
XPSuite: Tracking and Managing XP projects in the IDE

M. Angioni †
angioni@crs4.it

D. Carboni †
dcarboni@crs4.it

M. Melis ‡

marco.melis@diee.unica.it

S. Pinna ‡

pinnasandro@diee.unica.it
R. Sanna †

raffa@crs4.it
A. Soro †

asoro@crs4.it

† CRS4 - Center for Advanced Studies, Research and Development in Sardinia
Parco Scientifico e Tecnologico, POLARIS

09010 PULA (CA - Italy)

‡ Dipartimento di Ingegneria e Elettrica ed Elettronica
Università di Cagliari

Piazza D’Armi, 09123 Cagliari, Italy

ABSTRACT
In this paper we describe XPSuite, a tool comprising two
parts: XPSwiki, a tool for managing XP projects and
XP4IDE, a plug-in for integrating XPSwiki with the IDE
IntelliJ-Idea. The reasons for this integration and the ability
of XPSuite to collect process metrics are described. The
system has a full object oriented implementation so it is
possible to extract all data represented in the model that
the system implements.

Categories and Subject Descriptors
D.2.1 [Software]: Software Engineering Requirements/Spe-
cifications [Tools]; D.2.6 [Software]: Software Engineer-
ing Programming Environments [Integrated environments];
D.2.8 [Software]: Software Engineering Metrics

General Terms
Measurement, Management

Keywords
Process data, software project management tool, Extreme
Programming

1. INTRODUCTION
Extreme Programming is a software development method-

ology which does not rely on any particular tool, but rather

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2005 ACM 1-59593-002-7/04/0011/5.00 ...$5.00.

is based on the common understanding of fundamental val-
ues and on a disciplined application of best practices. In par-
ticular, projects developed with XP show that good results
can be obtained using sheets of papers to collect user re-
quirements, wall boards to show diagrams and other project-
relevant information, and shared workspaces to maximize
face-to-face communication. Nevertheless, there are a num-
ber of reasons that may lead XP teams to adopt software
and Internet based tools to facilitate application of XP prac-
tices:

• process data can be automatically collected and ana-
lyzed afterwards. The process can be validated and
team activities can be more effectively measured;

• managers and customers have the feeling that tools are
something more “concrete” than pure methodologies;

• dispersed teams can work together with appropriate
Internet connections.

In this paper we will describe XPSuite, a two-part tool in-
corporating XPSwiki, a tool for managing XP projects and
XP4IDE, a plug-in for integrating XPSwiki with the IDE
IntelliJ-Idea. The reasons for this integration and the abil-
ity of XPSuite to collect process metrics will be described.
The system has a full object oriented implementation so it
is possible to extract all data represented in the developed
model.

In section §2 we briefly introduce the XP methodology
and process. Section §3 contains a description of possible
metrics for an XP process. In section §4 we present XPSuite,
the suite of Internet tools we have developed for eliciting
requirements, collection of user stories, process tracking and
process data collection, while in section §5, we describe the
underline conceptual model. Finally, section §6 describes the
functionalities of this suite of tools while section §7 briefly
discusses privacy issues.

Figure 1: The GUI of XPSwiki.

2. SHORT INTRODUCTION TO XP
Extreme Programming (XP) is an agile methodology for

software development. “Agile” means that the primary goal
is to continuously adapt activities to mutable requirements,
mutable environmental factors and mutable market condi-
tions. Simplicity, communication, feedback, and courage are
the founding values of XP and all the XP best practices
are coherent with these values (for a complete description
of XP see [4]). XP is “extreme” because it carries to an
extreme degree some of the best practices already used in
traditional software development. For instance, if unit test-
ing produces high quality code then it must be applied to
its extremes writing test cases before the code to be tested.
Similarly, if refactoring produces a code easier to maintain
and to extend, then “refactor mercilessly”. Also communi-
cation is “extreme”: to avoid any misunderstanding and to
develop exactly what is required, the customer (or an effec-
tive representative) is “embedded” as a member of the team
and meetings are held on a daily basis to promptly identify
problems and propose corrective actions.

