
Defining a Distributed Agile Methodology for an
Open Source Scenario

Manuela Angioni and Raffaella Sanna and Alessandro Soro
CRS4 - Center for Advanced Studies, Research and Development in Sardinia

Pula (Cagliari), Italy
{angioni, sanna, asoro}@crs4.it

Abstract – In this paper we propose and describe an agile
methodology for distributed development (MADD -
Methodology for Agile Distributed Development). In
particular, it’s illustrated a set of best practices to apply in a
distributed and agile context, chosen on the base of their
impact software quality and team interoperation. Beyond the
proposed methodology, we show the results of a survey that
we submitted to various contributors of Open Source
projects. The survey has been of support to the definition of
the MADD, helping to more understand and estimate if, how
and how much agile practices and values are already present
in the OS world, that today represents one of the most
emblematic examples of distributed development. The MADD
methodology will be adopted on a software development
project at the University of Cagliari (Italy), by a group of
students that will work like an Open Source community.

Keywords: distributed development, agile development, open
source

I. INTRODUCTION

In this paper we describe an agile methodology for a
distributed scenario that includes some practices and
guidelines of general validity and that could be applied in
different distributed contexts. In particular it is suited for a
team which works like an open source community, and it
will be applied in an experimental OS project, which
involves about 30 students, that will provide a benchmark
to test and refine it. In section §II we describe different
distributed scenarios, like outsourcing, e-lancing and Open
Source. Section §III contains a description of different
approaches and proposals that, by the adoption of agile
methodologies, try to improve the quality and the
efficiency of a distributed development. In section §IV we
compare agile methodologies and open source values,
evidencing their points in common and their differences,
while in section §V, we propose some results of a survey
in which we asked team leaders and developers of OS
projects to answer some questions about agile rules and
principles they adopt in their projects. Finally, section §VI
describes our proposal of a Methodology for Agile
Distributed Development (MADD).

II. DISTRIBUTED SOFTWARE DEVELOPMENT

In the world of software development there are today
different examples and scenarios of distributed
development, that is a software development process in
which the various actors of the process (teams of
developers, managers, customers) are not co-located.

Indeed, in various scenarios the partners that cooperate
at the software development project are forced or prefer
(for practical or economical reasons) to work in a
distributed (or “dispersed”) context. Outsourcing is a first
example of such context: a company delegates the
development of a module or part of a software to a
different company. In “offshore outsourcing” part of the
software development is entrusted to a foreign company,

with increasing difficulties of coordination and
communication (different languages, time zone, standards).
The reasons behind outsourcing and offshore outsourcing
are basically the availability of highly qualified
professionals at a low costs, with respect to western and
central Europe and north America.

A different scenario comes from international
partnerships in research and precompetitive development
projects, in which dispersion is encouraged to enforce
knowledge transfer and researchers mobility. Again,
several teams based in universities or research centers all
over the world need to cooperate, communicate and
coordinate their work, regardless of geographical distance.

Also, e-lancing is a growing reality: in order to reduce
projects costs, more and more sub-projects or activity lines
are assigned to single free-lance developers, or groups of
them, that provide with professional services, being not
physically reachable by the customer and available only
through the Internet.

Finally, let think to the rise of Open Source projects: the
Open Source scenario is one of the most emblematic and
widespread example of distributed development. In this
case, typically, the programmers are constantly dislocated,
they never met and communicate mostly with mailing list,
leaving to a core team of developers the task of integrating
the produced code.

