n");
mysnake.ESnake(0, 1);

printf ("\nTotal energy of snake: %f\n",mysnake.getEsnake());

/* Manual deformation of snake */
mysnake.deform(mag) ;

printf (" [col row]\tEint\tEext\tEtotal\tLambda\n");

printf ("---—---—- \t-———-\t-———-\t————- \t-——-—- \n");

mysnake.ESnake(0, 1);

printf ("\nTotal energy after deformation : %f\n",
mysnake.getEsnake());

printf ("\nPress enter to continue..");

146

getchar();

if (outfile) {
printf ("\nWriting to file %s\n\n",outfile);
mysnake.CONTOUR: :write(outfile);

The program reads in an image file and automatically generates a _CLOSED
contour. deform allows the user to adjust manually the contour shape. ESnake
will calculate and compare energy values before and after deformation.

Manual deformation is useful in cases where the contour is more or less
standard and it is only necessary to slightly modify the template to fit the
image better. It is also useful for shape learning purposes.

B.8.23 Example : Energy calculation IT

This program performs internal, external and total energy calculation of a
gsnake before and after fine localization.

void testmain(char *imgfile, /* image file */
int level, /* pyramid level */
int mag, /* magnification factor */
int correlateX, /* X resolution for correlation */
int correlateY, /* Y resolution for correlation */
char *outfile) /* output file x/

int row, col, ij;
GSNAKE mysnake;
SNAXEL *sptr;

if (mysnake.putRawImg(imgfile)) exit(-1);

row = mysnake.PYRAMID: :rawImg->getRow() ;

col = mysnake.PYRAMID: :rawImg->getCol();
mysnake.generate(level,1);

/* Autoinitialising of a closed snake */

/* centre at cg of image, radius= smaller of row/col

divide by 4 */

printf ("\nCreating template from image dimension ..");
mysnake.CONTOUR: :init (row/2, col/2, (double)MIN(row,col)/4);

147

printf ("\nPerforming localisation of contour.");
mysnake.localize();

mysnake.computeCG() ;

mysnake . computeAvgLength() ;

printf ("\nEnergy values before fine localisation ");
printf("\n Snake energy calculation");
Printf (" \mkskokskskskokokskokokskok kokok ok ok okkokkkokok ok ') 5
printf ("\n[col row]\tEint\tEext\tEtotal\tLambda\n");
printf("---—---—- \t———-\t-———-\t————- \t-———-—- \n");
mysnake.ESnake(0, 1);
printf ("\nTotal energy : %f\n",
mysnake.getEsnake());
mysnake. show (mag) ;
printf ("\nPress enter to continue ..");
getchar();

mysnake.fineLocalize(correlateX, correlateY);

printf("\nTotal energy after fine localisation ");
printf("\n Snake energy calculation");

PrAntE (M \mksksrokskskoksok ok skokokskok ok kskok ok ok kokok ok ok 1) 5

printf ("\n[col row]\tEint\tEext\tEtotal\tLambda\n");
printf ("---————-—- \t-———-\t-——-\t-———-- \t-——--—- \n");
mysnake. computeCG() ;

mysnake.computeAvgLength() ;

mysnake.ESnake(0, 1);

printf ("\nTotal energy : %f\n", mysnake.getEsnake());
mysnake.show (mag) ;

printf ("\nPress enter to continue ..");

getchar();

In this program, fineLocalize reallocates the contour at a finer resolution.
ESnake will calculate and compare energy values before and after fine localiza-

B.9 MODEL : Shape Learning Class

MODEL provides shape matrix and local regularization parameters learning rou-
tines. It has the following structure:

class MODEL : public GSNAKE {

148

protected :
short deformSample; /* number of deformed samples */
short shapeSample; /* number of learned samples */

};

MODEL inherits extra functions from GSNAKE. With sufficient training samples,
we can generate a robust contour model with specific prior knowledge.

