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Abstract Rendering high quality digital terrains at inter-
active rates requires carefully crafted algorithms and data
structures able to balance the competing requirements of re-
alism and frame rates, while taking into account the mem-
ory and speed limitations of the underlying graphics plat-
form. In this survey, we analyze multi-resolution approaches
that exploit a certain semi-regularity of the data. These ap-
proaches have produced some of the most efficient systems
to date. After providing a short background and motivation
for the methods, we focus on illustrating models based on
tiled blocks and nested regular grids, quadtrees and triangle
bin-trees triangulations, as well as cluster based approaches.
We then discuss LOD error metrics and system-level data
management aspects of interactive terrain visualization, in-
cluding dynamic scene management, out-of-core data orga-
nization and compression, as well as numerical accuracy.

Keywords Terrain rendering· Multiresolution triangula-
tion · Semi-regular meshes

1 Introduction

Efficient interactive visualization of very large digital ele-
vation models (DEMs) is important in a number of appli-
cation domains, such as scientific visualization, GIS, map-
ping applications, virtual reality, flight simulation, military
command & control, or interactive 3D games. Due to the
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ever increasing complexity of DEMs, real-time display im-
poses strict efficiency constraints on the visualization sys-
tem, which is forced to dynamically trade rendering qual-
ity with usage of limited system resources. The investiga-
tion of multiresolution methods to dynamically adapt ren-
dered model complexity has thus been, and still is, a very
active computer graphics research area. The concept has ex-
tensively been studied for general 3D triangle meshes and
has been surveyed, for instance, in [25,10,18,39,38], and
more recently in [16]. While general data structure and al-
gorithms are also applicable to digital terrain models, the
most efficient systems to date rely on a variety of methods
specifically tailored to terrain models, i.e., 2.5-dimensional
surfaces.

In this survey, we present and analyze the most com-
mon multiresolution approaches for terrain rendering that
exploit a certain semi-regularity of the data to gain max-
imum efficiency. Reference [11] provides a classic survey
focusing more on multiresolution terrain models over irreg-
ular meshes.

After providing a short background and motivation for
the methods (Section 2), we provide an overview of the most
common approaches. Section 3 provides examples of mod-
els based on tiled blocks and nested regular grids, Section 4
surveys quadtree and triangle bin-trees triangulations, while
Section 5 is devoted to recent GPU friendly cluster based
approaches. We then discuss error metrics (Section 6) and
system-level aspects of interactive terrain visualization (Sec-
tion 7), including dynamic scene management; out-of-core
data organization and compression, as well as numerical ac-
curacy. The paper concludes with a short summary in Sec-
tion 8.

2 Background and Motivation

A multiresolution terrain model supporting view-dependent
rendering must efficiently encode the steps performed by a
mesh refinement or coarsening process in a compact data
structure from which a virtually continuous set of variable
resolution meshes can be extracted, loaded on demand, and
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efficiently rendered at run time. The basic ingredients of a
such a model are abase mesh, that defines the coarsest
approximation to the terrain surface, a set ofupdates, that,
when applied to the base mesh, provide variable resolution
mesh-based representations, and adependency relation
among updates, which allows combining them to extract
consistent intermediate representations [16]. Interactive
rendering of large datasets consists in extracting at run time,
through a view-dependent querya consistent minimum
complexity representation that minimizes aview-dependent
error measure, eventually loading it on demand from
external memory. Different specialized multiresolution
models, of various efficiency and generality, are obtained
by mixing and matching different instances of all these
ingredients.

In the most general case, the multiresolution model is
based on a fully irregular approach in which the base mesh
is an irregular triangulation with unrestricted connectivity,
and updates are encoded either explicitly in terms of sets of
removed and inserted triangles, e.g., [17], or implicitly by
the operations through which the model is refined or coars-
ened (i.e., edge collapse/split or vertex insertion/removal),
e.g., [27]. A dimension-independent framework fully cover-
ing this kind of models is the Multi-Tessellation [48,12]. Be-
cause of their flexibility, fully irregular approaches are theo-
retically capable of producing the minimum complexity rep-
resentation for a given error measure. However, this flexibil-
ity comes at a price. In particular, mesh connectivity, hierar-
chy, and dependencies must explicitly be encoded, and sim-
plification and coarsening operations must handle arbitrary
neighborhoods. By imposing constraints on mesh connec-
tivity and update operations it is possible to devise classes
of more restricted models that are less costly to store, trans-
mit, render, and simpler to modify. This is because much of
the information required for all these tasks becomes implicit,
and often, because stricter bounds on the region of influence
of each local modification can be defined.

Using meshes with semi-regular or regular connectiv-
ity, together with fixed subdivision rules, is particularly well
adapted to terrains, since input data from remote sensing
most often comes in gridded form. Moreover, as the cost of
3D transformations is becoming negligible on current hard-
ware, controlling the shape of each rendered triangle starts to
become negligible, favoring methods with the most compact
and efficient host-to-graphics interface. For all these reasons,
regular or semi-regular approaches have produced some of
the most efficient systems to date.

3 Non-conforming and limited adaptivity techniques:
tiled blocks and nested regular grids

A number of successful large scale terrain visualization sys-
tems are based on data structures that do not support fully
adaptive surfaces but are simple to implement and efficient
in communicating with the I/O subsystem and with the un-
derlying graphics hardware.

3.1 Multiple static level-of-detail rendering based on tiled
blocks

Early LOD terrain rendering methods used a fixed repre-
sentation approach. With these methods, multiple represen-
tations of parts of the terrain, typically square blocks, are
precomputed and stored off-line. At run time, the appro-
priate approximation mesh is assembled from precomputed
blocks based on the current view-parameters. Because dif-
ferent parts of the terrain may be using different representa-
tions in the current approximation, cracks can occur at the
boundaries between different-resolution representations.

The NPSNET military simulation system [15], for in-
stance, decomposes the terrain into adjacent blocks repre-
sented at four different levels of details. The representations
are precomputed and stored on disk. A 16x16 grid of blocks
is kept in memory, and a simple distance metric is used to de-
termine the resolution at which each block will be rendered
(Figure 1). No effort is made to stitch blocks. As the viewer
moves, an entire row or column is paged out while the oppo-
site one is paged in. This technique is also used in the most
recent and general work on geometry clipmaps [37]. As the
number of LODs is fixed, the model provides very limited
adaptivity and is tuned to particular applications with nar-
row fields of view.

Fig. 1 Multiresolution rendering in NPSNET.

In [32,50], rather than dividing the terrain into a grid,
the authors represent it using a quadtree. Each level of the
quadtree has a single LOD representation that consists of
uniform grid over a fixed number of sample points. The root-
level mesh represents the entire terrain, while deeper lev-
els represent one quarter of the previous level’s area. At
run time, the quadtree is traversed and a decision is made
about which blocks of terrain should be used to represent the
terrain. To visually deal with discontinuities at tile bound-
aries, vertical wall polygons are constructed between the
tile edges. This work was then extended in [6] by associat-
ing at each block a precomputed fixed representation, which
is chosen among uniform meshes, non-uniform grids, and
TINs. This allows nodes that are deep in the tree to repre-
sent fine-grained features (such as river beds or roadways)
using a TIN representation, while allowing a uniform mesh
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representation to be at shallower levels in the tree. As in [32],
cracks between adjacent blocks of terrain are filled by verti-
cal wall polygons. Other visual crack filling methods include
adding flanges around blocks, so that neighboring meshes
interpenetrate slightly, as well as joining blocks with special
meshes at run-time [59],

Even if these methods may seem overly simplistic, since
they do not produce continuous levels-of-detail and require
work to fix the cracks at block boundaries, and introduce
hard to control visual artefacts, they are still very popular, es-
pecially for networked applications, mostly because of scal-
ability, ease of implementation, and simplicity of integration
with an efficient tile based I/O system.