III. DEFINING PROPOSALS OF METHODOLOGIES
FOR DISTRIBUTED AGILE DEVELOPMENT

In the last years, researchers are trying to more and more
design processes that improve the efficiency and quality of
distributed development, adapting agile methodologies to
this context. Surely, agile methodologies can supply many
practices applicable to this scenario, but how many, which
and how? The distribution of members that concur to the
process of software development involves, in fact, a set of
new problems and new requirements. Communication is
one of the critical elements, even in the analysis and
planning phases: it is necessary to understand what the
customer wants, to have a common vision of the project
and the requirements, it is in effect necessary to work like a
team [10]. Moreover, in some scenarios, a problem is the
continuous changing among team members, that constantly
alternate on-site and off-site activity. This leads to a strong
cultural shock, that, in turn, affects the ability of
communication and cooperation: cultural and geographical
distance tend to reduce and complicate communication and
feedback, though sometimes partners are chosen among
those culturally nearer. This is especially true in extreme
dispersion contexts like offshore outsourcing. In sure,
before attempting to extend agile practices to a distributed
working environment, it is largely preferable to gain
experience in these practices within a traditional non-
dispersed context, and best to move the first steps with a
dispersed team already experienced in agile
methodologies. In any case, the idea is that every context
of distributed development has such its own characteristics
and peculiarities that requires an ad-hoc methodology: it's
necessary to analyze the peculiarities of the process of

distributed development and then understand which
practices of agile development, that have proved to be
good for co-located teams, can be applied in a context of
geographical distribution, and how to replace those
invalidated or evidently inapplicable.

The MADD methodology, as we will see in §VI,
although adopting some practices and guidelines that are of
general validity and can be applied in different contexts of
dispersion, is mainly suited for the organization of a team
that cooperates as an open source community.

Different researchers have already studied the
distributed agile development. In the case of the DXP
(Distributed eXtreme Programming) [2, 3], as an example,
following a practical approach, it’s been proposed a set of
practices that allow to adopt the XP in a distributed
manner, inheriting its merits and adapting it to the case of
development processes geographically distributed. Four
XP practices, in fact, need the co-location of the team
members: the Planning Game, the Pair Programming, the
Continuous Integration and the Customer On-site. To
bypass this necessary physical proximity, it has been
proposed the adoption of many tools as Internet,
videoconferences, screen and application sharing, or
remote access to systems for continuous integration. Also
instruments like mailing lists, daily or weekly reports with
feedback from customer to developer, or Pair
Programming adopted in the core teams, can increase the
communication [3, 4], as well as the familiarity, that is the
spirit of collaboration and trust between the members of
the team. However, although the DXP can work keeping
high the communication, the coordination and the
availability of the team members, obviously it can’t bring
the same benefits and catch up the levels of communication
reached with the physical proximity between members of
the same team or team and customer. We recall, in fact,
that the Pair Programming, for example, consists for the
main part in a dialogue between developers that
simultaneously try to plan, program, analyze, test and
understand together how to better program. In the same
way, according to the XP, it is necessary to have a
representative of the customer that is all the time with the
developers (on-site) and the daily stand-up meeting, typical
of XP, are impracticable, at least daily, in distributed teams.
The DPP (Distributed Pair Programming) [5, 6, 7] is
another example of practical approach that studies how the
Pair Programming can be adopted in a distributed context.
It is about experiments led on groups of students
geographically distributed. In this type of experiments the
phase of definition and analysis of requirements, as the
design one, has been carried on in a co-located situation.
On the other hand, coding, testing and releases have been
made in a distributed situation, trying to adapt the agile
methodologies only in these parts of the development
process. Also in this case, a set of instruments is indicated
as necessary to promote communication and collaborative
job between participants, like tools to share monitor and
development environment, version management systems or
Instant Messengers.

Starting from the need to define an agile methodology
for the distributed development, many different tools to
support developers, that concur also to apply the DPP, were
proposed [8, 9].

IV. DEFINING AN AGILE METHODOLOGY FOR AN
OPEN SOURCE PROJECT: A COMPARISON OF
VALUES

Agile methodologies and the Open Source (OS) world
have a lot in common. The same nature and the bazaar [11]
organization of an OS team increase the value of the
adaptation to changes, such as agile methodologies,
preferring frequent releases and an immediate and
continuous feedback from the contributors. Like agile

methodologies, the OS emphasizes individuals with high
skills and puts them in the center of a self-organized team
of contributors. It’s known [2, 3], moreover, that also in the
OS projects there are some characteristics like the use of
coding standards, the fast feedback (active and always
updated mailing lists), the collective code ownership and
the habit of embracing change. The Open Source world
shares the value of communication, and in projects in
which there are tens or hundreds of contributors, this value
must be above all a requirement of the small group of
developers around which works all the team. In the same
way, the values of mutual trust and respect are basic
conditions for a deep collaboration. Moreover, most of the
OS teams, getting used to frequent releases, stimulate and
encourage the developer. We recall that the agile values are
fundamental: the agile practices cannot be applied, and are
not agile, without the values that are their foundations.
Finally, both worlds of agile methodologies and Open
Source criticize the high costs of a debugging made too
much late and promote a frequent debugging.

