
Eurographics Symposium on Point-Based Graphics (2004)
M. Alexa, S. Rusinkiewicz, (Editors)

Layered Point Clouds

Enrico Gobbetti and Fabio Marton

CRS4 Visual Computing Group†

Abstract
We present a simple point-based multiresolution structure for interactive visualization of very large point sampled
models on consumer graphics platforms. The structure is based on a hierarchy of precomputed object-space point
clouds. At rendering time, the clouds are combined coarse-to-fine with a top-down structure traversal to locally
adapt sample densities according to the projected size in the image. Since each cloud is made of a few thousands
of samples, the multiresolution extraction cost is amortized over many graphics primitives, and host-to-graphics
communication effectively exploits on-board caching and object based rendering APIs. The progressive block
based refinement nature of the rendering traversal is well suited to hiding out-of-core data access latency, and
lends itself well to incorporate backface, view frustum, and occlusion culling, as well as compression and view-
dependent progressive transmission. The resulting system allows rendering of complex models at high frame rates
(over 60M splat/second), supports network streaming, and is fundamentally simple to implement.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Out-Of-Core Algorithms,
Level of Detail

1. Introduction

Current 3D digital photography and 3D scanning systems
make it possible to acquire at high resolution both geometry
and appearance of complex, real-world objects. At the same
time, the size and complexity of isosurfaces generated by
numerical simulation is steadily growing, due to the prolif-
eration and performance of affordable scalable high perfor-
mance computers. Despite the rapid improvement in graph-
ics hardware performance, rendering at interactive speeds
the huge datasets generated by the acquisition and simula-
tion pipe-lines remains a very challenging problem, since
they still largely overload the performance and memory ca-
pacity of state-of-the-art graphics and computational plat-
forms. For such complex and dense models, multiresolu-
tion hierarchies of point primitives have recently emerged
as a viable alternative to the more traditional mesh refine-
ment [RL00]. These methods are based on the assumption
that model sampling rate is so high that triangles are pro-
jected to such small screen areas that the advantage of scan-
line coherence are lost, and appropriately selected point sam-

† CRS4, POLARIS Edificio 1, 09010 Pula (CA), Italy –
http://www.crs4.it/vic/ – first.last@crs4.it

ples are sufficient to accurately reproduce the model. One of
the major benefits of this approach is its simplicity, stem-
ming from the fact that there is no need to explicitly manage
and maintain mesh connectivity during both preprocessing
and rendering.

Unfortunately, current dynamic multiresolution algo-
rithms for large models are very CPU intensive: nowadays,
consumer graphics hardware is able to sustain a rendering
rate of tens of millions of point primitives per second, but
current multiresolution solutions fall short of reaching such
performance. This is because the CPU is not able to gener-
ate/extract point samples from the out-of-core structure and
send them fast enough to the graphics hardware in the cor-
rect format and through a preferential data path.

Our contribution is a simple point-based solution for
high performance view dependent visualization of very large
static point sampled models on consumer graphics plat-
forms. The underlying idea of the method is to reduce the
per-primitive structure overhead by moving the grain of the
multiresolution model from a hierarchy of point samples to a
hierarchy of precomputed object-space point clouds. At ren-
dering time, the clouds are combined coarse-to-fine with a
stateless top-down structure traversal to locally adapt sample
densities according to the projected size in the image. Since

c© The Eurographics Association 2004.

E. Gobbetti & F. Marton / Layered Point Clouds

each cloud is made of a few thousands of samples, the mul-
tiresolution extraction cost is amortized over many graphics
primitives, and host-to-graphics communication can effec-
tively exploit on-board caching and object based rendering
APIs. The progressive block based refinement nature of the
rendering traversal is well suited to hiding out-of-core data
access latency, and lends itself well to incorporate backface,
view frustum, and occlusion culling, as well as compression
and view-dependent progressive transmission. The resulting
system allows rendering of local and remote models of hun-
dreds of millions of samples at high frame rates (over 60M
splat/second), supports network streaming and is fundamen-
tally simple to implement.