B.9.1 MODEL constructor
Synopsis

MODEL (void)

Description

The constructor sets deformSample and shapeSample to 0.

B.9.2 Learning shape matrix
Synopsis

int LearnShape (GSNAKE *sample)

Arguments

sample | Gsnake sample.

Returns

NOERROR Successfully operation.
MEMORYERROR | Memory allocation error.

Description

LearnShape performs learning of shape matrix from different samples. This is
done by taking an initial estimate of shape matrix from the first sample. Using
this shape matrix and minmaz regularization, we minimize the second samples
and average the shape matrix. By repeating this for the rest samples, we can
derive a learned model to regenerate a new contour shape.

149

B.9.3 Learning local deformation variances
Synopsis

int LearnDeform(GSNAKE *sample)

Arguments

*sample | GSNAKE sample.

Returns

NOERROR Successful operation.
MEMORYERROR | Memory allocation error.

Description
LearnDeform learns the local regularization parameters A\; which control the

GSNAKE deformation. By computing deformation variance (02) and noise varaince

(02), we have)\; as following,

o2

Ai= 51— B.15
¢ 072,—}—01-2 ()

B.9.4 Accessing the trained model
Synopsis

GSNAKE #*getModel (void)

Returns

Learned contour model.

Description

getModel facilitates the retrieval of a learned contour model.

150

B.9.5 Example : Learning of shape matrix from different
samples

void testmain(char **argv,
unsigned char mag,
short level,
int magPos,
int levelPos)

{
MODEL model; /* to store results of learning */
GSNAKE sample(_EDGE); /* sample will use _EDGE as external
energy */
char **imgsamples; /* image samples */

register short i;
imgsamples = &argv[1] ;
for(i=1; ximgsamples ; i++, imgsamples++) {

if ((i == magPos) || (i == levelPos))
break;

printf ("Using Sample %s to Learn SHAPE\n\n", *imgsamples);
sample.putRawInmg(*imgsamples) ;
if(i==1) {

/* use manually selected feature points to
estimate the shape matrix */

sample.CONTOUR: : init (sample.rawlmg, mag);
model.LearnShape(&sample) ;
}

/* Using the initial shape matrix and minimiax
regularization, the total energy of gsnake is
minimized and then the shape matrix is updated */

model.duplicate (&sample) ;
sample.generate(level, 1); /* generate pyramid */

sample.localize(5, 5, 1, 0.25, 3); /* localize the

contour */
sample.minimize(5, 5, 0, mag); /* minimize energy */

151

sample.deform(mag); // manually adjust

model.LearnShape(&sample) ; /* average out the
shape coefx*/

/* Using the shape matrix and the last two snaxels,
a contour is regenerated to show invariance of shape
matrix */

if(it=1) A

printf ("Regenerate the shape...\n");

model.regenerate(); /* regenerate the shape
based on mtx */

model.CONTOUR: :display(mag);

printf ("Press Enter to continue...\n");

getchar();

X

printf ("\nResulting contour :\n");
model.CONTOUR: :print() ;

This program reads in one sample at each interaction. An initial esti-
mate of the shape matrix are computed from the first sample. localize and
minimize will localize the second sample and minimize its energy, and then
LearnShape updates the new shape matrix. Since the shape matrix is regener-
ative, regenerate will generate a new contour. By repeating this precedure for
many samples, we can obtain a learned model. If we take several square images
which undergo affine transformation to train the shape matrix, the program will
show that the regenerative shape is still a square. This verify the invariance of
a shape matrix.