We observe that, however, some characteristics of OS
projects differ from the agile world. Usually, in fact, a real
customer does not exist, therefore falls the part of the
development cycle that deals with the customer
participation to the definition of specific functionalities: in
place of it, an objective requirement is fixed, for example a
tool or a specific library, and a call for participants starts.
In OS projects, finally, there are many developers with
many roles or roles not such defined.

So, there are agile principles in the OS development, but
also essential characteristics, like the distribution of
contributors, that are not agile principles. However the OS
word is not mentioned as a term in contrast with the agile
development, such as terms like the ”cowboy coding” [12],
for example, and on the other hand the code sharing, the
cooperation between developers with a rigorous peer-
review and a parallel debugging [11] are the main
characteristics, certainly agile, of an OS project.

As we said before, because of peculiarity and variety of
the distributed development scenarios, we think that the
proposed methodology fits well with the organization of an
OS community, although contains some practices and
principles from which various contexts can benefit from.
Moreover, we thought that the point of view of OS
developers and their vision of agile methodologies is
useful for better knowing OS world and to help us in
defining the MADD. We have tried to have an idea of this
submitting to various developers of OS projects a survey
about the adoption of agile practices and methodologies in
their projects.

V. AGILE PRACTICES AND OPEN SOURCE: A
SURVEY

Although Open Source and Agile world share many
principles and practices, as we have emphasized in §IV, do
developers/users of the OS projects agree with this theory?
Which practices or principles do they apply as
indispensable? And, more in general, which rules and
principles a distributed agile methodology should include,
from which the Open Source development process could
benefit from? In order to answer to all these questions,
useful in the definition of our proposal, we have asked
team leaders and developers of many OS projects to
answer some questions. We have selected projects from
repositories of OS projects as SourceForge [13] or
incubators as Apache [14] or the more recent Codehaus
[15]. The submitted questions and the results are available
at http://www.crs4.it/nda/maps/index.html. Data carried
out through the survey and collected in literature, have
helped us in defining the guidelines of the MADD. The
survey includes five main sessions about Communication,

Analysis and Planning, Coding, Refactoring and Testing.
We sent an email to 75 projects and 27 of them answered
(41 respondents in total). Table 1 shows that the analyzed
OS projects involve mainly less than 20 committers
(contributors that can commit code).

 Projects’ size N. of answers

0 – 10 committers 17

10 – 20 committers 14

> 20 committers 10

Table 1. Projects’ characteristics

Below there’s a summary of results emerged from the
survey.

To compensate the reduction of communication,
developers mainly use mailing lists, private email, bug
tracking systems, chat, and, when it is possible, face-to-
face meetings and forums. In particular 50% of developers
save the chat session, while only 30% of them use
conventions for the subject and/or for the content of the
email.

For the analysis and planning phase, 68% of respondents
have answered that project requirements are analyzed, as
shown in Table 2, but formally only in 36% of cases and
frequently, at least once every two months, only for about
25% of them.

N. of answers

Frequency

Method

Frequently (< 2
months)Medium (2 – 6
months)Infrequently (> 6
months) Never

Formally
Informally
No project requirements
analysis

10
6
13
12

15
13
13

Table 2. How often and how project requirements are
analyzed?

Concerning the coding phase, the survey evidences that:
• about 51% of developers release a new version at least

once a month;
• about 85% of respondents adhere to coding standards,

even if for about 29% of them standards are often
enforced by the key developer who messages
contributions in his own style;

• about 61% of them adopt the ”collective code
ownership” practice, allowing everyone to make and
commit changes directly;

• 58,5% of interviewed practice continuous integration,
using in particular tools like CVS, Eclipse, Gump or
CruiseControl.

