
Integrating XP project management in development environments

M. Angionia, D. Carbonia, S. Pinnab, R. Sannaa, N. Serrab and A. Soroa

aCRS4 - Center for Advanced Studies, Research and Development in Sardinia, Parco Scientifico e
Tecnologico POLARIS, 09010 PULA (CA), Italy, {angioni, dcarboni, raffa, asoro}@crs4.it

bDipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Piazza D’Armi, 09123
Cagliari, Italy, {pinnasandro, nicola.serra}@diee.unica.it

Extreme Programming (XP) is an Agile Methodology (AM) which doesn’t require any specific supporting tool
for being successfully applied. Despite this starting observation, there are many reasons leading a XP team to
adopt Web based tools to support XP practices. For example, such tools could be useful for process and product
data collection and analysis or for supporting distributed development. In this article we describe XPSuite, a
tool composed of two parts: XPSwiki, a tool for managing XP projects and XP4IDE, a plug-in for integrating
XPSwiki with an Integrated Development Environment (IDE). Moreover, we will show how the full Object
Oriented implementation provides a powerful support for extracting all data represented in the model that the
system implements.

1. Introduction

Extreme Programming is a software develop-
ment methodology which does not rely on any
particular tool, but rather is based on the com-
mon understanding of fundamental values and on
a disciplined application of best practices. In par-
ticular, projects developed with XP show that
good results can be obtained using sheets of pa-
pers to collect user requirements, wall boards to
show diagrams and other project-relevant infor-
mation, and shared workspaces to maximize face-
to-face communication. Nevertheless, there are a
number of reasons that may lead XP teams to
adopt software and Internet based tools to facili-
tate application of XP practices:

• process data can be automatically collected
and analyzed afterwards. The process can
be validated and team activities can be
more effectively measured; the adoption
level of agile practices can be quantified;

• managers and customers have the feeling
that tools are something more “concrete”
than pure methodologies;

• dispersed teams can work together with
appropriate Internet connections. Team

members can have a common and updated
overview of the project status.

In this article we will describe XPSuite, a two-
parts tool incorporating XPSwiki, a tool for man-
aging XP projects, and XP4IDE, a plug-in for in-
tegrating XPSwiki into IDEs. The system has a
full Object Oriented implementation so it is pos-
sible to extract all data represented in the devel-
oped model.

In section §2 we briefly introduce the XP
methodology and process. Section §3 contains
a description of possible metrics for a XP pro-
cess. In section §4 we present XPSuite, the suite
of Internet tools we have developed for eliciting
requirements, collection of user stories, process
tracking and process data collection, while in sec-
tion §5, we describe the underlying conceptual
model. Finally, section §6 describes the function-
alities of this suite of tools while section §7 briefly
discusses privacy issues.

2. An Agile Methodology: XP

Agile Methodologies (AM) are interesting new
methodologies for software development proposed
at the end of the 90’s. They are particularly
suited when it’s difficult to understand the sys-

1



2 M. Angioni, D. Carboni, S. Pinna, R. Sanna, N. Serra and A. Soro

Figure 1. The GUI of XPSwiki.

tem functionalities during the early phase of the
process, due to continuous requirements chang-
ing, mutable environmental factors or mutable
market conditions. So, agile methodologies are
goal-oriented: they allow to adapt the process to
all these changes, reaching a goal at a time, with
frequent release cycles. They are in opposition to
“heavy” methodologies like the well-known Wa-
terfall.

The most famous and common AM is eXtreme
Programming (XP). Simplicity, communication,
feedback and courage are the founding values of
XP and all the XP best practices are coherent
with these values (for a complete description of
XP see [2]). XP is “extreme” because it car-
ries to an extreme degree some of the best prac-
tices already used in traditional software devel-
opment. For instance, if unit testing produces
high quality code, then it must be applied to its
extremes, writing unit tests before the code it-

self. Similarly, if refactoring produces a better
code, then “refactor mercilessly”. Also commu-
nication is “extreme”: to share a common vision
of project’s requirements and project’s status, to
avoid any misunderstanding and to develop ex-
actly what is required, the customer (or an effec-
tive representative) is “embedded” as a member
of the team. In addition, daily meetings are held
to check the progress of the team, to identify and
manage problems and to propose corrective ac-
tions.

