
LIGHTWEIGHT CLIENT-PULL PROTOCOL FOR MOBILE
COMMUNICATION

Stefano Sanna, Emanuela De Vita, Andrea Piras
CRS4 - Center for Advanced Studies, Research and Development in Sardinia

Parco Scientifico Polaris - 09010 Pula(CA) - Italy
Email: gerda@crs4.it, emy@crs4.it, piras@crs4.it

Christian Melchiorre
Softeco Sismat S.p.A.

Via De Marini 1 - WTC Tower - 16149 Genova - Italy
Email: christian.melchiorre@softeco.it

Keywords: Priority management, communication protocol, mobile device.

Abstract: Consumer mobile devices, such as cellular phones and PDAs, rely on TCP/IP as main communication pro-
tocol. However, cellular networks are not reliable as wired and wireless LAN, due to both users mobility
and geographical obstacles. Moreover, limited bandwidth outside urban areas requires an application level
data priority management, in order to improve user experience and avoid communication stack deadlocks.
This paper presents early specification and first prototype of the LCPP (Lightweight Client-Pull Protocol),
a UDP-based communication protocol specially designed to provide better performance, fast responsiveness
and save processing power on mobile devices. Using some concepts adopted in the field of P2P file sharing,
LCPP provides data priority management approach, which enables application to negotiate concurrent access
to communication channel and to be notified about delaying, network congestion or remote device inability to
process data.

1 INTRODUCTION

Mobile devices communication use wireless chan-
nel that, to date, cannot be considered as reliable as
their wired counterpart. TCP/IP, which is the basis
for well-established application-level protocols such
as HTTP, has not been designed for such unreliable
channels. Using TCP/IP on wireless connection can
be extremely boring for users, which continuously
get ”connection lost” error messages. On the other
hand, cellular network data access is still expensive
and users tend to avoid using Internet services on mo-
bile devices, especially if they have experienced poor
performances and high connection rates.

Peer-to-peer paradigm (P2P) has emerged in the
last years as innovative way to create scalable sys-
tems over wired networks. P2P communities have
proposed two important concepts: data should be ex-
changed according to some classification provided by
the user and hosts have to find themselves preferably
without any central registration facility. Priority man-
agement refers to the ability of communication layer
to suspend data transfer if any other important data
needs to be transferred using the all available band-
width.

In this paper we describe benefits of priority man-

agement in mobile communication and propose a
protocol suitable for mobile devices, such as PDA
and programmable cellular phones. We refer to mo-
bile communication as network access by means of
a GPRS or UMTS terminal (either mobile phone or
PCMCIA data card). WLAN access raises other inter-
esting issues, although large bandwidth and restricted
operation area give, for most applications, more re-
liability than cellular network in a mobile intensive
scenario.

2 PRIORITY MANAGEMENT IN
MOBILE COMMUNICATION

Desktop users are used to perform multiple access
to network resources: they read and write emails,
while sharing large files and downloading some inter-
esting software. At the same time, background pro-
cesses update system libraries, check for new virus
signatures and gather information about weather,
stock quotes and so on. This class of users rely on a
wideband connection, either with office LAN or home
DSL subscription. With such connections, overall
responsiveness of applications is pretty comfortable,
although very point-to-point connections may cause



network access locked for a while: it is common,
for instance, to lose connection to Instant Messag-
ing (IM) server or to have some delays in sending
emails if data transfer has been previously opened to
a very fast peer. While this scenario mainly applies
to desktop users, mobile device users become to ex-
perience similar problems related to concurrent net-
work access. Flat rate per-month subscriptions of-
fered by cellular network operators encourage cus-
tomers to use PDAs and high-end cellular phones to
access web site, mailboxes and adapted content (au-
dio and video). Business oriented applications (re-
mote office and file sharing, email with attachments,
simplified editor for text documents, spreadsheets and
presentations) and hardware tailored for mobile work-
ers (extended keyboards, large displays, enhanced
connectivity) are bundled and offered to selected cus-
tomers.