3.2 Nested regular grids

Losasso and Hoppe [37] have recently proposed the
geometry clipmap, a simple and efficient approach that
parallels with the LOD treatment of images. A pre-filtered
mipmap pyramid is a natural representation of terrain
data. The pyramid represents nested extents at successive
power-of-two resolutions. Geometry clipmaps cache in
video memory nested rectangular extents of the pyramid
to create view-dependent approximations (see Figure 2).
As the viewpoint moves, the clipmap levels shift and
are incrementally refilled with data. To permit efficient
incremental updates, the array is accessed toroidally, i.e.
with 2D wraparound addressing using mod operations on
x and y. Transition regions are created to smoothly blend
between levels, and T-junctions are avoided by stitching
the level boundaries using zero-area triangles. The LOD
transition scheme allows independent translation of the
clipmap levels, and lets levels be cropped rather than
invalidated atomically. Since LODs are purely based on
2D distance from clipmap center, the terrain data does not
require precomputation of refinement criteria. Together
with the simple grid structure, this allows the terrain to
be synthesized on-the-fly, or to be stored in a highly
compressed format. For compression, the residuals between
levels are compressed using an advanced image coder that
supports fast access to image regions.

Storing in a compressed form just the heights and re-
constructing at runtime both normal and color data (using a
simple height color mapping) provides a very compact rep-
resentation that can be maintained in main memory even for
large datasets. The pyramidal scheme limits however adap-
tivity. In particular, as with texture clipmap-based methods,
the technique works best for wide field of views and nearly
planar geometry, and would not apply to planetary recon-
structions that would require more than one nesting neigh-
borhood for a given perspective.

3.3 Discussion

The methods surveyed in this section strive to provide a sim-
ple and efficient implementation at the cost of imposing lim-

Fig. 2 Geometry clipmap.

itations in adaptivity and approximation quality. In the next
sections we will see methods that rely on more complex,
but also more powerful data structures. We will first sur-
vey quadtree and bin-tree triangulations, i.e. methods able to
construct fully continuous levels of details by imposing con-
sistency rules on local subdivision. We will then show how
these methods can be made more efficient in terms of raw
triangle throughput by employing a cluster based approach.

4 Variable resolution triangulation using quadtree and
triangle bin-tree subdivision

From the point of view of the rapid adaptive construction
and display of continuous terrain surfaces, some of the most
successful examples are based on quadtree or triangle bin-
tree triangulation. As we will see, the scheme permits the
creation of continuous variable resolution surfaces without
having to cope with the gaps created by other regular grid
schemes, as those in Section 3. The main idea shared by all
of these approaches is to build a regular multiresolution hi-
erarchy by refinement or by simplification. The refinement
approach starts from an isosceles right triangle and proceeds
by recursively refining it by bisecting its longest edge and
creating two smaller right triangles. In the simplification ap-
proach the steps are reversed: given a regular triangulation
of a gridded terrain, pairs of right triangles are selectively
merged. The regular structure of these operations enables to
implicitly encode all the dependencies among the various re-
finement/simplification operations in a compact and simple
way.

Depending on the definition of the triangulation rule,
there is potentially a difference in the adaptive triangula-
tion power of quadtree based triangulations versus triangle
bin-trees. Generally, any of the discussed quadtree triangu-
lations can be considered a special case of recursive triangle
bisection. Nevertheless, from the refined definition of a re-
stricted quadtree triangulation as presented in [58,57] and
the following works [34,42] one can arguably consider the
restricted quadtree triangulation and triangle bin-tree to pro-
duce the same class of adaptive grid triangulations. Hence
we use the term restricted quadtree triangulation more in
line with [57] rather than with the more strict definition as in
[49].
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4.1 Quadtree Triangulation

In this section we discuss the various algorithms of quadtree
based adaptive triangulation of height-fields (or parametric
two-dimensional surfaces). The closely related triangle
bisection approaches are discussed in Section 4.2. A typical
example of a simplified triangulated surface that can be
constructed using this class of multiresolution triangulation
methods is given in Figure 3.

Fig. 3 Adaptive quadtree based terrain triangulation.

Restricted Quadtrees.Hierarchical, quadtree based
adaptive triangulation of 2-manifold surfaces has first
been presented in [62] and applied to adaptively sample
and triangulate curved parametric surfaces. In parameter
space, the quadtree subdivision is performed recursively
until for each sampled region the Lipschitz condition for
the parametric curve is met that bounds the accuracy of
the resulting polygonal approximation. Furthermore, the
quadtree subdivision is restricted such that neighboring
regions must be within one level of each other in the
quadtree hierarchy as shown in Figure 4.
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listed above. For more detailed explanations and in-depth
analysis the reader is referred to the original referenced arti-
cles introducing the different algorithms and data structures.

The remainder of this review is organized as follows. In
Section 2 we briefly review the most closely related work
on multiresolution meshing and terrain visualization.
Section 3 and Section 4 describe the different triangulation
algorithms and LOD hierarchies while Section 5 discusses
the LOD error metrics. Additionally, in Section 6 we review
cluster based approaches, and Section 7 discusses system-
level data management aspects of interactive terrain visual-
ization. The paper concludes with a discussion in Section 8.
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Delaunay

 

 triangula-
tions [Del34] to create 

 

triangular irregular networks

 

 (TINs)
that represent the terrain surface. In [Lee91] and [GH95] sev-
eral incremental point insertion and point removal methods are
discussed and compared that can be used to create TINs effi-
ciently from height-field data. The Delaunay pyramid [DF89,
VBH94] is a multiresolution extension of Delaunay based
TINs in which groups of connected triangles are hierarchi-
cally replaced by sets with fewer triangles, see also
[dBD95]. Other hierarchical triangulations as discussed in
[DFP95], [DFMP96] and [Pup96] are mainly based on recur-
sive subdivision of triangles. In [Hop98] a hierarchical multi-
resolution terrain triangulation method is presented that is
based on progressive application of edge-collapse and vertex-
split mesh simplification and refinement operations
[Hop96].

Similar to the approaches surveyed in this paper, a
quadtree hierarchy is imposed on the height-field grid by the
2D wavelet transform applied in [GGS95] to simplify the ter-
rain. In this approach elevation points are basically removed
from the grid based on the significance of their wavelet coef-
ficients, and the remaining quadtree-like point set is locally
triangulated using look-up tables. Quadtree based triangula-
tions as discussed here for terrain visualization have also
been applied to image compression, for example in conjunc-
tion with wavelet decomposition [HK95].

In fact, several of these proposed terrain simplification
and triangulation methods are particularly efficient with
respect to triangulation performance (i.e. [GH95] or
[Hop98]) or LOD adaptivity (i.e. [Hop98] or [GGS95]).
Nonetheless, the quadtree based triangulation methods outlined
in here provide a more compact representation of the terrain
(including all LODs up to full resolution), better spatial access,
faster LOD triangulation and rendering, and are easier to
implement as well. Note that these advantages come at some
expense of increased complexity (size) of the rendered trian-
gle mesh, with the exception of [PAL02].
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Fig. 4 Example of an unrestricted quadtree subdivision in parameter
space in a), and the restricted subdivision in b).