The first step of a XP project is the plan-
ning phase called Planning Game, where devel-
opers and customers elicit requirements and de-
fine the functionalities to be developed during the
project. Customers and developers identify and
isolate specific functionalities and describe them
in pieces of papers called User Stories, with a
business value and a priority. Effort required
to implement a story is estimated by develop-



Integrating XP project management in development environments 3

ers, who divide stories into micro-activities, called
Tasks, to be performed in 2-3 ideal working days
(“ideal” stands for 8 hours of effective work). De-
velopers choose voluntarily which task to develop
and take responsibility for their task being com-
pleted on time.

Each story generally requires an effort of 1-2
weeks. A story is considered complete only if
all its Acceptance Tests pass. Acceptance Tests
are functional tests that guarantee the correctness
of the functionalities specified with User Stories.
The customer is responsible for specifying and
verifying the validity of the tests, that should be
automated in order to be run often. Stories are
grouped into Iterations, each one with a duration
of 2-3 weeks. After a cycle of 2-3 iterations, the
product is released to the customer.

The customer is aware that the first release will
provide only some functionalities and that many
releases could be necessary before all functionali-
ties are implemented. These periods of time, in-
dicated by [2], can vary depending on the specific
project, but the idea is always the same: release
cycles must be very frequent.

In XP, one of the team members plays the role
of Tracker : tracking is the critical activity of mea-
suring the team progress. The essence of tracking
is the face-to-face contact with the team, to check
and track what is done, what is in progress, what
is in stand-by and why. In fact, the tracker asks
developers questions like:

• which is the status of your task?

• how many (ideal) days have you worked on
this?

• how many more (ideal) days do you need
before you’ve done?

• what obstructs you from completing the
task?

This information is critical to assess whether
or not the effort estimated during the Planning
Game is realistic and reflected.

3. Measuring the XP Process

Measurement is an inherent and fundamental
activity of all engineering disciplines. Measure-

ment provides the mechanism to create the aid
in answering a variety of questions associated
with the enactment of any software process. It
helps to support project planning, to determine
the strengths and weaknesses of the current pro-
cesses and products, to evaluate the quality of
specific processes and products. Measurement
also helps, during the course of a project, to as-
sess its progress, to take corrective action based
on this assessment, and to evaluate the impact of
such action.

What exactly is being measured can change de-
pending on the point of view. For instance, indus-
try managers are mainly interested in maximiz-
ing the value of products minimizing costs and
time to market, while engineers may be more in-
terested in measuring product quality to decide
what has to be changed in the process to improve
it. While Agile Methodologies and Extreme Pro-
gramming are not metric centric processes, mea-
surement still plays a fundamental role as a steer-
ing tool for controlling the development process.
One of the principles in the Agile Manifesto [1]
states:

At regular intervals, the team reflects
on how to become more effective, then
tunes and adjusts its behavior accord-
ingly.

Kent Beck, explaining the eXtreme Program-
ming methodology [2], points out that the mea-
surement represents the basic management tool
to get control on the project evolution. For exam-
ple, he suggests the ratio between estimated and
actual development time as a basic measure for
playing the planning phase and to set the project
velocity. Such metrics once collected can be pre-
sented in the form of tables and diagrams as a
visual representation of project evolution. For ex-
ample, figures 3 and 4 show mean and standard
deviation of the task estimation error for each it-
eration.

Measurement and metrics can also be used to
quantify the process agility. For leading this pur-
pose, Ron Jeffries argues that a very powerful
metric is the Running Tested Features in time
(RTF, see [4]).

The suite of tools we have developed has a pri-



4 M. Angioni, D. Carboni, S. Pinna, R. Sanna, N. Serra and A. Soro

Figure 2. The GUI of XP4IDE embedded in IntelliJ IDEA.

Figure 3. Mean Estimation Error for each itera-
tion.

Figure 4. Standard Deviation Estimation Error
for each iteration.



Integrating XP project management in development environments 5

mary role as it is able to gather process data that
could prove useful for calculating the desired pro-
cess metrics.