The rest of the paper is organized as follows. Section 2 re-
views related works. The details of the proposed data struc-
ture are presented in section 3, while section 4 describes al-
gorithms for view-dependent refinement and rendering, and
section 5 propose a simple out-of-core technique for con-
structing the multiresolution model. The efficiency of the
approach is demonstrated with the inspection of a number of
very large models, including a massive 234M samples iso-
surface generated by a compressible turbulence simulation,
that exhibits a huge (>100) depth complexity, and a 167M
samples model of Michelangelo’s St. Matthew (section 6).

2. Related Work

Point-based 3D graphics techniques for processing and ren-
dering of dense models are an old idea [LW85, Gro98], that
has found many successful applications, including point-
based modeling, high quality and interactive rendering, as
well as coding and transmission of point-based models.

Our focus is the development of systems for the dis-
tribution and high speed interactive visual inspection of
very large models on commodity graphics platforms. QS-
plat [RL00] is the reference system in this particular area.
The system is based on a hierarchy of bounding spheres
maintained out-of-core, that is traversed at run-time to gen-
erate points. This algorithm is CPU bound, because all the
computations are made per point, and CPU/GPU communi-
cation requires a direct rendering interface, thus the graphic
board is never exploited at his maximum performance. In
Streaming QSplat [RL01], the QSplat data structure is sub-
divided into chunks, that are however only used for stream-
ing objects over networks. The rendering procedure remains
a hierarchical traversal done on the CPU, with the additional
book-keeping required to check the local availability of data.
Kalaiah and Varshney [KV03] have recently proposed to im-
prove the geometry bandwidth bottleneck by working on a
compressed point sample geometry model obtained by prin-
cipal component analysis. Even if they use a large cache of
40M points, the need to regenerate a large number of small
point clusters per frame from statistical information leads to
a rendering speed which is roughly half the speed of QSplat.
We exploit instead a partitioning of the model into clouds to

improve the efficiency of CPU/GPU communication through
a batched communication protocol and to support conser-
vative occlusion culling for high depth complexity models.
This provides at least an order of magnitude improvement in
rendering rate on current commodity graphics platforms.

A number of authors have also proposed various ways
to push the rendering performance limits in particular sit-
uations. The randomized z-buffer [WFP∗01] uses a hier-
archical traversal of a structure where the leaf nodes con-
tain arrays of random point samples. Stamminger and Dret-
takis [SD01] dynamically adjusts the point sampling rate
for rendering complex procedural geometry at high frame
rates. They require a parameterization of the model, while
we focus on unstructured point samples. Dachsbacher et
al. [DVS03] recently presented a hierarchical LOD structure
for points that is adaptively rendered by sequential process-
ing done on the GPU. They report a peak performance of
over 50M unfiltered points per second, which is similar to
ours, but they are limited in the size of the rendered model,
which must fit into the video card memory, while our work
focuses instead on very large local and remote models.

There is a large body of work that aims at improv-
ing the rendering quality of point-sampled models. For
dense models, these include using spheres [RL00], tangen-
tial disks [PZvBG00, ZPvBG01], or high degree polyno-
mials [ABCO∗01] instead of raw point primitives, as well
as improving filtering in image space [ZPvBG01] or ob-
ject space [RPZ02]. Such work is orthogonal to ours, which
focuses on finding simple ways to improve raw render-
ing performance on very large models by amortizing costs
on groups of many graphics primitives. Merging these two
directions, possibly by exploiting GPU programming as
in [BK03], is a main avenue for future work.

3. Multiresolution model

We assume that the input model is represented by a set of
N sample points uniformly distributed over its surface, with
an average spacing between samples equal to r. Each sample
point is associated with a set of surface attributes, including
position, normal, and possibly color information.