Moreover, most of the developers practice refactoring
and testing, thinking that their systematic use improves
code reliability and quality. In particular, 41,46% of them
practice refactoring regularly but only when is being too
difficult add new functionalities, while 36,58% during all
the coding development phase.

Concerning testing, 55% of respondent answered that
they must test the code they develop before submitting it,
and in 65% of cases they do this since the project start.
Only 30% of them write tests before the code itself and
adopt the ”Test Driven Development” (TDD) practice as
XP, while another 30% of them write tests after the code
itself and about the 14% only when is needed.

All these answers confirm us that OS developers really
apply some practices or agree with some agile principles,

and we've considered them in the MADD definition.

VI. MADD PROPOSAL

Our goal is to define and propose an agile methodology for
distributed software development. This methodology will
be applied in experimental projects that will provide a
benchmark to test and refine it. At the moment, our
experimental set consists of an open source project,
bootstrapped by the University of Cagliari (Italy), for the
development of a Web portal and a CMS, integrated with
an e-learning platform and the University database, which
will engage about 30 participants, mainly students, that
will apply the proposed MADD. In particular they will
work as an OS community: they are both developers and
future users of the final product, useful for several needs
like registration to exams, management of courses and
management of teachers activities, and they will develop
the different modules of the project, starting from a kernel
developed by a core of about 10 committers.
Student/developers will work in a distributed manner,
sometimes at home, sometimes at the university, someone
at our research center, partner in this project. They are now
in a learning phase, being introduced to OS and agile
worlds and technologies involved. After that, the
development phase will start. We have divided the
methodology into four different areas of scope, tracing
from the OS survey (see §V): Communication, Planning
and Design, Coding and Testing, Feedback. For each topic
are indicated general guidelines and some specific aspects
and details, with the related advantages.
 Communication. Communication is one of the critical
points in defining the MADD, being moreover one of the
main principles of agile methodologies. In order to solve
distance problems and to maximize the effectiveness of
conversation, we think that it’s necessary to:
• establish interpersonal relationships, like complicity

and confidence, in order to gain trust and know the
different work approaches of team members;

• allow a common vision of the project and the required
functionalities.

The following tools and practices are useful to enable and
improve distributed agile communication. In particular the
MADD includes:
• the use of a dictionary, which defines userID and roles

for the team members, by means of which it is possible
to apply some rules to emails sent by the community,
classifying them by the object;

• the use of a mailing list to send messages to all the
team members, using the following rules:

• the “Reply To” should be extended to all the
mailing list, so that all the team could have a
complete and homogenous knowledge of the
project, its progress, its tasks and the assigned
roles;

• apply the dictionary rules to the mail subject,
in order to immediately establish the topic and
the level of interest;

• the use of an Instant Messaging tool, if there is not a
policy against it, choosing the same userID used for the
mail, in order to guarantee immediacy in the
communication. Its systematic use helps people in
establishing relationships and confidence, in particular
for those who have never met themselves before, and
decreases in part the idea of the distance;

• save always the chat content, in order to share
with all the team knowledge and decisions
useful for the project;

• the use of a repository, to guarantee the sharing of the
knowledge and a common view of the project. It could
be:

• CVS, or a similar version control system,

which provides visibility of activity and
artifacts developed by the team. Moreover,
using the commit message, and specifying in it
userID and role, developers always know who
added or created something;

• a Wiki, in order to share via web documents or
information about the project, only by editing text and
immediately viewed by everyone.