4. XPSuite: Tools for the XP Process

In this section we provide an overview of two
Internet based tools we have developed to support
planning and tracking in a XP project: XPSwiki
and XP4IDE.

4.1. XPSwiki
XPSwiki [5,6,8] (figure 1) was developed to

meet real needs for software businesses to collect
requirements and schedules in an electronic for-
mat. Managers, customers and developers can
access XPSwiki by means of a Web browser. XP-
Swiki is built on top of a Wiki [3] engine written
in Smalltalk called Swiki [7].

Wiki is a very simple and effective content man-
agement system. Users can browse Wiki pages
and, if they have the appropriate privileges, can
also edit the pages directly from the Web, using
a small set of simple formatting rules.

Swiki also enables to add structure to pages,
defining input forms for them. In this way, in a
Swiki one can have pages constrained by a given
structure, that are used to hold structured infor-
mation, as well as free-format pages, freely added
to existing pages like Post-it notes.

The direct advantages of a Web based tool
for the management of XP process data can be
summed up as follows:

• the Tracker and the developers can enter
effort data directly from the Web, without
handling paper documents, minimizing risk
and errors;

• dispersed teams can cooperate and view the
overall project status;

• everyone can have a common and updated
vision of the project tracking;

• User Stories, Tasks assignments and any
relevant effort data are immediately avail-
able on the Web, and accessible from pro-
grammers pairs workstations.

Although a Web based tool is effective dur-
ing the Planning Game, it does lack one major
feature: it is not integrated into the user’s de-
velopment environment. So, the synchronization
between developers progresses and tracking data
collected in the XPSwiki is not automatic, but
left to the common sense and the firmness of the
developers. Team members must edit and submit
information on the XPSwiki, and this is possible
only via Web.

In the next section we will describe XP4IDE,
which integrates some of the XPSwiki functional-
ities directly into the IDE, providing some addi-
tional features:

• effort can be automatically recorded by the
IDE;

• developers can view the XP process inte-
grated with their development tools;

• the choice of what task to deal with is in
real-time automatically communicated to
the project management tool;

• time spent tracking the project sensitively
decreases;

• developers stop to hate the Tracker!

4.2. XP4IDE
XP4IDE is an Internet based tool which con-

nects to a XPSwiki server and provides a view of
the XP process data embedded in the GUI of the
IDE (figure 2).

The role of XP4IDE is twofold: on the one hand
it enables the developer to view, directly inte-
grated into the IDE, process data, User Stories,
Tasks, Acceptance Tests and Artifacts (classes,
documentation files, Make files or Ant files, test
cases, etc.), all managed and saved on the XP-
Swiki server. On the other hand, it measures the
specific time spent on User Stories, Tasks and
Artifacts and sends this information to the XP-
Swiki server, automating the tracking activity.
The overall system architecture is quite simple:
XPSwiki acts as backend in a client-server archi-
tecture where the application protocol is built on
top of SOAP/TCP/IP. The integration between
XPSwiki and XP4IDE provides the following ad-
vantages:



6 M. Angioni, D. Carboni, S. Pinna, R. Sanna, N. Serra and A. Soro

• each actor in the XP process accesses to
process data with the right user interface
for the right phase. Developers can use the
IDE during development, while customers
and managers can use XPSwiki by means
of a simple Web browser. Both of them can
use the Web interface during the Planning
Game;

• it is possible to associate the Artifacts to
the Tasks in which they are created and
developed. This way, the tool collects data
about the time spent on every Artifact, ev-
ery Task and every User Story ;

• measuring effectively the effort spent and
presenting this information to developers
(figure 5), is one way of building a knowl-
edge base useful for enhancing their ability
to estimate stories in future planning activ-
ities (see section §3);

• beginners can immediately have a view of
the XP process. Concepts, roles and pro-
cess data are presented in a structured way,
minimizing the learning curve.

5. Process Data

This section describes the conceptual model
underlying the XPSwiki and XP4IDE suite,
showing the entities and their relations by means
of UML class diagrams. This Object Oriented
structure can be navigated to extract process data
for the computation of useful metrics.

As previously mentioned in section §4, XPSwiki
extends a Wiki structure, inheriting in this way
all its attractive features like the versioning ca-
pability. This feature enables XPSwiki to keep
track of all the versions of each entity (Task, User
Story, Iteration,. . . ).