The first phase of an XP project is the Planning Game,
where developers and customers elicit requirements and de-
fine the functionalities to be developed during the project.
Customers describe functionalities in informal descriptions
called User Stories, which are assigned with a business value
and a priority. Effort required for implementing a story
is estimated by developers, who divide stories into micro-
activities, called Tasks, to be performed in 2-3 ideal working
days. Developers choose voluntarily which task to develop
and take responsibility for their task being completed on

time.
Each story generally requires an effort of 1-2 weeks. Sto-

ries are grouped into Iterations with a duration of 2-3 weeks.
After a cycle of 2-3 iterations, the product is released to
the customer. The customer is aware that the first release
will provide only some functionalities and that many re-
leases could be necessary before all functionalities are im-
plemented.

One of the team members plays the role of Tracker. Track-
ing is the critical activity of measuring the team’s progress.
The essence of tracking is the face-to-face contact and a cou-
ple of questions per task. In fact, the tracker asks developers
two questions about each task they have signed up for:

• how many ideal days have you worked on this?

• how many more ideal days do you need before you’ve
done?

This information is critical to assess whether or not the effort
estimated during the Planning Game is realistic.

3. MEASURING THE XP PROCESS
Measuring is a key factor in all engineering disciplines as

“You cannot control what you cannot measure” (Tom De-
Marco). The objective of measuring something is to control,
verify, estimate, and support decisions. What exactly is be-
ing measured can change depending on the point of view:

• human factors researchers may be interested in mech-
anisms and behaviors peculiar to an XP project [7];

Figure 2: The GUI of XP4IDE embedded in IntelliJ IDEA.

• industry managers are mainly interested in maximiz-
ing the value of products minimizing costs and time to
market;

• engineers may be interested in measuring product qual-
ity to decide what has to be changed in the process to
improve the quality.

The quantitative assessment of an on-going project is of pri-
mary concern for monitoring actual versus scheduled progress,
so that any necessary corrective action can be taken. In an
agile process, this assessment must be immediate and effec-
tive in order to cope with the impact of changes in require-
ments, technology, budget and staff. One of the principles
in the Agile Manifesto [1] states:

At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Consider, as an example of XP tuning, the effort estimated
by developers during the Planning Game. More precisely,
developers are expected to read a User Story, which de-
scribes a system functionality, and to evaluate how many
working days they need to fully implement such a function-
ality. This estimate is influenced by non-quantitative factors
such as: technical skills, team’s past experience in similar
features, whether leading programmers are inclined to be
prudent or optimistic. The Goal Question Metrics approach
proposed by Victor Basili [2, 3] may help to perform a fine
tuning of User Story evaluation. First, we define the Goal:
Goal: Reduction of the estimation error committed

by the XP team for a User Story.

Then we define the measuring context with the following
questions:

Q1: By how much does the estimated effort differ

from the actual effort required?

Q2: What similarities does the User Story have

with stories developed in the past?

Then, we define for each question the appropriate metrics:
For Q1:
M1: estimation error for a single completed User

Story:

(actual effort - estimated effort)/estimated effort

M2: mean and standard deviation of the estimation

errors committed by the team for all the completed

User Stories

For Q2:
M1: estimation error for a single completed User

Story:

(actual effort - estimated effort)/estimated effort

M3: mean and standard deviation of the estimation

errors committed by the team for the completed User

Stories similar to the one in question

The measurements collected in this way can be presented in
the form of tables and diagrams as a visual aid. In addition,
a mathematical model could be defined and used to support
the estimation process, although this approach is likely to
be rejected by XP programmers. So far we have presented
only those metrics associated with a specific goal. The XP
Process is not metric centered. Ron Jeffries argues that the
only valuable metric in XP is the number of running and
tested features in time (RTF, see [6]). On the other hand,
it may be useful to calculate other specific metrics in order
to achieve a specific goal. In this context the suite of tools
we have developed has a primary role in that it is able to

gather process data that could prove useful for calculating
the desired process metrics.