Our multiresolution approach creates a hierarchy over the
samples of the datasets, simply by reordering and cluster-
ing them into point clouds of approximately constant size
arranged in a binary tree. In other words, the final mul-
tiresolution model has exactly the same points of the in-
put model, but grouped into chunks and organized in a
level of detail representation. The root of the level of de-
tail tree represents the entire model with a single cloud of
M0 = M < N uniformly distributed samples. The remaining
points are equally subdivided among the two subtrees us-
ing a spatial partition, with, again, M uniformly distributed
points directly associated to the root of each subtree, and
the rest redistributed in the children. The leaves are termi-

c© The Eurographics Association 2004.

E. Gobbetti & F. Marton / Layered Point Clouds

nal clusters, which are further indivisible and whose size is
smaller than the specified limit M.

Variable resolution representations of the models are ob-
tained by defining a cut of the hierarchy and merging all
nodes above the cut. This way, each node acts as a refine-
ment of a small contiguous region of the parent. The root
node is the coarsest available model representation, with a

average sample spacing of r0 = r
√

N
M0

. Each node j, then,
locally refines its parent by adding additional M j samples
to the representation. That is, the total number of samples
M(tot)

j extracted in the region associated to node j is recur-
sively defined by

M(tot)
j =

N j

Nparent(j) −Mparent(j)
M(tot)

parent(j) +M j (1)

where Nk is the total number of samples in the subtree rooted
at k, and for the root M(tot)

0 = M0. Because of our uniform
sampling assumption, the resulting average sample spacing
of the region of a non-root node is thus decreased to

r j = rparent(j)

√

√

√

√

√

N jM
(tot)
parent(j)

(Nparent(j) −Mparent(j))M
(tot)
j

(2)

By storing at each node j the value of r j along with its
point cloud, we can thus rapidly obtain a variable accu-
racy representation by traversing top down the hierarchy,
while accumulating point clouds until the desired density
is reached (see figure 1). Since we are interested in view-
dependent representations, we also precompute the bound-
ing sphere and bounding cone of normals of each node.
These are used for projecting the mean sample distance to
the screen, as well as for view-frustum, backfacing, and oc-
clusion culling (see section 4).

The benefits of this approach are that the workload re-
quired for a unit refinement/coarsening step is amortized on
a large number of point primitives, and that the small point
clusters can be optimized off-line for best performance in
host-to-graphics and network communication. By tuning the
value of parameter M, we can vary the granularity of the
structure from a total multi-resolution model (e.g., QSplat
for M = 1) to a single-resolution model for point render-
ing (M = N). The choice of parameter M is dictated by per-
formance considerations. In particular, if M is too large, the
model becomes less adaptive, and switching from a resolu-
tion level to the next leads to a high latency. On the other
hand, if M is too small, the model is more adaptive but CPU
costs become non negligible. On current graphics platforms,
we have empirically determined that the best performance
trade-offs are obtained for values of M ranging from 512 to
8192.

(a) level: 0,
clusters: 2,
splats: 4K

(b) level: 0+1,
clusters: 6,
splats: 12K

(c) pixel tol.:
1, clusters:
1720, splats:
3435K

Figure 1: David 1mm different level representations. The
original model is made of 28M points. The images illustrate
how clusters of finer levels add information to the coarser
representations.

4. The rendering pipe-line

Our adaptive rendering algorithm works on a standard PC,
and data is assumed to be either locally stored on a sec-
ondary storage unit directly visible to the rendering engine
or remotely stored on a network server (see figure 2).

Data layout and data access. The hierarchical data struc-
ture is split into an index tree and a point cloud repository.
The index tree has a small footprint, since it contains, for
each node, just the data required for traversal (sample spac-
ing, bounding sphere, bounding cone of normals, and index
of the two children), and refers to the associated point cloud
through a 32 bit index that uniquely identifies the cloud in
the repository. The repository is organized so that the data
storage order reflects traversal order, which is coarse to fine
and by physical position in space. We thus sort point clouds
in the repository using as a primary key their tree level,
and as a secondary key the Morton index of their bound-
ing sphere center [Sam90]. For disk storage and data trans-
mission, each cloud is managed in compressed form. The
point cloud is spatially sorted, then each attribute is quan-
tized, delta encoded, and then entropy encoded with the LZO
compressor†. Access to the point cloud repository is made
through a data access layer, that masks to the application
whether the repository is local or remote. This layer makes
it possible to asynchronously move in-core a point cloud by
fetching it from the repository, to test whether a point cloud
is immediately available, and to retrieve its representation.
We have implemented two versions of this access layer: the

† LZO is a data compression library based on a Lem-
pel Ziv variant which is suitable for data decompres-
sion in real-time. The library source is available from
http://www.oberhumer.com/opensource/lzo/

c© The Eurographics Association 2004.