Now we give a description of the UML model of
the XPSwiki shown in figure 6. Since this model
represents the basis for managing a XP process as
described in section §2, only a brief description of
the model is shown here.

A XP Project is performed by a Team. A Team
is composed of one or more TeamMembers. The

Figure 5. Effort data and properties of a Task in
the XP4IDE GUI.

Project is then divided into Releases and Itera-
tions of fixed length through the timeboxed ap-
proach of XP. A number of instances of UserStory
must be implemented within an Iteration. Each
UserStory is divided into one or more instances of
Task and has one or more Acceptance Tests. The
successful completion of all its Acceptance Tests
proves the successful implementation of a User-
Story.

To fully integrate the model with the devel-
opment data collected by XP4IDE, we have ex-
tended the XPSwiki model to include other en-
tities, such as Artifacts. As shown in figure 7,
Tasks and Artifacts are associated with a many-
to-many relation (an Artifact could be created in
a Task and modified in another one). An Ar-
tifact may be of different types such as Source-
Code or a generic Document. A Task has its own
TrackTable which stores information concerning
the effort expended by developers for each spe-



Integrating XP project management in development environments 7

Figure 6. UML model of the XP process as supported by XPSwiki.

cific working Session. In more detail, each Ses-
sion contains the following fields:

• subscriber: the TeamMember who sub-
scribed to the Session on that Task ;

• pairProgrammer: the TeamMember who
was programming with the subscriber in
that Session;

• startTime: date and time subscriber
started working on that Session;

• subscribedDelta: duration of the Session.

Moreover, each Session has its own Artifact-
sTrackTable which keeps track of the effort spent
on each Artifact modified or created during that
Session (ArtifactSession). More in depth, each
ArtifactSession stores the following data:

• artifact: Artifact involved in the Session;

• startTime: date and time subscriber
started working on that Artifact in that
Session;

• activationDelta: the period of time the
Artifact window was active during that Ses-
sion;

• codingDelta: the time spent on coding
(typing) that Artifact during that Session.

6. Working with the XPSuite

In this section we describe the functionalities
of the XPSuite from the developer point of view
during a development session. To better harmo-
nize with XP, the functionalities are described in
the form of User Stories.



8 M. Angioni, D. Carboni, S. Pinna, R. Sanna, N. Serra and A. Soro

Figure 7. Extension of the XPSwiki model in order to support data collected by XP4IDE.

6.1. Story: Login and Connection to a
Project

To start a working session, the developer opens
the IDE, selects the docked GUI called XPView,
the view of the XP project, which prompts for
login and password to connect to the XPSwiki
server. Then the developer selects the pair pro-
grammer with whom he is going to work with
and the project among those available on the
XPSwiki. Project data are loaded in the IDE
and presented in the XPView in the form of a
tree. The tree is composed of Releases, Itera-
tions, User Stories, Tasks and Artifacts. Tasks
already assigned to the developer are highlighted
and sorted by priority. Every tree element has
a property window which presents the attributes
for that element (for instance, a story has a title,
a description, a priority, a risk and an estimated

effort).

6.2. Story: Subscribe to a Task
Once the developer has logged in, he can select

a Task and subscribe to it. The status of the
Task changes from “inactive” to “in progress”.
Developers subscribed to a Task can create and
associate new Artifacts to that Task or modify
existing ones even if associated with other Tasks.

6.3. Story: Automatic Measure of Effort
Spent

During the working session, the XP4IDE mea-
sures:

• the Artifact activation delta (the period of
time the Artifact window was active);

• the time spent on coding an Artifact ;



Integrating XP project management in development environments 9

• the Task activation delta (computed as the
sum of the activation delta of all Artifacts
developed in the Task);

• the time spent on coding within a Task
(computed as the sum of the time spent on
coding all Artifacts developed in the Task);

• the subscribe delta (total amount of time
the developer is subscribed to a Task).

This measurement should be sent to the XPSwiki,
choosing one or more of the following options:

• periodically;

• when the developer unsubscribes to a Task ;

• when the Task is completed;

• when the IDE is closed.