The basic approach for triangulation and visualization
uses the following steps:

1. Initial sampling of function on a uniform grid.
2. Evaluation of each region with respect to some accep-

tance criteria (approximation error metric).

3. 4-split of unacceptable regions.
4. Repetition of Steps 2 and 3 until adaptive sampling sat-

isfies acceptance criteria over the entire surface.
5. Triangulation and rendering of all quadtree regions.

To prevent possiblecracks in the polygonal represen-
tation of a restricted quadtree as shown in Figure 5, every
quadtree region is triangulated with respect to the resolution
of its adjacent regions. Due to the constraint of the restricted
quadtree hierarchy that the levels of adjacent regions differ
at most by one, the regions can be triangulated such that no
cracks appear as outlined below. Such a crack-free triangu-
lation is also calledconforming.
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Cracks (shaded in grey) resulting from a
quadrilateral polygonal representation of a restricted
quadtree.

 

The triangulation rule as stated in [VHB87] is the fol-
lowing: Each square is subdivided into eight triangles, two
triangles per edge, unless the edge borders a larger square in
which case a single triangle is formed along that edge.
Figure 4 shows a triangulation of a restricted quadtree fol-
lowing this rule.
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Matching triangulation of a restricted quadtree
subdivision as in [VHB87].

 

No detailed algorithms and data structures are given in
[VHB87] to construct and triangulate a restricted quadtree.
Nevertheless, the presented restricted quadtree subdivision
and its triangulation forms the fundamental basis on which
most of the surveyed triangulation approaches are built.
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quadtree hierarchy. Furthermore, in [SS92] it is also observed
that edges shared by two quadtree nodes on the same hierarchy
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tion as shown in Figure 5 in comparison to Figure 4.
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grid is partitioned into atomic nodes of 3x3 elevation points
as shown in Figure 6. These nodes form the leaf nodes of a
complete and balanced quadtree over the entire input grid.
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Atomic leaf-node for bottom-up construction of
restricted quadtree.

 

The main phase of this method then consists of coalesc-
ing all mergible nodes bottom-up to create the restricted
quadtree. Nodes must pass two main criteria before they can
be merged:

 

1.

 

Error measure

 

: The approximation error introduced
by removing the edge mid-point vertices of the nodes
being merged must be within the tolerance of a given
error threshold.

 

2.

 

Quadtree constraints

 

: The size of the node is equal to
the size of its three siblings in the quadtree hierarchy,
and neither the node nor its siblings have any
smaller-sized neighbors.

The approximation error of Criterion 1 used in [SS92] is
further discussed in Section 5. The algorithm terminates if
no more merges can be performed, and it has a linear space
and time cost O(
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) in the size 
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 of the input data set.

The second algorithm presented in [SS92] is a 

 

top-down

 

construction of the restricted quadtree hierarchy. This
method starts with representing the entire data set simplified
by one root node and splits nodes recursively, never merges
any, as necessary to approximate the data set. The method
maintains at all time the restricted quadtree property that
adjacent leaf nodes do not differ by more than one level in
the hierarchy.
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and time cost O(
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) in the size 
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 of the input data set.

The second algorithm presented in [SS92] is a 

 

top-down

 

construction of the restricted quadtree hierarchy. This
method starts with representing the entire data set simplified
by one root node and splits nodes recursively, never merges
any, as necessary to approximate the data set. The method
maintains at all time the restricted quadtree property that
adjacent leaf nodes do not differ by more than one level in
the hierarchy.

Fig. 5 Cracks (shaded in grey) resulting from a quadrilateral polygonal
representation of a restricted quadtree.

The triangulation rule as stated in [62] is the following:
Each square is subdivided into eight triangles, two triangles
per edge, unless the edge borders a larger square in which
case a single triangle is formed along that edge. Figure 6
shows a triangulation of a restricted quadtree following this
rule.
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To prevent possible 
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Nevertheless, the presented restricted quadtree subdivision
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grid and each having a 
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[VHB87], in [SS92] two efficient construction algorithms to
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points on a regular grid are provided. One method is performed
bottom-up and the other top-down to generate the restricted
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that edges shared by two quadtree nodes on the same hierarchy
level do not have to be split to guarantee a matching triangula-
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construction of the restricted quadtree hierarchy. This
method starts with representing the entire data set simplified
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any, as necessary to approximate the data set. The method
maintains at all time the restricted quadtree property that
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No detailed algorithms and data structures are given in
[VHB87] to construct and triangulate a restricted quadtree.
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In the 
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 construction method, the (square) input
grid is partitioned into atomic nodes of 3x3 elevation points
as shown in Figure 6. These nodes form the leaf nodes of a
complete and balanced quadtree over the entire input grid.
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The main phase of this method then consists of coalesc-
ing all mergible nodes bottom-up to create the restricted
quadtree. Nodes must pass two main criteria before they can
be merged:

 

1.

 

Error measure

 

: The approximation error introduced
by removing the edge mid-point vertices of the nodes
being merged must be within the tolerance of a given
error threshold.

 

2.

 

Quadtree constraints

 

: The size of the node is equal to
the size of its three siblings in the quadtree hierarchy,
and neither the node nor its siblings have any
smaller-sized neighbors.

The approximation error of Criterion 1 used in [SS92] is
further discussed in Section 5. The algorithm terminates if
no more merges can be performed, and it has a linear space
and time cost O(
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) in the size 
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The second algorithm presented in [SS92] is a 
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construction of the restricted quadtree hierarchy. This
method starts with representing the entire data set simplified
by one root node and splits nodes recursively, never merges
any, as necessary to approximate the data set. The method
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Fig. 6 Conforming triangulation of a restricted quadtree subdivision
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No detailed algorithms and data structures are given in
[62] to construct and triangulate a restricted quadtree. Never-
theless, the presented restricted quadtree subdivision and its
triangulation forms the fundamental basis on which a num-
ber of the surveyed triangulation approaches are built.

Quadtree Surface Maps.In [58,57], the restricted quadtree
technique is refined and applied to 2.5-dimensional surface
data consisting of points on a regular 2D-grid and each hav-
ing a height value associated with it. This is the common
representation of grid-digital terrain elevation models. In ad-
dition to the basic method as presented in [62], in [58] two
efficient construction algorithms to generate and triangulate
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a restricted quadtree from a set of points on a regular grid
are provided. One method is performed bottom-up and the
other top-down to generate the restricted quadtree hierarchy.
Furthermore, in [58] it is also observed that edges shared by
two quadtree nodes on the same hierarchy level do not have
to be split to guarantee a conforming triangulation as shown
in Figure 7 in comparison to Figure 6.
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The main phase of this method then consists of coalesc-
ing all mergible nodes bottom-up to create the restricted
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Error measure

 

: The approximation error introduced
by removing the edge mid-point vertices of the nodes
being merged must be within the tolerance of a given
error threshold.

 

2.

 

Quadtree constraints

 

: The size of the node is equal to
the size of its three siblings in the quadtree hierarchy,
and neither the node nor its siblings have any
smaller-sized neighbors.

The approximation error of Criterion 1 used in [SS92] is
further discussed in Section 5. The algorithm terminates if
no more merges can be performed, and it has a linear space
and time cost O(
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) in the size 
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 of the input data set.