E. Gobbetti & F. Marton / Layered Point Clouds

first one provides direct disk access through memory map-
ping functions and is used for local files as well as remote
NFS mounted files. The second one is based on the HTTP
1.1 protocol and, similarly to Streaming QSplat [RL01],
fetches data from a standard HTTP server using range re-
quests and permanent connections.

GPU Cache

Cloud
Repository

Index
Tree

CLIENT

Cloud Index
Adaptive
Renderer Point Set

Point
Sets

SERVER

Index
Tree

Tree LayersView
Parameters

DATA
ACCESS
LAYER

Network / System Bus

Figure 2: The rendering pipeline. The client traverses the
index tree coarse-to-fine in a view-dependent manner, re-
questing point clouds to the server. To maximize rendering
performance and minimize traffic, point clouds are cached
on board using a LRU strategy.

Progressive view-dependent refinement. The traversal al-
gorithm, which extracts a view dependent representation of
the multiresolution model from the current point of view, is
based on a stateless coarse-to-fine refinement of our struc-
ture, that exploits the progressive nature and coarse granu-
larity of the multiresolution hierarchy to reduce CPU refine-
ment costs and to improve repository-to-host and host-to-
graphics communication. In particular, asynchronous repos-
itory requests hide out-of-core data access latency, and com-
munication with the GPU is made exclusively through a re-
tained mode interface, which reduces bus traffic by manag-
ing a least-recently-used cache of point clouds maintained
on-board as OpenGL Vertex Buffer Object.

The user selected pixel threshold is the value that drives
the refinement of the rendering algorithm: this value repre-
sents the required average sample distance between adjacent
splats on the screen, and it is used as splat size. The refine-
ment algorithm performs a single pass recursive traversal
of the multiresolution structure. For each node, we use its
bounding sphere and normal cone to test whether the node is
totally outside the view frustum or totally backfacing. In this
case, recursion stops, discarding the entire branch of the tree,
otherwise we can render the node and, eventually, continue
the refinement with its children. Since we are focusing on
high speed visualization, our current implementation simply
uses OpenGL hardware supported points for point cloud ren-
dering. This fact limits our ability to correctly treat texture
and transparency. Using ellipsoidal splats computed on the
GPU, as in, e.g, [BK03], would resolve these problems.

At node rendering time, we project the node’s hierarchi-
cal average sample distance to the screen to obtain its splat

size. A consistent upper bound on the projected size is ob-
tained by measuring the apparent size of a sphere with diam-
eter equal to the object space average sample distance and
centered at the bounding sphere point closest to the view-
point. If the projected splat size is less than the threshold,
we render the node’s point cloud with the prescribed splat
size and stop recursion, otherwise a refinement is needed.
In that case, to avoid blocking the renderer because of data
access latency, especially in the case of rendering data over
wide-area networks, we first check whether the node’s chil-
dren data is immediately available, i.e., if it is already in the
GPU cache or considered in-core by the data access layer.
If so, we continue recursion, otherwise recursion stops and
the node is rendered with an increased splat size, equal to
its projected mean sample distance, to cover holes left by
children unavailability. Fetch requests are then pushed in a
priority queue. Similarly to Streaming QSplat [RL01], the
request queue is traversed in order of priority at the end of
the frame, issuing only as many requests as those allowed
by the estimated network bandwidth, and forgetting the re-
maining ones. Since the repository is sorted coarse to fine
and by physical position in space, prioritizing the queue by
node’s index provides a simple compromise that is both I/O
efficient and promises to download the most relevant data as
soon as possible while being enough space coherent to min-
imize visual distraction.