Network-oriented mobile applications refer to three
main classes: user interactive applications, user
browsing applications, system applications. User in-
teractive class identifies applications which response
time is critical for user experience. It comprises email
clients, IM systems, navigation systems. These ap-
plications are expected to have very short delays and
give best responsiveness. For instance, IM clients en-
able people to talk nearly in real-time and most of
time is spent reading and typing, while data transfer
involves a few data; moreover, since it consist of syn-
chronous communication between humans, user ex-
pects continuous dialog with remote peer (response
time half a second or less). User browsing class iden-
tifies applications which response time is not critical,
so that some delay is being tolerated. Video and audio
downloading, web browsing and software installation
may require some time to be completed and experi-
enced users are aware about it. Finally, system class
identifies applications executed in background by the
operating system. It includes system updates (bug
fixes, security updates), network synchronization and
similar.

In an ideal scenario, any system application should
suspend any data transfer if a user interactive appli-
cation requires to send or receive data. This way, the
user perceives that communication channel is devoted
to his conversation or important web browsing. To
simplify, it is better to give the user best performance
of device and network connection, while a delay of a
few seconds will not affect system operations (such as
those previously described). Such an approach can be
found in modern operating system design, where pro-
cess scheduler tries to provide good responsiveness
to graphical interface and delaying system processes
(such as writing on filesystem).

Figure 1: Priority management in mobile communica-
tion: user interactive and user browsing applications
require different responsiveness.

3 LCPP

Lightweight Client-Pull Protocol (LCPP) has been
designed to provide mobile application developers
with a priority- and receiver- driven protocol. It has
been designed as a lightweight protocol, easy to im-
plement even on resource constrained devices. As
said before, priority management is key element for
mobile communication; in order to manage data com-
ing from multiple source, client is responsible for
managing data packets transmission. We identify peer
that sends data as Transmitter (TX), while the one that
receives is called Receiver (RX). Main LCPP con-
cepts can be summarized as follows:

• RX drives communication progress: data sender
(TX) cannot arbitrarly send any data if it has not
be requested by the RX

• all data packets moving from point to point contain
a priority information: RX should make requests
for higher priority data fragments first

• communication stacks of peers share information
about priority management and network conges-
tion.

LCPP relies on UDP, because it is lighter than TCP
and requires less resources to be implemented on low-
end devices. While TCP/IP offers good infrastruc-
ture for continuous connections, it is time and re-
source consuming for intermittent connections. LCPP
does not introduce any custom addressing or rout-
ing schema; therefore LCPP headers do not con-
tain any information about source nor destination of
data: it is implicitly assumed that such an informa-
tion will be accessible through the underlying proto-
col. LCPP uses raw UDP packets and it is responsi-
ble for data synchronization, transport and connection
control. LCPP defines two type of data packets: Com-
mand and Data. Command packets are exchanged



Command ID Description
REQUEST TO SEND DATA Sent by a TX that requires to send data to a RX

ACCEPT TO RECEIVE DATA Sent by a RX that accept to receive data from a TX
REFUSE TO RECEIVE DATA Sent by a RX that does not accept to receive data

SEND FRAGMENT Sent by a RX that is ready to receive a new data fragment
GET FRAGMENT Sent by a TX after a SEND FRAGMENT has been received

ABORT Sent by a peer to interrupt data transfer (sessions will be reset)
CONFIRM DATA RECEIVED Sent by the RX to notify that all data have been received

WAIT FOR HIGHEST PRIORITY Current session is being suspended to process higher priority data
WAIT FOR SYSTEM BUSY Communication delays caused by local time-consuming processes
WAIT FOR MEMORY BUSY Communication delays caused by memory-consuming processes
RESUME RECEIVE DATA A previously suspended data transfer can be recovered

Table 1: LCPP command list.