Planning and Design. Planning of activities is another

important point in the distributed scenarios, where is often
difficult to have face-to-face meetings. Required features
should be described in a sufficiently detailed way,
throughuser stories or use cases, in order to allow
developers to easily translate them into simple
programming tasks to be implemented. During the
planning phase, the team should communicate mainly
online, by mail or chat. Once features are divided into
tasks, developers decide which ones they prefer to develop,
choosing first the most important ones, according to a
priority previously defined by the development needs. The
following practices are only some general criteria of the
planning phase, which we have identified as indispensable
for the MADD:
• periodic releases, flexible in the contents but rigid in

the date. Different versions of the software are released
at fixed dates, about every 2 or 3 weeks, and include a
set of implemented tasks. If, at the established date, the
defined features will not be released, the team will try
to understand the reason of the delay and try to better
plan the following release. There will be different
levels of detail for the planning:

• quarterly (strategic planning): each month a
work plan for the three following months is
planned and reviewed, depending on the
features developed by the team; if the project
will need new features, they will be inserted in
the plan. Developers discuss the plan online,
according to the decided priority (1 or 2
releases each month);

• monthly (operating planning): it’s a more
detailed plan than the quarterly; it describes in
details each task and defines which developers
implement them, according to their experience
and their capabilities. The monthly plan
happens online, through one of the tools
described above. The progress of the plan and
developers assigned to each task have to be
known in every instant. A planning tool like
XPSwiki [16] could be useful in this phase;

• weekly (informal report): team members write,
at least weekly, a short report about what they
are doing, problems and progress state of their
tasks. This is not a formal document, but only
a report that allows the team to have a global
vision of the project and stay in touch with all
the developers.

The planning phase should not represent an excessive
engagement for the team. Every document should be as
essential as possible, simply a development track. The
main point in this phase is that everyone should know what
the other developers are doing in every moment, in which
task they are involved, if they have problems or if there
will be delay in releases, in order to avoid problems or
correct them.

Coding and Testing. The coding phase is still more
critic if developers work in a distributed team. Adhering to
coding standards, defining standard rules like conventions
on classes names, methods or variables and formatting
rules, it’s therefore very important, because it improves the
legibility and, consequently, the maintainability of the

code. But these rules should simply emerge from a
common requirement to improve the productivity.

Even if a well written code should be self explanatory,
code documentation is important too: every class or
method should be commented in order to immediately
understand its functionality. But if the code is not robust,
all the rules described are not so useful: in fact, a such
system could not be maintainable and it could be too
expensive in terms of resources and time to be extended.
To avoid the previous problem, it seems important to apply
refactoring, a practice which can guarantee a code
evolution with a behavior preservation, in order to improve
the design of the code, making it more reusable and
flexible to changes. But a tested and well written code is
not enough to guarantee the correct behavior: the testing
practice is useful to verify and to certify the correctness of
a class. In fact, unit and functionality tests help in
measuring the correctness and the robustness of the
developed software. Functional testing (also known as
black-box testing) is the process of verifying the behavior
of a system, having no knowledge of the internal
functionality/structure of the system. Unit tests, or white
box test, allows instead to test every class or parts of the
system, because they focuses specifically on using internal
knowledge of the system.

Another practice inserted in the proposed MADD is the
continuous integration, which allows the incremental
development of the software and makes easier for
developers to integrate changes of the project. Continuous
integration should be performed automatically, to build the
project continuously: to update sources, to compile them,
to run tests. When the build has finished, we obtain a
precise indication on the result: failed or performed
correctly. The automated continuous integration provide an
easy-to-use build system that increases productivity.

In order to automate such activity it is possible to use
some scripts (for example ANT), that allow to specify a
series of operations in a systematic way. After all,
continuous integration founds itself on the following four
principles:
• a Version Control System (CVS, for example);
• an automatic compilation process;
• the systematic run of tests;
• a scheduling process for tasks.

Feedback. A goal of agile methodologies is to regulate
and reduce the cost of frequent changes in the software
development process. So, not only frequent iterations but
also regular feedback are necessary: a real time feedback,
given by the development team, and a feedback given by
the customer. Both of them should have a frequency and a
code coverage that allow time for changes and avoid too
high cost of changes. In fact, one of the risks is that, after
the requirement analysis and the planning phases, customer
and developers don’t have a common vision of the project,
which is the fundamental requirement in order to share the
same goal during all the project. In a scenario like the OS
one, the distribution of the team limits the communication
and sometimes people know only a part of the module they
are developing and it is not always simple to have a
common vision of the whole project. In our context, the
role of the customer is played by the developers
themselves. But, even if they receive feedback, it is not as
immediate as in a co-located team, then the following
practices could help the dispersed team in receiving
feedback:

• collaborative management of the code quality;
• developers could apply a sort of distributed pair

programming, choosing another developer as a
reviewer of their code;

• unit testing for all the code:
• tests should cover all the code;
• tests should be documented in order to

emphasize their function and the parts of the
code they cover;

• unit tests should be written in order to
emphasize bugs;

• use of automatic tools for useful activities, like metrics,
test coverage and naming;

• feedback given by the core developers:
• every time developers release a new version

core developers (committers) should release a
feedback document.

Research experiences in this field are generally limited
to specific phases of the development process, and/or
conducted on groups of students. As such, although surely
a good start point, they cannot be easily generalized or
extended to all the distributed scenarios.

VII. CONCLUSION AND FUTURE WORK

The paper has shown a part of a work in progress. We’ve
described a proposal of agile methodology (MADD) that
can be applied in the case of a distributed team that
operates like an open source community. For the definition
of this agile methodology the results of a questionnaire
were relevant. The survey was supplied to the developers
of different OS projects, and its results helped to better
understand how agile values and practices are present in
these communities. Part of the future work will be the
results’ analysis of the MADD experimentation, its
eventual refining and its adoption in other scenarios and
projects.

VIII. ACKNOWLEDGEMENTS

This work was supported by MAPS (Agile
Methodologies for Software Production) research project
[1], contract/grant sponsor: FIRB research fund of MIUR,
contract/ grant number: RBNE01JRK8.

IX. REFERENCES

[1] MAPS Project, http://www.agilexp.org/
[2] Kircher, M., Jain, P., Corsaro, A., Levine, D.:

Distributed eXtreme Programming, Proceedings of
XP 2001, Villasimius, Italy, 20 - 23 May 2001, 66–71

[3] Kircher, M.: eXtreme Programming in Open-Source
and Distributed Environments, JAOO (Java And
Object-Orientation) conference, Aarhus, Denmark, 10
- 14 September 2001

[4] Kircher, M., Levine, D.: The XP of TAO – eXtreme
Programming of Large, Opensource Frameworks,
Proceedings of XP 2000, Cagliari, Italy, 21 - 23 June
2000

[5] Stotts, D., Williams, L., Nagappan, N., Baheti, P., Jen,
D., Jackson, A.: Virtual Teaming: Experiments and
Experiences with Distributed Pair Programming,
XP/Agile Universe 2003, 129–141

[6] Baheti, P., Gehringer, E., Stotts, D.: Exploring the
Efficacy of Distributed Pair Programming, XP/Agile
Universe 2002, 208–220

[7] Brian F. Hanks: Distributed Pair Programming: An

Empirical Study, XP/Agile Universe 2004, 81–91
[8] Soro, A., Sanna, R., Angioni, M., Carboni, D., Paddeu,
 G.: DJ-lab: Laboratorio di Informatica Distribuito,

DIDAMATICA 2004, Ferrara, Italia
[9] Maurer, F., Martel, S.: Process Support for Distributed

Extreme Programming Teams, Proceedings of the
International Workshop on Global Software
Development - ICSE 2002, Orlando, Florida, 21 May
2002

[10] Poole, C.J.: Distributed Product Development,
 Proceedings of XP 2004, LNCS 3092/2004, 60–67,

Springer
[11] Raymond, E.S.: The Cathedral and the Bazaar,

O’Reilly, Cambridge, Mass., 1999 12. Koch, S.: Agile
Principles and Open Source Software Development:
A Theoretical and Empirical Discussion, Proceedings
of XP 2004, LNCS 3092/2004, 85–93, Springer

[13] SourceForge Web Site, http://www.sourceforge.net/
[14] Apache Web Site, http://www.apache.org/
[15] Codehaus Web Site, http://www.codehaus.org/
[16] XPSwiki Web Site, http://www.agilexp.org/xpswiki/

http://www.agilexp.org/