Rendering on a budget. For interactive applications, it is
often useful to have direct control on rendering time, instead
of the control on rendering quality provided by prescribing
a screen error tolerance for the refinement method. In ad-
dition to adjusting error tolerance per frame in a feedback
loop, we can exploit the fact that our hierarchy is shallow to
implement a predictive technique. Given a desired number
of points per frame, we perform a binary search of the as-
sociated pixel threshold, by repeatedly traversing the index
tree with the same refinement logic used for rendering, while
only counting the number of generated primitives.

Occlusion culling. A number of complex dense models,
such as large isosurfaces deriving from numerical simulation
of turbulence (e.g., [GDL∗02, MCC∗99]) have an important
depth complexity. For these models, efficiently culling the
invisible portion of the rendered model is of primary impor-
tance to avoid uploading, refining, and rendering unneces-
sary data (see figure 3). Since our structure is coarse grained
and provides a spatial partition, we can adapt to a point ren-
dering framework visibility techniques developed for ren-
dering scenes composed of many objects. Similarly to the
approach introduced by Toon et al. [YSM03] for complex
CAD environments, our rendering algorithm exploits frame-
to-frame coherence in occlusion culling, by using the set of
visible point clouds from the previous frame as the occluder
set for the current frame. At each frame, we render the ob-
ject in three phases. In the first phase, we perform the usual
refinement algorithm, but accumulate the clouds that would

c© The Eurographics Association 2004.

E. Gobbetti & F. Marton / Layered Point Clouds

be rendered in a list of potentially visible objects, while only
rendering the point clouds that were visible in the previous
frame. In a second phase, we traverse the entire list of ac-
cumulated point sets, generating a hardware occlusion query
for the object’s bounding sphere (approximated by an icosa-
hedron), using OpenGL ARB_occlusion_query extension to
track the number of fragments that pass the depth test. In a
third and final pass, we traverse again the list of clouds and
query the associated occlusion query object for the number
of passed fragments. If this number is above a given thresh-
old, we insert the cloud index in next frame’s occluder list
and, if the cloud was not among those rendered in the first
pass, we proceed render it. With this method, the only addi-
tional cost of occlusion culling is the generation and test of
occlusion queries. This cost can be further reduced by only
checking once every few frames if previous frame occluders
are still visible.

Figure 3: Occlusion culling. Closeup view of an isosur-
face feature in the mixing interface of two gases for a
simulation of a Richtmyer-Meshkov instability in a shock
tube [MCC∗99] rendered at 1 pixel tolerance on a 335x335
window. Without occlusion culling: 12976 patches, 24M
splats, 1.7 fps; with occlusion culling: 3490 patches, 6.3M
splats, 5.5 fps.

5. Construction

The multiresolution point-cloud structure is constructed
off-line starting from a generic point cloud model. We
have implemented a simple I/O efficient recursive clus-
tering method, that is implemented with a single out-of-
core component: a standard C++ array (compatible with

std::vector), that encapsulates a resizable file accessed
through system memory mapping functions. The procedure
consists of two phases.

Recursive partitioning. The first phase partitions the input
dataset into a tree of point clouds. The partitioning procedure
takes as input an external memory array of uniformly dis-
tributed point samples, together with its bounding volume.
If the number of points N is less than the predefined node
sample count M, a leaf node is generated, otherwise M sam-
ples are extracted by uniform subsampling, and the remain-
ing samples are distributed to the two children by bisecting
the bounding box at the midpoint of its longest axis, and
recursively continuing the partitioning procedure. A simple
and I/O efficient approach to the subsampling problem is to
pick K ∗M,K > 1 random samples from the point set using
a Russian roulette approach during the linear scan required
for the partitioning. Once the K ∗M samples are in-core, we
random shuffle them, select the first M samples, and redis-
tribute the remaining (K − 1) ∗M samples to the two chil-
dren. The technique does not ensure that splat size is con-
stant per cloud, but maintains it reasonably close to the av-
erage value for complex models. Since the screen projection
operation is very conservative, we have found this sufficient
in practice to produce images without holes with a quality
comparable to that of QSplat.