B.10 CLASSIFY : Contour Classification

CLASSIFY provides advance routines for detecting and classifying deformable
contours directly from noisy image (Chapter 4 of [1]). It calculates the score
of each competitive templates based on marginalization of the distribution
(_.MARGIN_PROB), MAP probability (. DEFORM_PROB), match of deformable tem-
plate (_DEFORM_MATCH) and match of rigid template (_RIGID_MATCH). It has the
following structure :

class CLASSIFY : public REGION {

152

protected :

int

numClass ;

EEXTTYPE Eexttype ;
CONTOUR **templates ;
char *x*labels ;

double
double
double
double

*Margin_Prob;

*Rigid_Match ;
*Deform_Match ;
*Deform_Prob ;

//
/*
/*
//
/*
/*
//

/* number of class */

type of external energy
reference templates */
label of templates */
marginalized probability
rigid match score */
deform match score */
deform match probability

/* these localization and minimization parameters are made
public so that modifying them can be easy */

public :
int

int

Qx, Qy ;

NR, Nrxy, Nt, Ndx, Ndy ;

double QR, Qrxy, Qt, Qdx, Qdy;
double R, THETA ;

int
int
int
int
int

numSearchSegment ;
segmentSpacing ;

numlLevel ;

verbose ;

nhoodTangent, nhoodNormal;

/*

/*
/*
/*
//
//
//
/*
/*

GHT Image Cell
Resolutions */

GHT ranges */

GHT Resolutions */

GHT Constants */

number of search segments

spacing between segments

number of pyramid levels

verbose mode */

neighborhood used in

marginaliz-n */

It stores a list of competitive templates and their corresponding score. In
addition, extra parameters such as GHT range and resolution are used for lo-
calizaing and minimizing these templates.

B.10.1

Synopsis

CLASSIFY (EEXTTYPE _Eexttype =

Arguments

_Eexttype

CLASSIFY constructor

_EDGE) ;

External energy type.

153

Description

The constructor sets the default parameters and initializes all pointer members
to NULL.

B.10.2 CLASSIFY destructor
Synopsis

“CLASSIFY(void);

Description

The destructor frees memory allocated to the pointer members.

B.10.3 Loading a template into CLASSIFY
Synopsis

int read(CONTOUR *contour);
int read(char *filename);

Arguments

contour Source CONTQUR.
filename | Contour file.
Returns

NOERROR Template loaded successfully.
MEMORYERROR | Memory allocation failure or
template initialization error

Description
These methods read in contour used for classification purpose. Once a contour is

read, numContour is incremented by one, reflecting the total number of contours
read.

154

B.10.4 Classifying templates
Synopsis

int classify(IMAGE *testimg, CLASSTYPE ClassType = _MARGIN_PROB) ;

Arguments
testimg Testing image.

ClassType | Type of classification :
_MARGIN_PROB, DEFORM_PROB, DEFORM_MATCH or _RIGID_MATCH.

Returns

Classification score.

Description
classify classify rigid and deformable templates directly from the testing im-

age. For each template, it performs localization, minimization and marginaliza-
tion to compute the classify score.

B.10.5 Selecting the best matching contour
Synopsis

int selectMax(ClassTYPE ClassType = _MARGIN_PROB)

Arguments

ClassType | Type of classification :
_MARGIN_PROB, DEFORM_PROB, -DEFORM MATCH or _RIGID_MATCH.

Returns

Index to the template which consists of highest score.

Description

selectMax compares the classify score of templates of type interest and searches
for the highest classify score.

155

B.10.6 Getting the number of templates read
Synopsis

int getNumClass(void)

Returns

Number of templates read.

Description

getNumClass retrieves the number of templates read.

B.10.7 Getting the matching score
Synopsis

double getScore(int template_id, CLASSTYPE ClassType = _MARGIN_PROB)

Arguments
template_id | Target template index.

ClassType Type of classification :
_MARGIN_PROB, DEFORM_PROB, DEFORM_MATCH or _RIGID MATCH.

Returns

Classify score of target template.

Description

getScore retrieves the score of template indexed by template_id.

B.10.8 Printing templates score
Synopsis

void dump(char *imgName, FILE *stream = stdout)

156

Description

dump prints onto screen or file the score of each templates.