4. XPSUITE: TOOLS FOR THE XP PRO-
CESS

In this section we provide an overview of two Internet
based tools we have developed to support planning and
tracking in an XP project: XPSwiki and XP4IDE.

4.1 XPSwiki
XPSwiki [8, 9, 11] (Figure 1) was developed to meet real

needs for software businesses to collect requirements and
schedules in an electronic format. Managers, customers and
developers can access XPSwiki by means of a Web browser.
XPSwiki is built on top of a Wiki [5] engine written in
Smalltalk called Swiki [10].

Wiki is a very simple and effective content management
system. Users can browse Wiki pages and, if they have the
appropriate privileges, can also edit the pages directly from
the Web using a small set of simple formatting rules.

Swiki also enables to add structure to pages, defining in-
put forms for them. In this way, in a Swiki one can have
pages constrained by a given structure, that are used to hold
structured information, as well as free-format pages, freely
added to existing pages, like Post-it notes.

The direct advantages of a Web based tool for the man-
agement of XP process data can be summed up as follows:

• the tracker and the developers can enter effort data
directly from the Web without handling paper docu-
ments;

• dispersed teams can cooperate and view the overall
project status;

• user stories, task assignments, and any relevant effort
data is immediately available on the Web, and acces-
sible from programmer pair’s workstations.

Although a Web based tool is effective during the Planning
Game, it does lack one major feature: it is not integrated
into the user’s development environment. In the next sec-
tion we describe XP4IDE, which integrates some of the XP-
Swiki functionalities directly into the IDE, providing two
additional features:

• effort can be automatically recorded by the IDE;

• developers can view the XP process integrated with
their development tools.

4.2 XP4IDE
XP4IDE is an Internet based tool which connects to a

XPSwiki server and provides a view of the XP process data
embedded in the GUI of the IDE (Figure 2).

The role of XP4IDE is twofold: on the one hand it enables
the developer to view, directly integrated into the IDE, pro-
cess data, User Stories, Tasks, acceptance tests and artifacts
(classes, documentation files, Make files or Ant files, test
cases, etc.), all managed and saved on the XPSwiki server.
On the other hand, it measures the specific time spent on
User Stories, Tasks and Artifacts and sends this information
to the XPSwiki server, automating the tracking activity.

Figure 3: Effort data and properties of a Task in the
XP4IDE GUI.

The overall system architecture is quite simple: XPSwiki
acts as backend in a client-server architecture where the ap-
plication protocol is built on top of SOAP/TCP/IP. The
integration between XPSwiki and XP4IDE provides the fol-
lowing advantages:

• each actor in the XP process accesses to process data
with the right user interface for the right phase. De-
velopers can use the IDE during development, while
customers and managers can use XPSwiki by means
of a simple web browser. Both of them can use the
web interface during the Planning Game;

• it is possible to associate the Artifacts to the Tasks
in which they are created and developed. This way,
the tool collects data about the time spent on every
Artifact, every Task and every User Story ;

• measuring effectively the effort expended and present-
ing this information to developers (Figure 3), is one
way of building a knowledge base useful for enhanc-
ing their ability to estimate stories in future planning
activities (see the GQM example in section §3);

• beginners can immediately a view of the XP process.
Concepts, roles and process data are presented in a
structured way, minimizing the learning curve.

5. PROCESS DATA
This section describes the conceptual model underlying

the XPSwiki and XP4IDE suite, showing the entities and
their relations by means of UML class diagrams. This object-
oriented structure can be navigated to extract process data
for the computation of useful metrics.

Figure 4: UML model of the XP process as supported by XPSwiki.

As previously mentioned in section §4, XPSwiki extends
a wiki structure, inheriting in this way all its attractive fea-
tures like versioning capability. This feature enables XP-
Swiki to keep track of all the versions of each single entity
(Task, User Story, Iteration. . .).