Structure construction. The end result of the partitioning
procedure is a tree of nodes, which provides the layout for
the index tree, and a set of point clouds, that will be part
of the repository. In a second phase, we thus complete the
structure by traversing the nodes in the order in which they
are stored in the repository (i.e., by level and then by Morton
index), computing the index node data (hierarchical sample
spacing, bounding sphere, and bounding cone of normals),
and converting the point cloud to the final compressed rep-
resentation.

6. Results

The proposed method has been used to develop a C++ ap-
plication which makes use of OpenGL on a Linux plat-
form. Several tests have been performed on preprocessing
and rendering of a number of very large models (see fig-
ure 4). The largest model is a full resolution isosurface of
the mixing interface from the Gordon Bell Prize winning
simulation of a Richtmyer-Meshkov instability in a shock
tube experiment [MCC∗99], that consists of over 234M sam-
ple points extracted from a 2048x2048x1920 8bit grid. This
model is convoluted and has a huge depth complexity (>100)
from all viewpoints. The other test cases are high resolution
scans of the St. Matthew and David statues from The Digital
Michelangelo repository.

Preprocessing. Table 1 shows numerical results for the out-
of-core preprocessing of our algorithm, relative to all test

c© The Eurographics Association 2004.

E. Gobbetti & F. Marton / Layered Point Clouds

(a) David 2mm (4M samples) and 1mm (28M samples)

(b) St. Matthew 0.25mm (167M samples)

(c) Mixing interface isosurface (234M samples)

Figure 4: Test models. The main images show the models as presented to the user during interactive inspection sessions, while
the inset images illustrate the subdivision structure.

cases. The preprocessing has been evaluated on a PC run-
ning Linux 2.4, with two Athlon 2200+ CPUs, 1GB DDR
memory, a 70GB ATA 133 hard disk. All the multiresolu-
tion models have been constructed with M set to 2K sam-
ples/node, using 16 bit/normal quantization and a position
quantization ensuring a quantization error inferior to half of
the input sampling distance. Overall processing times range
from 18K samples/s to 30K samples/s depending on the
processor load, and is dominated by disk access times and
LZO compression. Compression rates exceed those of QS-
plat (around 50bits/sample) and other similar systems based
on a point hierarchy, but do not match those of state-of-the-
art compression systems, since our current implementation
has favored ease of coding through the exploitation of gen-

eral purpose compression libraries. They could be improved
by exploiting the locality of each patch, quantizing attributes
relative to each cluster’s contents.

Output
Bit /

Sample
Total

time (s)
Norm

Quant.
 (bits)

Pos.
Quant.
(bits)

Extent
(mm)SamplesModel

Disk usage (MB)

in out

David 2mm 4,138,653 5,200 3x13 16 142 95 20 40

David 1mm 28,120,980 5,200 3x14 16 1,233 644 126 37

St. Matthew 167,324,853 2,700 3x15 16 8,820 3,830 777 39

PPM Isosurface 234,717,830 2,048 3x13 16 13,357 5,372 925 33

Table 1: Numerical results for out-of-core construction.
Tests performed on a single PC. All times are in seconds.

c© The Eurographics Association 2004.

E. Gobbetti & F. Marton / Layered Point Clouds

(a) 1s (b) 10s

(c) 20s (d) 30s
Figure 5: Streaming. Progressive refinement of the mixing interface isosurface (234M samples) on a ADSL connection at
1.25M bps. The main images show the model as presented to the user, while the inset images illustrate progressive refinement.
Yellow patches indicate areas where refinement stops because of missing data.