B.10.9 Getting label of template
Synopsis

char *getLabel(short class_id)

Arguments

ClassType | Type of classification :
_MARGIN_PROB, DEFORM_PROB, DEFORM MATCH or _RIGID_MATCH.

Returns

Label of template of interest.

Description

getlabel facilitates the retrieval of template label.

B.10.10 Example : Classifying various templates

void testmain(char **imgsamples) /* image samples */
{

register short i ;

CLASSIFY shape(_EDGE) ;

shape.Nrxy = 3 ; /* allow some stretching in
diagonal direction */
if (shape.read("ellip.con") != NOERROR ||
shape.read("rect.con") != NOERROR) {
printf ("cannot find contour files\n") ;
exit(-1) ;

for(i=0; *imgsamples; i++, imgsamples++) {

IMAGE myImage ;

157

if (myImage.read(*imgsamples) != NOERROR)
break ;

int id = shape.classify(&myImage, _MARGIN_PROB) ;
printf("%s : %s\n",*imgsamples,shape.getLabel(id));
shape.dump (*imgsamples) ;

}
exit(0) ;

This program read in two templates, namely ellip.con and rect.con.
classify maginalizes the distribution and returns the matched template. dump
will print on screen the classfy scores of the template.

158

Appendix C

GSNAKE API Command
Line Utilities

GSNAKE is the Open Sourc segmentation tool we have used to build the
lumen segmentation module. This section illustrates the modules that we are
using.

C.1 Image Processing utilities

C.1.1 Image generation: imggen
Synopsis

imggen -[option]<value>

Optional switches

H | Print help screen.
V | Verbose mode.

Contour specifications :

159

C Contour type switch

Circle : Use a circle contour. Default.

Rect : Use a rectangular contour.

Manual : Use mouse to generate contour shape.
Filename : Use contour file.

Mx | Magnification factor in X dimension. Default is 1.
My | magnification factor in Y dimension. Default is 1.

dx | Displacement in X dimension. Default is 0.

dy | Displacement in Y dimension. Default is 0.

R Rotation angle in degrees. Default is 0.

Dx | Dilation in X dimension. Default is 0.

Dy | Dilation in Y dimension. Default is 0.

N Number of snaxels (for circles and rectangles). Default is 8.
X Standard deviation of local deformation. Default is 0.

Image specifications :

Output image name. Default is test.

Number of image rows. Default is 129.

Number of image columns. Default is 129.

Black pixel value. Default is 50.

White pixel value. Default is 150.

Standard deviation of image gaussian noise. Default is 0.

ngwe © ™

Function
imggen generates images based on a _CLOSED contour. The contour can be read

from a given file, generated manually by mouse or automatically by the program
itself. The image file generated will be of SUN raster file type.

Example
imggen -S10 -X0.1 generates an image, test.rs, consists of a circle with the

standard variation of the image noise set at 10, and the standard deviation
deformation set at 0.1.

C.1.2 TImage viewing: imgshow
Synopsis

imgshow <image filel> <image file2> .. -[option]<value>

160

Optional switches

M | Magnification factor.
Default value is 1.

Function

imgshow views images at a specified magnification factor. The file can be of
either _bin or SUN raster type.

Example

imgshow rect.rs.* shows the sequence of images with root name rect.rs.

Error messages

File error Cannot read or open an image file.
Memory error | Memory allocation failure due to incorrect file type.

C.1.3 Gaussian pyramid images generation: imgpyramid
Synopsis

imgpyramid <image file> -[option]<value>

Switches
L Number of levels of pyramid to be generated. Default 2.
M Magnification factor. Default 1.

P1,Ph | Percentage range for histogram specification. Default 0.9-0.95.
VL Vh | Intensity range for histogram specification. Default 0.2-0.9.
E Exponential value for transformation function. Default 1.

Function

imgpyramid displays a pyramid of Gaussian images and edge maps. To increase
robustness, we condition edge maps using default histogram specification pa-
rameters. Histogram equalization can also be done by setting the percentage
range from 0 to 1, and the intensity range from 0 to 1.