6.4. Story: Open a Thread on a Story
A developer can post from the IDE user inter-

face an issue or a question opening a new thread.
The other members of the team can follow up the
discussion and provide solutions or suggestions.

6.5. Story: Managing a Task
A developer should be able to see the status of a

Task, to launch its tests, to work on its Artifacts,
to close the Task or to suspend the Task defin-
ing a prerequisite (for instance Task1 depends on
Task2).

7. Privacy Issues

Concern may arise over privacy issues, since
software tools such as XPSuite could clearly be
used to spy the behavior of developers, instead
of supporting them in their day to day activi-
ties, as they are supposed to do. Such objections,
perfectly justified, should be seriously taken into
account when developing and deploying systems
like XPSuite. Even in those cases where it is
possible to oblige developers to use automatic
tracking tools like XPSuite, this should be seri-
ously evaluated. In fact, Extreme Programming
is claimed to be a people centered methodology,
hinged on trust and reciprocal esteem between
team members, and on making full use of human

resources, instead of imposing control and author-
itarian management.

In our opinion, XPSuite (and other similar
tools) should be adopted, upon mutual agreement
with team members, if necessary in a smooth,
gradual way. On the other hand, the use of XP-
Suite has proven valuable in the experimentations
conducted so far, both for the advantages that it
offers when coordinating dispersed teams and for
its ability to gather process data contextualized
against the specific task and process phase. Be-
ing able to measure the exact time spent on any
given artifact or task, and not rely simply on the
estimates and reports provided by the developers,
that may contain errors, is a clear advantage for
the whole team.

These data can of course be of interest even
to researchers, if they help to expose mechanisms
and behaviors underlying the development pro-
cess, spot critical phases and activities, prevent
errors.

8. Related Works

There are a number of nascent or on-going
projects similar to XPSuite and suggesting that
the integration of IDEs with server side XP man-
agement tools is recognized as a valid option.
Among others we mention:

• xplanner-idea: a plug-in for IntelliJ IDEA
which connects it to the XPlanner tool
(http://sourceforge.net/projects/xplanner),
using a SOAP API;

• ecliXPweb: a plug-in for the Eclipse
IDE which allows to connect to a XPWeb
database.

In our opinion, it may be of some advantage to
define a common protocol for the communication
between IDEs and server side project manage-
ment tools, in order to facilitate interoperability
between clients and third-party servers.

9. Conclusion

In this article we have outlined the nuts and
bolts of XPSuite, a set of tools aimed to pro-
vide support and assist metrics gathering in a



10 M. Angioni, D. Carboni, S. Pinna, R. Sanna, N. Serra and A. Soro

XP project. The tools allow multi-channel in-
teraction with process data, both via Web pages
and by means of rich user interfaces, directly em-
bedded in the IDE. Although the tools have been
used for internal development and have proven
effective for supporting activities of dispersed
teams, they are in an early-stage of development
and we would like to have other teams use these
tools to obtain valuable feedback.

10. Acknowledgements

This work was supported by MAPS (Ag-
ile Methodologies for Software Production) re-
search project, contract/grant sponsor: FIRB re-
search fund of MIUR, contract/grant number:
RBNE01JRK8.

REFERENCES

1. Manifesto for agile software development.
http://agilemanifesto.org.

2. Kent Beck. Extreme Programming Explained:
Embracing Change. Addison-Wesley, 1999.

3. Ward Cunningham and Bo Leuf. The Wiki
Way. Addison-Wesley, 2001.

4. Ron Jeffries. A metric lead-
ing to agility, June 2004.
http://www.xprogramming.com/xpmag/
jatRtsMetric.htm.

5. Sandro Pinna and al. Developing a Tool Sup-
porting XP Process. In Extreme Program-
ming and Agile Methods, Lecture Notes in
Computer Science, pages 151–160. Springer,
2003.

6. Sandro Pinna and al. XPSwiki: an Agile
Tool Supporting the Planning Game. In Pro-
ceedings of the 4th international conference
XP2003, pages 104–113. Springer, 2003.

7. Swiki: the wiki engine written in Smalltalk.
http://minnow.cc.gatech.edu/swiki.

8. XPSwiki: an open source web tool
for eXtreme Programming teams.
http://agile.diee.unica.it/xpswiki.