Here we give a description of the UML model of the XP-
Swiki shown in Figure 4. Since this model represents the
basis for managing an XP process previously described in
section §2, only a brief description of the model is described
here.
An XP Project is performed by a Team. A Team is com-
posed of one or more TeamMembers. The Project is then
divided into Releases and Iterations of fixed length through
the timeboxed approach of XP. A number of instances of
UserStory must be implemented within an Iteration. Each
UserStory is divided into one or more instances of Task and
has one or more Acceptance Tests. The successful comple-
tion of all its Acceptance Tests proves the successful imple-
mentation of a UserStory.

To fully integrate the model with the development data
collected by XP4IDE, we have extended the XPSwiki model
to include other entities, such as Artifacts. As shown in
Figure 5, Tasks and Artifacts are associated with a many-
to-many relation (an Artifact could be created in a Task and
modified in another one). An Artifact may be of different
types such as SourceCode or a generic Document. A Task
has its own TrackTable which stores information concerning
the effort expended by developers for each specific working
Session. In more detail, each Session contains the following
fields:

• subscriber: the TeamMember who subscribed to the
Session on that Task ;

• pairProgrammer: the TeamMember who was pro-

gramming with the subscriber in that Session;

• startTime: date and time subscriber started working
on that Session;

• subscribedDelta: duration of the Session.

Moreover, each Session has its own ArtifactsTrackTable
which keeps track of the effort spent on each Artifact modi-
fied or created during that Session (ArtifactSession). More
in depth, each ArtifactSession stores the following data:

• artifact: Artifact involved in the Session;

• startTime: date and time subscriber started working
on that Artifact in that Session;

• activationDelta: the period of time the Artifact win-
dow was active during that Session;

• codingDelta: the time spent on coding (typing) that
Artifact during that Session.

6. WORKING WITH THE XPSUITE
In this section we describe the functionalities of the XP-

Suite from the developer point of view during a development
session. To better harmonize with XP, the functionalities are
described in the form of User Stories.

6.1 Story: Login and Connection to a Project
To start a working session, the developer opens the IDE,

selects the docked GUI called XPView, the view of the XP
project, which prompts for login and password to connect
to the XPSwiki server. Then the developer selects the pair
programmer with whom he is going to work with and the

Figure 5: Extension of the XPSwiki model in order to support data collected by XP4IDE.

project among those available on the XPSwiki. Project data
are loaded in the IDE and presented in the XPView in the
form of a tree. The tree is composed of Releases, Iterations,
User Stories, Tasks and Artifacts. Tasks already assigned
to the developer are highlighted and sorted by priority. Ev-
ery tree element has a property window which presents the
attributes for that element (for instance, a story has a title,
a description, a priority, a risk and an estimated effort).

6.2 Story: Subscribe to a Task
Once the developer has logged in, he can select a Task and

subscribe to it. The status of the Task changes from “inac-
tive” to “in progress”. Developers subscribed to a Task can
create and associate new Artifacts to that Task or modify
existing ones even if associated with other Tasks.

6.3 Story: Automatic Measure of Effort Spent
During the working session, the XP4IDE measures:

• the Artifact activation delta (the period of time the
Artifact window was active);

• the time spent on coding an Artifact ;

• the Task activation delta (computed as the sum of the
activation delta of all Artifacts developed in the Task);

• the time spent on coding within a Task (computed
as the sum of the time spent on coding all Artifacts
developed in the Task);

• the subscribe delta (total amount of time the developer
is subscribed to a Task).

This measurement should be sent to the XPSwiki, choosing
one or more of the following options:

• periodically;

• when the developer unsubscribes to a Task ;

• when the Task is completed;

• when the IDE is closed.

6.4 Story: Open a Thread on a Story
A developer can post from the IDE user interface an issue

or a question opening a new thread. The other members of
the team can follow up the discussion and provide solutions
or suggestions.

6.5 Story: Managing a Task
A developer should be able to see the status of a Task, to

launch its tests, to work on its Artifacts, to close the Task
or to suspend the Task defining a prerequisite (for instance
Task1 depends on Task2).