161

Example
imgpyramid rect.rs.1 generates image pyramid for the image rect.rs.1 up

to level 2. The gaussian images, edge magnitudes and directions are shown on
the screen.

Error messages

Memory error | Memory allocation failure.
File error Cannot read or open an image file.

C.1.4 Image conditioning : imgcond
Synopsis

imgcond <file> -[option]<value>

Switches

M Magnification factor. Default 1.

P1,Ph | Percentage range for histogram conditioning. Default 0.9-0.95.

VL,Vh | Intensity range for histogram conditioning. Default 0.2-0.9.

E Exponential value for transformation function. Default 1.

0 Output filename, writes image file of SUN raster type if option ’/’ is
available. Otherwise, write file of _bin type.

Function

imgcond performs histogram conditioning of image.

Example

imgcond akina.rs performs histogram equalization on the image akina.rs.

Error messages

Memory error | Memory allocation failure.
File error Cannot read or open an image file.

162

C.1.5 Image learning : imglearn
Synopsis

imglearn <contour> <image samples>

Function

With sufficient training samples, imglearn generate a template with specific
prior knowledge of shape matrix and deformation varaince.

Example

imglearn test.con rect.rs.* uses the series of images with root rect.rs to
learn an contour named test.con. For the first image, the user will first use
the mouse to initialise the snaxel positions. The program will then deform the

snaxels to fit the image using minimax regularisation. The users will be asked
to confirm or move the final positions of the snaxels using the mouse.

Error messages

Memory error | Memory allocation failure.
File error Cannot read or open an image file.

C.2 GSNAKE utilities

C.2.1 Template generation : gsinit
Synopsis

gsinit <file> -[option]<value>

163

Switches

-I Initialization mode. Default mode is automatic.
Submodes :
Drag. Use mouse to drag a contour of desired shape.
¢ Click. Use mouse to click a number of points over the
image. Snaxels will be joined in sequential order.
a Automatic. Generate a template based on the image dimension.
-S Contour mode.
Opened contour.
¢ Closed contour.

-M Magnification factor. Default 1.

-N Number of snaxels. Default 16.

-0 Output file. Default filename jcontour;,
Function

gsinit generates a template of desired shape.

Error messages

Unable to read file | File specified is non existent.
Wrong file format | File specified is not an image file.

C.2.2 Contour viewing: gsshow
Synopsis

gsshow <contour filel> <contour file2> .. -[option]<value>

Switches

M | Magnification factor. Default value is 1.

Function

gsshow views contours at a specified magnification factor. Since the contour
shown will be at the center of a window, it is difficult to visualize translation of
a contour.

164

Error messages

Unable to read file | File specified is non existent.
Wrong file format | File specified is not a contour file.

C.2.3 Contour matching: gsfit
Synopsis

gsfit <image file> <contour file> -[option]<value>

Switches
L Level of pyramid to build to, default 2.
M Magnification factor, default 1.
E External energy input type, default e.

i - Intensity e - Edge Data.

m - Edge Magnitude only.

S Stratified Search spacing.

s - snaxel spacing, default 5.

d - search segment spacing, default 2.

n - number of search segment, default 2.

R Regularization parameter, defaut _LOCAL_MINMAX.

PL,Ph | Percentage range for histogram specification, default 0.9-0.95.
VL,Vh | Intensity range for histogram specification, default 0.2-0.9.

e Exponential Factor, default 1.
/ Activate verbose, default 0.
Function

gsfit performs the match of a deformable contour with the underlying image.

Example

gsfit ellip.rs.1 ellip.con.

Error messages

Memory error | Memory allocation failure.
File error Cannot read or open an image file.