The second algorithm presented in [SS92] is a 

 

top-down

 

construction of the restricted quadtree hierarchy. This
method starts with representing the entire data set simplified
by one root node and splits nodes recursively, never merges
any, as necessary to approximate the data set. The method
maintains at all time the restricted quadtree property that
adjacent leaf nodes do not differ by more than one level in
the hierarchy.
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The basic approach for triangulation and visualization
uses the following steps:
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Initial sampling of function on a uniform grid.
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Evaluation of each region with respect to some
acceptance criteria (approximation error metric).

 

3.

 

4-split of unacceptable regions.
Repetition of Steps 2 and 3 until adaptive sampling
satisfies acceptance criteria over the entire surface.

 

4.

 

Triangulation and rendering of all quadtree regions.

To prevent possible 

 

cracks

 

 in the polygonal representa-
tion of a restricted quadtree as shown in Figure 3, every
quadtree region is triangulated with respect to the resolution
of its adjacent regions. Due to the constraint of the restricted
quadtree hierarchy that the levels of adjacent regions differ
at most by one, the regions can be triangulated such that no
cracks appear as outlined below. Such a crack-free triangu-
lation is also called 

 

matching
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FIGURE 3.

 

Cracks (shaded in grey) resulting from a
quadrilateral polygonal representation of a restricted
quadtree.

 

The triangulation rule as stated in [VHB87] is the fol-
lowing: Each square is subdivided into eight triangles, two
triangles per edge, unless the edge borders a larger square in
which case a single triangle is formed along that edge.
Figure 4 shows a triangulation of a restricted quadtree fol-
lowing this rule.
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subdivision as in [VHB87].

 

No detailed algorithms and data structures are given in
[VHB87] to construct and triangulate a restricted quadtree.
Nevertheless, the presented restricted quadtree subdivision
and its triangulation forms the fundamental basis on which
most of the surveyed triangulation approaches are built.

 

3.2 Quadtree Surface Maps

 

In [SS92], the restricted quadtree technique is applied to 2.5-
dimensional surface data consisting of points on a regular 2D-
grid and each having a 

 

height

 

 value associated with it. This is
the common representation of grid-digital terrain elevation
models. In addition to the basic method as presented in

[VHB87], in [SS92] two efficient construction algorithms to
generate and triangulate a restricted quadtree from a set of
points on a regular grid are provided. One method is performed
bottom-up and the other top-down to generate the restricted
quadtree hierarchy. Furthermore, in [SS92] it is also observed
that edges shared by two quadtree nodes on the same hierarchy
level do not have to be split to guarantee a matching triangula-
tion as shown in Figure 5 in comparison to Figure 4.
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Improved matching triangulation of a restricted
quadtree subdivision as in [SS92].

 

In the 

 

bottom-up

 

 construction method, the (square) input
grid is partitioned into atomic nodes of 3x3 elevation points
as shown in Figure 6. These nodes form the leaf nodes of a
complete and balanced quadtree over the entire input grid.

 

FIGURE 6.

 

Atomic leaf-node for bottom-up construction of
restricted quadtree.

 

The main phase of this method then consists of coalesc-
ing all mergible nodes bottom-up to create the restricted
quadtree. Nodes must pass two main criteria before they can
be merged:

 

1.

 

Error measure

 

: The approximation error introduced
by removing the edge mid-point vertices of the nodes
being merged must be within the tolerance of a given
error threshold.

 

2.

 

Quadtree constraints

 

: The size of the node is equal to
the size of its three siblings in the quadtree hierarchy,
and neither the node nor its siblings have any
smaller-sized neighbors.

The approximation error of Criterion 1 used in [SS92] is
further discussed in Section 5. The algorithm terminates if
no more merges can be performed, and it has a linear space
and time cost O(
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) in the size 
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The second algorithm presented in [SS92] is a 
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construction of the restricted quadtree hierarchy. This
method starts with representing the entire data set simplified
by one root node and splits nodes recursively, never merges
any, as necessary to approximate the data set. The method
maintains at all time the restricted quadtree property that
adjacent leaf nodes do not differ by more than one level in
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Fig. 7 Improved conforming triangulation of a restricted quadtree sub-
division as in [58].

In thebottom-upconstruction method, the (square) input
grid is partitioned into atomic nodes of 3x3 elevation points
as shown in Figure 8. These nodes form the leaf nodes of a
complete and balanced quadtree over the entire input grid.
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To prevent possible 
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 in the polygonal representa-
tion of a restricted quadtree as shown in Figure 3, every
quadtree region is triangulated with respect to the resolution
of its adjacent regions. Due to the constraint of the restricted
quadtree hierarchy that the levels of adjacent regions differ
at most by one, the regions can be triangulated such that no
cracks appear as outlined below. Such a crack-free triangu-
lation is also called 

 

matching
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Cracks (shaded in grey) resulting from a
quadrilateral polygonal representation of a restricted
quadtree.

 

The triangulation rule as stated in [VHB87] is the fol-
lowing: Each square is subdivided into eight triangles, two
triangles per edge, unless the edge borders a larger square in
which case a single triangle is formed along that edge.
Figure 4 shows a triangulation of a restricted quadtree fol-
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No detailed algorithms and data structures are given in
[VHB87] to construct and triangulate a restricted quadtree.
Nevertheless, the presented restricted quadtree subdivision
and its triangulation forms the fundamental basis on which
most of the surveyed triangulation approaches are built.
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In [SS92], the restricted quadtree technique is applied to 2.5-
dimensional surface data consisting of points on a regular 2D-
grid and each having a 

 

height

 

 value associated with it. This is
the common representation of grid-digital terrain elevation
models. In addition to the basic method as presented in

[VHB87], in [SS92] two efficient construction algorithms to
generate and triangulate a restricted quadtree from a set of
points on a regular grid are provided. One method is performed
bottom-up and the other top-down to generate the restricted
quadtree hierarchy. Furthermore, in [SS92] it is also observed
that edges shared by two quadtree nodes on the same hierarchy
level do not have to be split to guarantee a matching triangula-
tion as shown in Figure 5 in comparison to Figure 4.

 

FIGURE 5.

 

Improved matching triangulation of a restricted
quadtree subdivision as in [SS92].

 

In the 

 

bottom-up

 

 construction method, the (square) input
grid is partitioned into atomic nodes of 3x3 elevation points
as shown in Figure 6. These nodes form the leaf nodes of a
complete and balanced quadtree over the entire input grid.

 

FIGURE 6.

 

Atomic leaf-node for bottom-up construction of
restricted quadtree.

 

The main phase of this method then consists of coalesc-
ing all mergible nodes bottom-up to create the restricted
quadtree. Nodes must pass two main criteria before they can
be merged:

 

1.

 

Error measure

 

: The approximation error introduced
by removing the edge mid-point vertices of the nodes
being merged must be within the tolerance of a given
error threshold.

 

2.

 

Quadtree constraints

 

: The size of the node is equal to
the size of its three siblings in the quadtree hierarchy,
and neither the node nor its siblings have any
smaller-sized neighbors.

The approximation error of Criterion 1 used in [SS92] is
further discussed in Section 5. The algorithm terminates if
no more merges can be performed, and it has a linear space
and time cost O(

 

n

 

) in the size 
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 of the input data set.

The second algorithm presented in [SS92] is a 

 

top-down

 

construction of the restricted quadtree hierarchy. This
method starts with representing the entire data set simplified
by one root node and splits nodes recursively, never merges
any, as necessary to approximate the data set. The method
maintains at all time the restricted quadtree property that
adjacent leaf nodes do not differ by more than one level in
the hierarchy.