View-dependent refinement. We evaluated the perfor-
mance of our view-dependent refinement technique on a
number of inspection sequences over the test case models.
The results were collected on a Linux PC with a Intel Xeon
2.4 GHz, 2GB RAM, two Seagate ST373453LW 70 GB UL-
TRA SCSI 320 hard drives, AGP 8x and NVIDIA GeForce
FX 5800 Ultra graphics. During the entire walkthrough, the
resident set size of the application for the largest test case
never exceeded 242MB, i.e. less than 27% of the out-of-
core data size, demonstrating the effectiveness of out-of-
core data management. The qualitative performance of our
view-dependent refinement is illustrated in an accompanying
video that shows recorded live sequences‡. As demonstrated
in the videos on the 3D scanning models, that do not employ
occlusion culling, we can sustain an average rendering rate
of around 40M splat/s, with peaks exceeding 68M splat/s.
By comparison, on the same machine, the peak performance
of QSplat, was measured at roughly 3.6M splats/s when us-
ing the GL_POINTS rendering primitive. For the inspection
of the 234M samples isosurface, which has a huge depth
complexity, we have enabled occlusion culling. On average

‡ The video is available from:
http://www.crs4.it/vic/multimedia/

50% of the patches are detected as occluded, strongly dimin-
ishing data access and rendering times. The average render-
ing rate drops in this case to around 30M splat/s, which is
still about an order of magnitude faster than that of QSplat.
For the same view, and with the same screen space toler-
ance, we have measured that our method renders up to 10%
more points than QSplat. This is because grouping points
into clouds for all operations forces us to be more conser-
vative in the projection. The increase in number of points is
however compensated by a much larger increase in render-
ing speed.

Network streaming. Some network tests have been per-
formed on all test models, on a local area network at
100Mbps and on a ADSL at 1.2M bps, using both NFS
mounts and HTTP 1.1 connections. As illustrated in the
video, rendering rate remains the same as that of the local file
version, but updates asynchronously arrive with increased la-
tency. The effect is illustrated in figure 5, which shows the
progressive refinement of the largest dataset on a machine
connected through ADSL to a moderately loaded Linux box
running a Apache web server. Even though the HTTP 1.1 is
far from being optimal for the task, the application remains
usable even for very large models on consumer-level net-
work connections. The first images in the progressive refine-

c© The Eurographics Association 2004.

E. Gobbetti & F. Marton / Layered Point Clouds

ment sequence also illustrate that a heavy subsampling on
coarser scales can lead to strong aliasing artifacts for very
comples models, as the average sampling distance is sig-
nificantly below Nyquist frequency. Our static sample ran-
domization replaces missing data with random information
which is stable over time, thus the visual effect of aliasing is
less noticeable as it would be for a regular sampling at sim-
ilarly coarse resolutions. Nevertheless, for some models the
occurring aliasing could notably diminish visual quality. Im-
proving this aspect is an important avenue for future work.

7. Conclusions

We have presented a simple point-based multiresolution
structure for interactive out-of-core visualization of very
large point models on consumer graphics platforms. The sys-
tem is comparable in both implementation complexity and
image quality to (Streaming) QSplat. Despite its simplicity,
it is able to handle models of much higher depth complexity
and is at least an order of magnitude faster in terms of render-
ing speed. The current major limitation is in image quality.
Since we are focusing on high speed visualization, we sim-
ply use OpenGL hardware supported points for point cloud
rendering, and do not use a per-sample splat size, which lim-
its our ability to correctly treat texture and transparency. The
integration with more advanced filtering techniques imple-
mented on the GPU would resolve these problems without
compromising too much rendering speed. Given its simplic-
ity, the method is of immediate practical interest, and inserts
itself in the current stream of techniques where the power
of current graphics architectures is exploited through coarse
grained multiresolution structures.

Acknowledgments. We are grateful to the Stanford Graphics
Group and the Lawrence Livermore National Laboratories for mak-
ing benchmark datasets available. Special thanks also go to Valerio
Pascucci (LLNL) and Marco Agus (CRS4).