165

Appendix D

STL

D.1 STL Introduction

A standard format for rapid prototyping is the Stereo Lithographic (STL) for-
mat. A set of functions in the C programming language has been developed
for reading and writing STL data in either binary or ascii format. In addition,
functions have been developed to write data in Geomview “OFF” format and
Open Data Explorer format. The basic reading and writing routines uses the
algorithms use the ADMesh routines copyrighted by Anthony D. Martin.

One important attribute of this package is that the internal representation
is that of triangles with vertices labeled by integers. The integers are indices
to an array of points that have floating point positions. The internal format is
more suitable for mesh calculations than is the STL format in which the vertices
are floating point positions. The STL format does not indicate when vertices
of different faces are actually the same point, whereas, the internal format gives
the same index to all vertices that are the same point in space.

An example of usage is shown below.

#include <stdio.h>
#include <string.h>
#include "stereolith.h"

int main(int argc, charx argv[]) {
StlData data;
int status, ifdebug;
char filename[MAX_STEREOLITH_FILENAME_LEN];
char filename_off [MAX_STEREOLITH_FILENAME_LEN];
char filename_dx[MAX_STEREOLITH_FILENAME_LEN];

166

double delta, epsilon;

delta = 0.000002;
epsilon = deltax0.25;
strcpy(filename, "samples/Yoke.stl");
status = read_stl(filename, &data, delta, epsilon);
if(status '= 0) {
fprintf(stderr," Error, read_stl returned %d\n",
status);
fprintf(stderr,"line %d file %s\n"
}
ifdebug = 1;
status = fix_normals(&data, ifdebug);
strcpy(filename_off, "testout.off");
write_stl_to_off(filename_off, &data);
strcpy(filename_dx, "testout.dx");
write_stl_to_dx(filename_dx, &data);

LINE__, __FILE__);

| J——

return O;

D.2 Overall Description

This set includes functions to read and write STL data in either binary or ascii
format. In addition, there are functions to write data in Geomview “OFF”
format and Open Data Explorer format.

One important attribute of this package is that the internal representation
is that of triangles with vertices labeled by integers. The integers are indices
to an array of points that have floating point positions. The internal format is
more suitable for mesh calculations than is the STL format in which the vertices
are floating point positions. The STL format does not indicate when vertices
of different faces are actually the same point, whereas, the internal format gives
the same index to all vertices that are the same point in space.

The function that reads the data is given a double precision number “delta”
which should be smaller than the distance between any two distinct vertices.
Vertices within a distance “delta” are given the same index and assigned to the
same spatial point. The read-in function is also given a double precision number
“epsilon” that is smaller than “delta”. Vertices within a distance epsilon are
considered to be the same point, without a doubt. Vertices separated by more
than epsilon but less than delta are assigned to the same point but a count of
such cases is made and written to standard output. One can think of epsilon as
being a little larger than the uncertainty imposed by the binary representation

167

and one can think of delta as being a little smaller than the minimum resolution
of the machine that will do the prototyping. Testing this program on many files
showed that it was convenient to automatically scale epsilon and delta by the
largest width, length or height of the piece. The read-in program automatically
does a rescaling of delta and epsilon.

This packages requires the hash table functions found in the package HASH.

An example of usage is shown below.

#include <stdio.h>
#include <string.h>
#include "stereolith.h"

int main(int argc, charx argv[]) {
StlData data;
int status, ifdebug;
char filename[MAX_STEREOLITH_FILENAME_LEN];
char filename_off [MAX_STEREOLITH_FILENAME_LEN];
char filename_dx[MAX_STEREOLITH_FILENAME_LEN];
double delta, epsilon;

delta = 0.000002;
epsilon = deltax0.25;
strcpy(filename, "samples/Yoke.stl");
status = read_stl(filename, &data, delta, epsilon);
if (status !'= 0) {
fprintf (stderr," Error, read_stl returned %d\n",
status);
fprintf(stderr,"line %d file %s\n", __LINE__, __FILE_ _);
}
ifdebug = 1;
status = fix_normals(&data, ifdebug);
strcpy(filename_off, "testout.off");
write_stl_to_off(filename_off, &data);
strcpy(filename_dx, "testout.dx");
write_stl_to_dx(filename_dx, &data);

return O;

*/

168

D.3 Description of the functions

Constants for the user

MAX_STEREOLITH FILENAME _LEN This cpp macro is the maximum length
(including end-of-string NULL) of a filename passed to the functions.