Fig. 8 Atomic leaf-node for bottom-up construction of restricted
quadtree.

The main phase of this method then consists of coa-
lescing all mergible nodes bottom-up to create the restricted
quadtree. Nodes must pass two main criteria before they can
be merged:

1. Error measure: The approximation error introduced by
removing the edge mid-point vertices of the nodes be-
ing merged must be within the tolerance of a given error
threshold.

2. Quadtree constraints: The size of the node is equal to the
size of its three siblings in the quadtree hierarchy, and
neither the node nor its siblings have any smaller-sized
neighbors

The approximation error of Criterion 1 used in [58] is
further discussed in Section 6. The algorithm terminates if
no more merges can be performed, and it has a linear space
and time costO(n) in the sizen of the input data set.

The second algorithm presented in [58] is atop-down
construction of the restricted quadtree hierarchy. This
method starts with representing the entire data set simplified

by one root node and splits nodes recursively, never merges
any, as necessary to approximate the data set. The method
maintains at all time the restricted quadtree property that
adjacent leaf nodes do not differ by more than one level in
the hierarchy.

Vertices that can conceptually be removed by merging
four sibling nodes are callednon-persistent. Starting with
the root node as shown in Figure 9-a, for each node of the
partially constructed restricted quadtree the non-persistent
vertices are identified in the input data set and their error
metric compared to the given approximation threshold. If
any non-persistent vertex is not within the tolerated thresh-
old it is added to the current quadtree. However, insertion
of vertices can lead to complex updates of the quadtree as
outlined below.
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. Starting with
the root node as shown in Figure 7-a, for each node of the
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vertices are identified in the input data set and their error
metric compared to the given approximation threshold. If
any non-persistent vertex is not within the tolerated thresh-
old it is added to the current quadtree. However, insertion of
vertices can lead to complex updates of the quadtree as out-
lined below.

 

FIGURE 7.

 

Vertices of the root node (level 0) shown in a),
as well as the non-persistent vertices of level 1 in b) and
level 2 in c).

 

To permanently maintain a restricted quadtree, the inser-
tion of a vertex can lead to propagated splits in the parent
and adjacent quadtree nodes. As shown in Figure 8, it may
happen that a node on level 
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 is not split because no vertices
of level 

 

l

 

+1 are inserted, however,

 

 

 

a vertex 
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 on level 
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+2
has to be added. This insertion cannot be performed directly
since no parent node covering 
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 has been created yet on
level 

 

l

 

+1. First the parent node of 

 

v

 

2

 

 and its siblings on level

 

l

 

+1 have to be inserted by splitting the smallest node on
level 
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 enclosing 
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2

 

 into four nodes. Such propagated splits
can occur over multiple levels.

 

FIGURE 8.

 

Starting triangulation of a node on level 

 

l

 

 is
shown in a). No vertices are initially selected on level 

 

l

 

+1.
The selection of a vertex on level 

 

l

 

+2 leads to forced splits
and added vertices on previous levels as shown in b).

 

Not fully covered in [SS92] is the situation where splits
do not only have to be propagated vertically up in the hierar-
chy but also horizontally to other adjacent nodes as shown
in Figure 9. To resolve such conflicts, all adjacent nodes of
any quadtree node that is split have to be visited and updated
accordingly. This split propagation to spatially adjacent
nodes can in the worst case affect all nodes of the current
quadtree, however, in the expected case will only influence
quadtree nodes within a limited neighborhood.
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 shown in a).
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The proposed top-down algorithm to create an adaptive
surface mesh processes the entire data set and thus its cost is
O(
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 of the input. While the number of
generated quadtree nodes is indeed output sensitive, the
overall run-time is still directly proportional to the input
data set since all vertices have to be visited. However, in
contrast to the bottom-up algorithm, this top-down method
correctly calculates the approximation error at each vertex
as discussed in Section 5.

Both methods presented in [SS92] operate on a hierar-
chical quadtree data structure that must provide functional-
ity for inserting vertices, calculating distance of a vertex to a
piece-wise linear surface approximation, neighbor finding,
and for merging and splitting nodes. Furthermore, the
restricted quadtree nodes must be post-processed to generate
the resulting matching triangulation. The presented algo-
rithms are capable of creating adaptive and continuous LOD
triangulations within the limits of the error metric. However,
efficiency is not optimized for real-time rendering of very
large terrain data sets due to the input sensitiveness of the
basic triangulation algorithms.
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. Starting with a triangulation of the entire
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overall run-time is still directly proportional to the input
data set since all vertices have to be visited. However, in
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as discussed in Section 5.

Both methods presented in [SS92] operate on a hierar-
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Vertices that can conceptually be removed by merging
four sibling nodes are called 

 

non-persistent

 

. Starting with
the root node as shown in Figure 7-a, for each node of the
partially constructed restricted quadtree the non-persistent
vertices are identified in the input data set and their error
metric compared to the given approximation threshold. If
any non-persistent vertex is not within the tolerated thresh-
old it is added to the current quadtree. However, insertion of
vertices can lead to complex updates of the quadtree as out-
lined below.
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Fig. 9 Vertices of the root node (level 0) shown in a), as well as the
non-persistent vertices of level 1 in b) and level 2 in c).

To permanently maintain a restricted quadtree, the inser-
tion of a vertex can lead to propagated splits in the parent
and adjacent quadtree nodes. As shown in Figure 10, it may
happen that a node on levell is not split because no ver-
tices of levell +1 are inserted, however, a vertexv2 on level
l + 2 has to be added. This insertion cannot be performed
directly since no parent node coveringv2 has been created
yet on levell +1. First the parent node ofv2 and its siblings
on level l + 1 have to be inserted by splitting the smallest
node on levell enclosingv2 into four nodes. Such propa-
gated splits can occur over multiple levels.

For further details, in particular of the top-down algo-
rithm algorithm we refer to the detailed description of sur-
face maps from restricted quadtrees in [57].
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Fig. 10 Starting triangulation of a node on levell is shown in a). No
vertices are initially selected on levell +1. The selection of a vertex on
level l +2 leads to forced splits and added vertices on previous levels
as shown in b).
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The proposed top-down algorithm to create an adaptive
surface mesh processes the entire data set and thus its cost
is O(n), linear in the sizen of the input. While the num-
ber of generated quadtree nodes is indeed output sensitive,
the overall run-time is still directly proportional to the in-
put data set since all vertices have to be visited. However, in
contrast to the bottom-up algorithm, this top-down method
correctly calculates the approximation error at each vertex
as discussed in Section 6.

Both methods presented in [58,57] operate on a hierar-
chical quadtree data structure that must provide functional-
ity for inserting vertices, calculating distance of a vertex to
a piece-wise linear surface approximation, neighbor finding,
and for merging and splitting nodes. Furthermore, the re-
stricted quadtree nodes must be post-processed to generate
the resulting conforming triangulation. The presented algo-
rithms are capable of creating adaptive and continuous LOD
triangulations within the limits of the error metric. However,
efficiency is not optimized for real-time rendering of very
large terrain data sets due to the input sensitiveness of the
basic triangulation algorithms.