7. PRIVACY ISSUES
Concern may arise over privacy issues, since software tools

such as XPSuite could clearly be used to spy the behavior
of developers, instead of supporting them in their day to
day activities, as they are supposed to do. Such objections,
perfectly justified, should be seriously taken into account
when developing and deploying systems like XPSuite. Even
in those cases where it is possible to oblige developers to use
automatic tracking tools like XPSuite, this should be seri-
ously evaluated. In fact, Extreme Programming is claimed

to be a people centered methodology, hinged on trust and
reciprocal esteem between team members, and on making
full use of human resources, instead of imposing control and
authoritarian management.

In our opinion, XPSuite (and other similar tools) should
be adopted, upon mutual agreement with team members, if
necessary in a smooth, gradual way. On the other hand, the
use of XPSuite has proven valuable in the experimentations
conducted so far, both for the advantages that it offers when
coordinating dispersed teams and for its ability to gather
process data contextualized against the specific task and
process phase. Being able to measure the exact time spent
on any given artifact or task, and not rely simply on the
estimates and reports provided by the developers, that may
contain errors, is a clear advantage for the whole team.

These data can of course be of interest even to researchers,
if they help to expose mechanisms and behaviors underlying
the development process, spot critical phases and activities,
prevent errors.

8. RELATED WORKS
There are a number of nascent or on-going projects similar

to XPSuite suggesting that the integration of IDEs with
server side XP management tools is recognized as a valid
option. Among others we mention:

• xplanner-idea: a plug-in for the IntelliJ IDEA which
connects to the XPlanner tool
(http://sourceforge.net/projects/xplanner),
using a SOAP API;

• ecliXPweb: a plug-in for the Eclipse IDE which al-
lows to connect to a XPWeb database.

In our opinion, it may be of some advantage to define a
common protocol for the communication between IDEs and
server side Project Management tools, in order to facilitate
interoperability between clients and third-party servers.

9. CONCLUSION
In this paper we have outlined the nuts and bolts of XP-

Suite, a set of tools aimed to provide support an assist met-
rics gathering in an XP project. The tools allow multi-
channel interaction with process data both via Web pages
and by means of rich user interfaces directly embedded in the
IDE. Although the tools have been used for internal devel-
opment and have proven effective for supporting activities of
dispersed teams, they are in an early-stage of development
and we would like to have other teams use these tools to ob-
tain valuable feedback. To facilitate the use of our system
we intend implementing a plug-in for the Eclipse IDE.

10. ACKNOWLEDGEMENTS
This work was supported by MAPS (Agile Methodologies

for Software Production) research project, contract/grant
sponsor: FIRB research fund of MIUR, contract/grant num-
ber: RBNE01JRK8.

11. REFERENCES
[1] Manifesto for agile software development.

http://agilemanifesto.org.

[2] V. Basili. Software modeling and measurement: The
goal/question/metric paradigm, 1992.

[3] V. Basili and D. M. Weiss. A methodology for
collecting valid software engineering data. IEEE
Transactions on Software Engineering, 10(6):728–738,
1984.

[4] K. Beck. Extreme Programming Explained: Embracing
Change. Addison-Wesley, 1999.

[5] W. Cunningham and B. Leuf. The Wiki Way.
Addison-Wesley, 2001.

[6] R. Jeffries. A metric leading to agility, June 2004.
http://www.xprogramming.com/xpmag/jatRtsMetric.htm.

[7] K. Mannaro, M. Melis, and M. Marchesi. Empirical
analysis on the satisfaction of IT employees comparing
XP practices with other software development
methodologies. In Proceedings of the 5th international
conference XP2004, pages 166–174. Springer, 2004.

[8] S. Pinna and al. Developing a Tool Supporting XP
Process. In Extreme Programming and Agile Methods,
Lecture Notes in Computer Science, pages 151–160.
Springer, 2003.

[9] S. Pinna and al. XPSwiki: an Agile Tool Supporting
the Planning Game. In Proceedings of the 4th
international conference XP2003, pages 104–113.
Springer, 2003.

[10] Swiki: the wiki engine written in Smalltalk.
http://minnow.cc.gatech.edu/swiki.

[11] XPSwiki: an open source web tool for eXtreme
programming teams.
http://agile.diee.unica.it/xpswiki.