References
[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN

S., LEVIN D., SILVA C. T.: Point set surfaces. In
Proceedings of the conference on Visualization ’01
(2001), IEEE Computer Society, pp. 21–28. 2

[BK03] BOTSCH M., KOBBELT L.: High-quality point-based
rendering on modern GPUs. In Proc. Pacific Graphics
(2003), pp. 335–343. 2, 4

[DVS03] DACHSBACHER C., VOGELSGANG C., STAM-
MINGER M.: Sequential point trees. In Proc. SIG-
GRAPH (2003). 2

[GDL∗02] GREGORSKI B., DUCHAINEAU M., LINDSTROM P.,
PASCUCCI V., JOY K. I.: Interactive view-dependent
rendering of large IsoSurfaces. In Proceedings of the
13th IEEE Visualization 2002 Conference (VIS-02)
(Piscataway, NJ, Oct. 27– Nov. 1 2002), Moorhead
R., Gross M.„ Joy K. I., (Eds.), IEEE Computer Soci-
ety, pp. 475–484. 4

[Gro98] GROSSMAN J. P.: Point Sample Rendering. Master’s
thesis, Dept. of Electrical Engineering and Computer
Science, MIT, 1998. 2

[KV03] KALAIAH A., VARSHNEY A.: Statistical point geom-
etry. In Proceedings of the Eurographics/ACM SIG-
GRAPH symposium on Geometry processing (2003),
Eurographics Association, pp. 107–115. 2

[LW85] LEVOY M., WHITTED T.: The use of points as a dis-
play primitive. Tech. Rep. TR 85-022, University of
North Carolina at Chapel Hill, 1985. 2

[MCC∗99] MIRIN A. A., COHEN R. H., CURTIS B. C., DAN-
NEVIK W. P., DIMITS A. M., DUCHAINEAU M. A.,
ELIASON D. E., SCHIKORE D. R., ANDERSON

S. E., PORTER D. H., WOODWARD P. R., SHIEH

L. J., WHITE S. W.: Very high resolution simula-
tion of compressible turbulence on the IBM-SP sys-
tem. In Supercomputing ’99 (1999), ACM Press and
IEEE Computer Society Press. 4, 5

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS

M.: Surfels: Surface elements as rendering primi-
tives. In SIGGRAPH 2000, Computer Graphics Pro-
ceedings (2000), Akeley K., (Ed.), Annual Confer-
ence Series, ACM Press - Addison Wesley Longman,
pp. 335–342. 2

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A mul-
tiresolution point rendering system for large meshes.
In Comp. Graph. Proc., Annual Conf. Series (SIG-
GRAPH 00) (July 24-28 2000), ACM Press, pp. 343–
352. 1, 2

[RL01] RUSINKIEWICZ S., LEVOY M.: Streaming qsplat:
A viewer for networked visualization of large, dense
models. In Symposium for Interactive 3D Graphics
Proceedings (2001). 2, 4

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object space
EWA surface splatting: A hardware accelerated ap-
proach to high quality point rendering. EURO-
GRAPHICS 2002 Proceedings (2002). 2

[Sam90] SAMET H.: The design and Analysis of Spatial Data
Structures. Addison Wesley, Reading, MA, 1990. 3

[SD01] STAMMINGER M., DRETTAKIS G.: Interactive sam-
pling and rendering for complex and procedural ge-
ometry. In Proceedings of the 12th Eurographics
Workshop on Rendering Techniques (2001), Springer-
Verlag, pp. 151–162. 2

[WFP∗01] WAND M., FISCHER M., PETER I., AUF DER HEIDE

F. M., STRASSER W.: The randomized z-buffer algo-
rithm: Interactive rendering of highly complex scenes.
In Siggraph 2001 Proceedings (2001). 2

[YSM03] YOON S.-E., SALOMON B., MANOCHA D.: Interac-
tive view-dependent rendering with conservative oc-
clusion culling in complex environments. In Proc.
IEEE Visualization (2003). 4

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: Surface splatting. In Siggraph 2001 Proceedings
(2001). 2

c© The Eurographics Association 2004.