Continuous LOD Quadtree.A different approach to gener-
ate and triangulate a restricted quadtree is presented in [34]
based on the notion oftriangle fusion. Starting with a tri-
angulation of the entire grid-digital terrain data set the tri-
angle mesh is simplified bottom-up by consecutive merging
of symmetric triangle pairs. The full resolution grid triangu-
lation as shown in Figure 11-a is equivalent to the atomic
leaf nodes of the bottom-up triangulation method in [58].
Triangle merging is performed in two phases as shown in
Figure 11-b and c. First, in an atomic node pairs of isosceles
triangles (i.e.al andar in Figure 11-b) sharing a short edge
are coalesced and the mid-point on the boundary edge of the
quad is removed. In the second phase the center vertex of a
quad region is removed by merging isosceles triangle pairs
along the diagonal (i.e.el ander in Figure 11-c). However,
to prevent cracks from occurring due to triangle merging, al-
ways two pairs of isosceles triangles that all share the same
removed base vertex must be coalesced at the same time (i.e.
both pairsel , er and fl , fr in Figure 11-c).
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FIGURE 10.

 

Full resolution triangulation shown in a).
Merging of triangle pairs along the bottom boundary edge
shown in b) and along the diagonal in c).

 

One of the main contributions of [LKR+96] is the intro-
duction of vertex dependencies that can be used to prevent
cracks and create matching triangulations at variable LOD.
For example, considering Figures 10-b and 10-c it is clear
that the midpoint of the bottom edge on level 

 

l

 

, the base ver-
tex of triangles 
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l

 

 and 

 

a

 

r

 

, cannot be part of a matching trian-
gulation if the center vertex of the quad region, the base
vertex of 

 

e
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e

 

r

 

, is missing. Or from the opposite viewpoint,
the base vertex of triangles 

 

e
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e

 

r

 

 and 

 

f

 

l

 

, 

 

f

 

r

 

 cannot be removed
if any of the base vertices of triangle pairs 

 

a

 

l

 

,

 

a

 

r

 

, 

 

b

 

l,br, cl,cr
or dl,dr persists. These constraints of a matching restricted
quadtree triangulation define a binary, hierarchical depen-
dency relation between vertices as shown in Figure 11. Each
vertex to be included in a triangulation depends on two other
vertices (on the same or lower resolution level) to be
included first. Therefore, a triangulation of a (restricted)
quadtree is a matching triangulation only if no such depen-
dency relation is violated. The triangulation method pro-
posed in [LKR+96] recursively resolves the dependency
relations of a set S of selected vertices (i.e. all vertices
exceeding a given error tolerance) as follows: For each ver-
tex , all its dependent parents according to the depen-
dency rules shown in Figure 11 are recursively activated
and included in the triangulation as well.

FIGURE 11. Dependency relation of a restricted quadtree
triangulation. The center vertex in a) depends on the
inclusion of two corners of its quad region. The boundary
edge midpoints in b) depend on the center vertex of the
quad region. Dependencies within and between the next
resolution levels are shown in c) and d).

Another important feature presented in [LKR+96] is the
construction of triangle strips for fast rendering. In fact, a
triangulation of a restricted quadtree can be represented by
one single generalized triangle strip.1 The triangle strip
generation method described in [LKR+96] is based on a
recursive pre-order traversal of the triangular quadrants of
quadtree blocks. Starting with a counterclockwise ordering
of triangular quadrants of the root node as shown in

Figure 12-a, each quadrant is recursively traversed and the
traversal is stopped when a triangle is not further subdi-
vided. In alternating order, children of triangular quadrants
are visited left-first as for quadrant q0 (and in Figure 12-c),
or right-first as for the triangles in the next level shown in
Figure 12-b. Based on this traversal, vertices can be ordered
and outputted to form a generalized triangle strip for effi-
cient rendering (see [LKR+96] for code details).

FIGURE 12. Recursive quadtree traversal for triangle strip
generation. Initial order of triangular quadrants shown in a)
with left-first traversal for odd subdivisions shown in b), and
right-first traversal of even subdivision steps shown in c).

Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle
strips are formed for individual blocks only in [LKR+96].
For each frame a block-based view-dependent image-space
error metric is used (see Section 5) to form a (non-
restricted) quadtree subdivision S of the terrain. For each
block  of this subdivision, a vertex-based error metric
is applied to achieve a fine-grain selection of vertices to be
included in the triangulation. Furthermore, the vertex depen-
dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
gle strip is generated and used for rendering.

The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
The Restricted Quadtree Triangulation (RQT) approach
presented in [Paj98a, Paj98b] is focused on large scale real-
time terrain visualization. The triangulation method is based
on a quadtree hierarchy as in [SS92] and exploits the depen-
dency relation presented in [LKR+96] to generate minimally
matching quadtree triangulations. Both, top-down and bottom-
up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
recursive functions, and no hierarchical data structure actually

1. generalized triangle strips allow swap operations.
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Full resolution triangulation shown in a).
Merging of triangle pairs along the bottom boundary edge
shown in b) and along the diagonal in c).

 

One of the main contributions of [LKR+96] is the intro-
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included first. Therefore, a triangulation of a (restricted)
quadtree is a matching triangulation only if no such depen-
dency relation is violated. The triangulation method pro-
posed in [LKR+96] recursively resolves the dependency
relations of a set S of selected vertices (i.e. all vertices
exceeding a given error tolerance) as follows: For each ver-
tex , all its dependent parents according to the depen-
dency rules shown in Figure 11 are recursively activated
and included in the triangulation as well.

FIGURE 11. Dependency relation of a restricted quadtree
triangulation. The center vertex in a) depends on the
inclusion of two corners of its quad region. The boundary
edge midpoints in b) depend on the center vertex of the
quad region. Dependencies within and between the next
resolution levels are shown in c) and d).

Another important feature presented in [LKR+96] is the
construction of triangle strips for fast rendering. In fact, a
triangulation of a restricted quadtree can be represented by
one single generalized triangle strip.1 The triangle strip
generation method described in [LKR+96] is based on a
recursive pre-order traversal of the triangular quadrants of
quadtree blocks. Starting with a counterclockwise ordering
of triangular quadrants of the root node as shown in

Figure 12-a, each quadrant is recursively traversed and the
traversal is stopped when a triangle is not further subdi-
vided. In alternating order, children of triangular quadrants
are visited left-first as for quadrant q0 (and in Figure 12-c),
or right-first as for the triangles in the next level shown in
Figure 12-b. Based on this traversal, vertices can be ordered
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cient rendering (see [LKR+96] for code details).
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generation. Initial order of triangular quadrants shown in a)
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Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle
strips are formed for individual blocks only in [LKR+96].
For each frame a block-based view-dependent image-space
error metric is used (see Section 5) to form a (non-
restricted) quadtree subdivision S of the terrain. For each
block  of this subdivision, a vertex-based error metric
is applied to achieve a fine-grain selection of vertices to be
included in the triangulation. Furthermore, the vertex depen-
dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
gle strip is generated and used for rendering.

The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
The Restricted Quadtree Triangulation (RQT) approach
presented in [Paj98a, Paj98b] is focused on large scale real-
time terrain visualization. The triangulation method is based
on a quadtree hierarchy as in [SS92] and exploits the depen-
dency relation presented in [LKR+96] to generate minimally
matching quadtree triangulations. Both, top-down and bottom-
up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
recursive functions, and no hierarchical data structure actually
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quadtree triangulation define a binary, hierarchical depen-
dency relation between vertices as shown in Figure 11. Each
vertex to be included in a triangulation depends on two other
vertices (on the same or lower resolution level) to be
included first. Therefore, a triangulation of a (restricted)
quadtree is a matching triangulation only if no such depen-
dency relation is violated. The triangulation method pro-
posed in [LKR+96] recursively resolves the dependency
relations of a set S of selected vertices (i.e. all vertices
exceeding a given error tolerance) as follows: For each ver-
tex , all its dependent parents according to the depen-
dency rules shown in Figure 11 are recursively activated
and included in the triangulation as well.