between peers to manage data transfer setup and re-
quest, error reporting, communication closing; they
are 18 bytes long and contain: Command ID, priority
level, service ID, message, session and reference. The
first two bytes contain the Command ID, which iden-
tifies what action is being notified to the target (e.g.,
start transfer, abort transfer, get/send some data frag-
ments...) and the priority level. Remaining header
fields contain parameters of current command (such
as data size), service ID (that refers to a specific data
processor on the RX side), session and session refer-
rer information (used to keep track of correlation be-
tween sequence of request/response). Table 1 shows
the LCPP command list. Commands are always trans-
mitted and received regardless their priority. In fact,
since Commands are very small data fragments and
the information they contain may influence overall
data transfer policy, they are expected to be processed
as soon as possible by peers.

Figure 2: Structure of Command and Data packets.

Data packets are extended Command packets with
a 512 bytes payload. The Client-Pull approach refers
to the RX side control against data fragments being

sent; while TCP allows the server to send several
packets within a data window, potentially fulfilling
available bandwidth, LCPP server waits for client re-
quest (pull) before sending any data packet. More-
over, since every data stream has its own priority,
client will ask for higher priority packets first, delay-
ing lower priority ones, assuring that data over chan-
nel is always that with highest priority.

Once TX needs to transmit data to RX, it sends a
REQUEST_TO_SEND_DATAcommand; by reading
the priority field and data size, RX can decide if it is
able to process data (that is, since it knows how much
data will be transferred it can decide if thereś enough
memory - or credit on the SIM card - to get data)
and it responds withACCEPT_TO_RECEIVE_DATA
command which informs TX that RX has accepted
the transfer. However, no data transfer actually starts,
until the RX sends a sequence ofSEND_FRAGMENT
commands. How packets are requested depends on
RX implementation: TX has only be ready to split
and send data as required. The central idea con-
sists on moving intelligence from the protocol itself
to the hosts implementing it. Protocol metadata does
not provide enough data to understand communica-
tion status (while TCP/IP, where such an information
can be showed by windows and acknowledgments).

4 IMPLEMENTATION AND TEST

First prototype of LCPP stack has been imple-
mented as a communication library PersonalJava-
compliant and has been deployed on iPAQ PDA run-
ning Insignia Design Jeode and IBM J9 embedded
VMs. Tests have been performed using GPRS cellu-
lar network. Although LCPP packet size can be varied
arbitrarily, it has been choosen to fit at least a GSM (?)
time slot (current implementation uses 512B packets,
while early alpha releases were using 1KB packets).
Preliminary tests have shown very good performance



Figure 3: Sequence diagrams of two concurrent data
trasfers with different priority.

Figure 4: Network configuration used during exten-
sive tests.

for small, spot data transfer (25KB-50KB); perfor-
mances decrease due to JVM limits on Windows CE
device. We plan to rewrite LCPP in C in order to min-
imize latency caused by VM and Garbage Collector.

GSM network compatibility tests have been per-
formed using PCMCIA and Bluetooth-enabled termi-
nals. These tests have shown that LCPP runs with net-
works without Network Address Translation (NAT)
between operator’s network and the public network.
Since complete tests on GPRS network is very expen-
sive, analysis LCPP has been tested using a wireless
LAN connection. Moreover, in order to avoid to slow
down iPAQ performances, we inserted a router node
between PDA and servers, equipped with the network
analyzer (Ethereal).

We have written a clone of well-known FTP file
transfer utility using LCPP protocol stack and com-
pared with standard TCP-based client. Results show
that two simultaneous 1MB data transfers over TCP

connection share communication channel and band-
width and the user cannot specify which connection
has to take control of communication channel (Fig-
ure 5). The same application written using LCPP sus-
pends a running data transfer when the user requires
to transfer data with higher priority (Figure 6). Over-
all performances can be improved with customized
RX implementations of more intelligent algorithms
for priority management.

Figure 5: Two concurrent data transfer without prior-
ity management (TCP over GPRS).