Constants used internally

MAX _STEREOLITH HEADER LINE This cpp macro is the size of the string
that holds each line read.

STL_LABEL_SIZE This cpp macro is the size of a binary label.

STL_HEADER_SIZE This cpp macro is the size of a binary header: label plus
number of facets.

SIZEOF _STL_FACET This cpp macro is the size of a block that describes one
facet in a binary file.

Input and output data structures The input and output of binary files has
been taken from the set of utilities called ADMesh.

The structures used include
stl_vertex,
stl_normal,
stl_facet,
stl_extra array,
stl_type enumeration type

ADMesh I/0 functions Reading and writing integers and floating point num-
bers use routines taken from ADMesh, these are

stl_get_little_int,
stl_get_little_float,
stl_put_little_int and
stl_put_little_float.

Vector3 Any vector of three components, whether a normal vector or a position
in space. Vector3 is a typedef for struct space_vector, The components
are x, y and z.

Facet A triangular face. Facet is a typedef for struct one_facet. The compo-
nents, all of type Vector3, are positions vertices[3] and normal normal.
This data structure is used for reading-in the data. The data is then con-
verted to St1Data, which is more useful for describing a mesh.

169

Triangle This type of face has a normal vector, called Vector3 normal and
an index for each vertex, in an integer array int vertices[3]. The index
points into the array points of the struct stl_data.

Triangle is a typedef for struct one_triangle.

StlData The entire surface geometry description is contained in St1Data. Stl-
Data is a typedef for struct stl_data. The components are int num_points,
Vector3 *points, int num_triangles and Triangle *triangles. The
component points is an array of vertex positions. The component trian-
gles is an array of faces. The structure Triangle (— ?7) for each triangle
uses indices that point into the array points.

dot The function dot returns the inner product of two Vector3 parameters.

magnitude The function magnitude returns the magnitude of a Vector3 pa-
rameter.

distance The function distance returns the distance between two Vector3 pa-
rameters.

add The function add returns a Vector3d that is the sum of two Vector3 pa-
rameters.

subtract The function subtract returns a Vector3 that is the difference of two
Vector3 parameters, the first minus the second.

cross The function cross returns a Vector3 that is the cross product of two
Vector3 parameters.

area The function area returns the area between three Vector3 points.

read_stl The function read_stl reads triangles of a surface in STL (stereolitho-
graph) format. Note that when this function returns, space will be al-
located inside a structure StlData given as a parameter. The function
free_stl_data can be used to free that space.

All points with a distance delta of each other are treated as a single point.
The distance epsilon should be smaller than delta and all points within a
distance epsilon are surely the same point. If the distance between two
points is larger than epsilon and smaller than delta, the position data
should be considered ambiguous.

write_ascii_stl The function write_ascii_stl writes data in STL ascii format.

write_binary_stl The function write_binary_stl writes data in STL binary
format. The binary format can have an 80-character ascii label written
before the binary data.

170

free_stl data As well as helping the user avoid dealing with the details of the
stl_data struct, the function free_stl_data assists in the integration with
C++. What is created with “new” should be returned to the heap with
“delete” and what is created with “malloc” should be returned to the heap
with “free”.

write_stl_to_off The function write_stl_to_off writes the surface mesh in Ge-
omview ’off’ format.

write_stl_to_dx The function write_stl_to_dx writes the data in Open Data
Explorer format.

fix_normals The function fix_normals changes the normal vectors of the faces
so that all normals point outward. The function may fail if the surface has
holes or if the inside and outside surfaces are not distinct (a Klein bottle).

171