FIGURE 11. Dependency relation of a restricted quadtree
triangulation. The center vertex in a) depends on the
inclusion of two corners of its quad region. The boundary
edge midpoints in b) depend on the center vertex of the
quad region. Dependencies within and between the next
resolution levels are shown in c) and d).

Another important feature presented in [LKR+96] is the
construction of triangle strips for fast rendering. In fact, a
triangulation of a restricted quadtree can be represented by
one single generalized triangle strip.1 The triangle strip
generation method described in [LKR+96] is based on a
recursive pre-order traversal of the triangular quadrants of
quadtree blocks. Starting with a counterclockwise ordering
of triangular quadrants of the root node as shown in

Figure 12-a, each quadrant is recursively traversed and the
traversal is stopped when a triangle is not further subdi-
vided. In alternating order, children of triangular quadrants
are visited left-first as for quadrant q0 (and in Figure 12-c),
or right-first as for the triangles in the next level shown in
Figure 12-b. Based on this traversal, vertices can be ordered
and outputted to form a generalized triangle strip for effi-
cient rendering (see [LKR+96] for code details).

FIGURE 12. Recursive quadtree traversal for triangle strip
generation. Initial order of triangular quadrants shown in a)
with left-first traversal for odd subdivisions shown in b), and
right-first traversal of even subdivision steps shown in c).

Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle
strips are formed for individual blocks only in [LKR+96].
For each frame a block-based view-dependent image-space
error metric is used (see Section 5) to form a (non-
restricted) quadtree subdivision S of the terrain. For each
block  of this subdivision, a vertex-based error metric
is applied to achieve a fine-grain selection of vertices to be
included in the triangulation. Furthermore, the vertex depen-
dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
gle strip is generated and used for rendering.

The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
The Restricted Quadtree Triangulation (RQT) approach
presented in [Paj98a, Paj98b] is focused on large scale real-
time terrain visualization. The triangulation method is based
on a quadtree hierarchy as in [SS92] and exploits the depen-
dency relation presented in [LKR+96] to generate minimally
matching quadtree triangulations. Both, top-down and bottom-
up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
recursive functions, and no hierarchical data structure actually

1. generalized triangle strips allow swap operations.
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Fig. 11 Full resolution triangulation shown in a). Merging of triangle
pairs along the bottom boundary edge shown in b) and along the diag-
onal in c).

One of the main contributions of [34] is the introduction
of vertex dependencies that can be used to prevent cracks
and create conforming triangulations at variable LOD. For
example, considering Figures 11-b and 11-c it is clear that

the midpoint of the bottom edge on levell , the base vertex
of trianglesal and ar , cannot be part of a conforming tri-
angulation if the center vertex of the quad region, the base
vertex ofel , er , is missing. Or from the opposite viewpoint,
the base vertex of trianglesel , er and fl , fr cannot be re-
moved if any of the base vertices of triangle pairsal ,ar ,
bl ,br , cl ,cr or dl ,dr persists. These constraints of a con-
forming restricted quadtree triangulation define a binary, hi-
erarchical dependency relation between vertices as shown
in Figure 12. Each vertex to be included in a triangulation
depends on two other vertices (on the same or lower reso-
lution level) to be included first. Therefore, a triangulation
of a (restricted) quadtree is a conforming triangulation only
if no such dependency relation is violated. The triangula-
tion method proposed in [34] recursively resolves the de-
pendency relations of a setSof selected vertices (i.e. all ver-
tices exceeding a given error tolerance) as follows: For each
vertexv ∈ S, all its dependent parents according to the de-
pendency rules shown in Figure 12 are recursively activated
and included in the triangulation as well.
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error metric is used (see Section 5) to form a (non-
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is applied to achieve a fine-grain selection of vertices to be
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dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
gle strip is generated and used for rendering.

The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
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presented in [Paj98a, Paj98b] is focused on large scale real-
time terrain visualization. The triangulation method is based
on a quadtree hierarchy as in [SS92] and exploits the depen-
dency relation presented in [LKR+96] to generate minimally
matching quadtree triangulations. Both, top-down and bottom-
up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
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quadtree triangulation define a binary, hierarchical depen-
dency relation between vertices as shown in Figure 11. Each
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Figure 12-a, each quadrant is recursively traversed and the
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or right-first as for the triangles in the next level shown in
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Despite the fact that an entire triangulated restricted
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strips are formed for individual blocks only in [LKR+96].
For each frame a block-based view-dependent image-space
error metric is used (see Section 5) to form a (non-
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block  of this subdivision, a vertex-based error metric
is applied to achieve a fine-grain selection of vertices to be
included in the triangulation. Furthermore, the vertex depen-
dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
gle strip is generated and used for rendering.

The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
The Restricted Quadtree Triangulation (RQT) approach
presented in [Paj98a, Paj98b] is focused on large scale real-
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dency relation presented in [LKR+96] to generate minimally
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up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
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dency relation between vertices as shown in Figure 11. Each
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quadtree is a matching triangulation only if no such depen-
dency relation is violated. The triangulation method pro-
posed in [LKR+96] recursively resolves the dependency
relations of a set S of selected vertices (i.e. all vertices
exceeding a given error tolerance) as follows: For each ver-
tex , all its dependent parents according to the depen-
dency rules shown in Figure 11 are recursively activated
and included in the triangulation as well.
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triangulation. The center vertex in a) depends on the
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Another important feature presented in [LKR+96] is the
construction of triangle strips for fast rendering. In fact, a
triangulation of a restricted quadtree can be represented by
one single generalized triangle strip.1 The triangle strip
generation method described in [LKR+96] is based on a
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quadtree blocks. Starting with a counterclockwise ordering
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traversal is stopped when a triangle is not further subdi-
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generation. Initial order of triangular quadrants shown in a)
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Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle
strips are formed for individual blocks only in [LKR+96].
For each frame a block-based view-dependent image-space
error metric is used (see Section 5) to form a (non-
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block  of this subdivision, a vertex-based error metric
is applied to achieve a fine-grain selection of vertices to be
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dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
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The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
The Restricted Quadtree Triangulation (RQT) approach
presented in [Paj98a, Paj98b] is focused on large scale real-
time terrain visualization. The triangulation method is based
on a quadtree hierarchy as in [SS92] and exploits the depen-
dency relation presented in [LKR+96] to generate minimally
matching quadtree triangulations. Both, top-down and bottom-
up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
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One of the main contributions of [LKR+96] is the intro-
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or dl,dr persists. These constraints of a matching restricted
quadtree triangulation define a binary, hierarchical depen-
dency relation between vertices as shown in Figure 11. Each
vertex to be included in a triangulation depends on two other
vertices (on the same or lower resolution level) to be
included first. Therefore, a triangulation of a (restricted)
quadtree is a matching triangulation only if no such depen-
dency relation is violated. The triangulation method pro-
posed in [LKR+96] recursively resolves the dependency
relations of a set S of selected vertices (i.e. all vertices
exceeding a given error tolerance) as follows: For each ver-
tex , all its dependent parents according to the depen-
dency rules shown in Figure 11 are recursively activated
and included in the triangulation as well.