Figure 6: Two concurrent data transfer with prior-
ity management enabled: low priority connection
(thin line) is suspended until high priority data has
been transferred. Priority management affects data
transfers only: Command packets are expected to be
processed though their priority is lower (LCPP over
GPRS).

Performances have been evaluated for two, four
and eight concurrent connections (1Mb data transfer
each), with different assigned priority. Figure 7 and
8 show results for 4 concurrent connections, with and
without priority management support: with priority
management enabled . Table 2 shows numeric results:
priority management connections require more time
to be completed, but highest priority connection data
transfer is expected to be completed before any other.

5 RELATED WORKS

Priority management approach has been imple-
mented in the fields of mobile communication, sen-



Figure 7: Four concurrent 1MB data transfers without
priority management enabled (wireless LAN).

Figure 8: Four concurrent 1MB data transfers with
priority management enabled: bold line refers to
highest priority connection. This starts late, but it is
the first to be completed (wireless LAN).

sor networks (?) and embedded systems. Prefetching
mechanism (?) may improve user experience with
mobile device; at the same time they can take ad-
vantage of priority management enabled communi-
cation stacks. LCPP can be easily integrated in ex-
isting network-oriented applications and used to test
algorithms for prefetching. Priority management for
mixed voice and data services is addressed by other
interesting works (?), although proposed approaches
are not so easy to be implemented in a web-oriented
prototype. Other works focused on application-level
approach, which is out of the scope of our work.

6 CONCLUSION

Priority managed communication approach could
improve user experience on mobile devices, giving
fastest access to user interactive applications. Cur-
rent LCPP prototype has been implemented in a Java
environment; therefore, to take advantages of prior-
ity management, applications have to share the same

Connections Priority No priority THP
2 24s 20s 6s
4 44s 36s 7s
8 92s 70s 7s

Table 2: Results for four concurrent data transfers.
Priority management delays overall data transfer, but
Time of Highest Priority (THP, the time needed to
complete data transfer with highest priority) does not
depend on the number of actual concurrent connec-
tions. LCPP assures that highest priority data will be
transferred in the shortest time.

runtime environment, that is responsible for incoming
data fragments. Therefore, to date applications have
to use the custom LCPP protocol library and related
interfaces. Such an approach is suitable for fully in-
tegrated applications, where several modules access
concurrently to the same network stack (the runtime
environment stack). On the other hand, native ap-
plications still use the operating system layer, which
cannot be controlled by the LCPP library. We plan to
implement LCPP concepts in the kernel IP stack, so
that applications will be able to use standard libraries
and, if needed, to assign and negotiate data fragments
priorities to incoming data with remote peers. We also
plan to improve protocol by adding more commands
for detailed automatic error reporting. LCPP is be-
ing used as communication protocol for the EU IST
EurEauWeb project.

REFERENCES

C. Hunt (2002).TCP/IP Network Administration. O’Reilly

N. Minar et al. (2001).Peer-toPeer. O’Reilly

E. Rusty Harold (2000). Java Network Programming.
O’Reilly

P. Buonadonna, J. Hill, and D. Culler (2001). Active mes-
sage communication for tiny networked sensors. In
Proceedings of the 20th Annual Joint Conference of
the IEEE Computer and Communications Societies
(INFOCOM’01).

D. Makrakis, R. S. Mander, L. Orozco-Barbosa, P.
Papantoni-Kazakos (1998). A spread-slotted random-
access protocol with multi-priority for personal and
mobile communication networks carrying integrated
traffic In Mob. Netw. Appl..

H .Kirchner, R. Krummenacher, T. Risse, D. Edwards-May
(2004). A Location-aware Prefetching Mechanism.
Fourth International Network Conference (INC 2004)

Sun Microsystems. PersonalJava Specification.
http://java.sun.com/products/personaljava

European Telecommunications Standards Institute.GSM
Specification. http://www.etsi.org