FIGURE 11. Dependency relation of a restricted quadtree
triangulation. The center vertex in a) depends on the
inclusion of two corners of its quad region. The boundary
edge midpoints in b) depend on the center vertex of the
quad region. Dependencies within and between the next
resolution levels are shown in c) and d).

Another important feature presented in [LKR+96] is the
construction of triangle strips for fast rendering. In fact, a
triangulation of a restricted quadtree can be represented by
one single generalized triangle strip.1 The triangle strip
generation method described in [LKR+96] is based on a
recursive pre-order traversal of the triangular quadrants of
quadtree blocks. Starting with a counterclockwise ordering
of triangular quadrants of the root node as shown in

Figure 12-a, each quadrant is recursively traversed and the
traversal is stopped when a triangle is not further subdi-
vided. In alternating order, children of triangular quadrants
are visited left-first as for quadrant q0 (and in Figure 12-c),
or right-first as for the triangles in the next level shown in
Figure 12-b. Based on this traversal, vertices can be ordered
and outputted to form a generalized triangle strip for effi-
cient rendering (see [LKR+96] for code details).

FIGURE 12. Recursive quadtree traversal for triangle strip
generation. Initial order of triangular quadrants shown in a)
with left-first traversal for odd subdivisions shown in b), and
right-first traversal of even subdivision steps shown in c).

Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle
strips are formed for individual blocks only in [LKR+96].
For each frame a block-based view-dependent image-space
error metric is used (see Section 5) to form a (non-
restricted) quadtree subdivision S of the terrain. For each
block  of this subdivision, a vertex-based error metric
is applied to achieve a fine-grain selection of vertices to be
included in the triangulation. Furthermore, the vertex depen-
dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
gle strip is generated and used for rendering.

The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
The Restricted Quadtree Triangulation (RQT) approach
presented in [Paj98a, Paj98b] is focused on large scale real-
time terrain visualization. The triangulation method is based
on a quadtree hierarchy as in [SS92] and exploits the depen-
dency relation presented in [LKR+96] to generate minimally
matching quadtree triangulations. Both, top-down and bottom-
up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
recursive functions, and no hierarchical data structure actually

1. generalized triangle strips allow swap operations.
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Fig. 12 Dependency relation of a restricted quadtree triangulation. The
center vertex in a) depends on the inclusion of two corners of its quad
region. The boundary edge midpoints in b) depend on the center vertex
of the quad region. Dependencies within and between the next resolu-
tion levels are shown in c) and d).

Another important feature presented in [34] is the
construction of triangle strips, similar to the earlier work
in [24], for fast rendering. In fact, a triangulation of a
restricted quadtree can be represented by one single
generalized triangle strip1. The triangle strip generation
method described in [34] is based on a recursive pre-order
traversal of the triangular quadrants of quadtree blocks.
Starting with a counterclockwise ordering of triangular
quadrants of the root node as shown in Figure 13-a, each
quadrant is recursively traversed and the traversal is stopped
when a triangle is not further subdivided. In alternating
order, children of triangular quadrants are visitedleft-first
as for quadrantq0 (and in Figure 13-c), or em right-first as
for the triangles in the next level shown in Figure 13-b.
Based on this traversal, vertices can be ordered and output
to form a generalized triangle strip for efficient rendering
(see [34] for code details).

Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle
strips are formed for individual blocks only in [34]. For each
frame a block-based view-dependent image-space error
metric is used (see Section 5) to form a (non-restricted)

1 generalized triangle strips allow swap operations
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Merging of triangle pairs along the bottom boundary edge
shown in b) and along the diagonal in c).

 

One of the main contributions of [LKR+96] is the intro-
duction of vertex dependencies that can be used to prevent
cracks and create matching triangulations at variable LOD.
For example, considering Figures 10-b and 10-c it is clear
that the midpoint of the bottom edge on level 
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or dl,dr persists. These constraints of a matching restricted
quadtree triangulation define a binary, hierarchical depen-
dency relation between vertices as shown in Figure 11. Each
vertex to be included in a triangulation depends on two other
vertices (on the same or lower resolution level) to be
included first. Therefore, a triangulation of a (restricted)
quadtree is a matching triangulation only if no such depen-
dency relation is violated. The triangulation method pro-
posed in [LKR+96] recursively resolves the dependency
relations of a set S of selected vertices (i.e. all vertices
exceeding a given error tolerance) as follows: For each ver-
tex , all its dependent parents according to the depen-
dency rules shown in Figure 11 are recursively activated
and included in the triangulation as well.

FIGURE 11. Dependency relation of a restricted quadtree
triangulation. The center vertex in a) depends on the
inclusion of two corners of its quad region. The boundary
edge midpoints in b) depend on the center vertex of the
quad region. Dependencies within and between the next
resolution levels are shown in c) and d).

Another important feature presented in [LKR+96] is the
construction of triangle strips for fast rendering. In fact, a
triangulation of a restricted quadtree can be represented by
one single generalized triangle strip.1 The triangle strip
generation method described in [LKR+96] is based on a
recursive pre-order traversal of the triangular quadrants of
quadtree blocks. Starting with a counterclockwise ordering
of triangular quadrants of the root node as shown in

Figure 12-a, each quadrant is recursively traversed and the
traversal is stopped when a triangle is not further subdi-
vided. In alternating order, children of triangular quadrants
are visited left-first as for quadrant q0 (and in Figure 12-c),
or right-first as for the triangles in the next level shown in
Figure 12-b. Based on this traversal, vertices can be ordered
and outputted to form a generalized triangle strip for effi-
cient rendering (see [LKR+96] for code details).

FIGURE 12. Recursive quadtree traversal for triangle strip
generation. Initial order of triangular quadrants shown in a)
with left-first traversal for odd subdivisions shown in b), and
right-first traversal of even subdivision steps shown in c).

Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle
strips are formed for individual blocks only in [LKR+96].
For each frame a block-based view-dependent image-space
error metric is used (see Section 5) to form a (non-
restricted) quadtree subdivision S of the terrain. For each
block  of this subdivision, a vertex-based error metric
is applied to achieve a fine-grain selection of vertices to be
included in the triangulation. Furthermore, the vertex depen-
dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
gle strip is generated and used for rendering.

The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
The Restricted Quadtree Triangulation (RQT) approach
presented in [Paj98a, Paj98b] is focused on large scale real-
time terrain visualization. The triangulation method is based
on a quadtree hierarchy as in [SS92] and exploits the depen-
dency relation presented in [LKR+96] to generate minimally
matching quadtree triangulations. Both, top-down and bottom-
up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
recursive functions, and no hierarchical data structure actually

1. generalized triangle strips allow swap operations.

a)

al ar

bl

br

clcr

dl

dr

el

er

fl

fr

b) c)

v S∈

level l+1level l level l level l+1

a) b) c) d)

0 1

2

3

45

6

7
q1

q0

q3

q2

b)a) c)

0
1 2

3
4

5

6
7

8
91012

11

13
14

15

b S∈

b S∈

 

5

 

FIGURE 10.

 

Full resolution triangulation shown in a).
Merging of triangle pairs along the bottom boundary edge
shown in b) and along the diagonal in c).

 

One of the main contributions of [LKR+96] is the intro-
duction of vertex dependencies that can be used to prevent
cracks and create matching triangulations at variable LOD.
For example, considering Figures 10-b and 10-c it is clear
that the midpoint of the bottom edge on level 

 

l

 

, the base ver-
tex of triangles 

 

a

 

l

 

 and 

 

a

 

r

 

, cannot be part of a matching trian-
gulation if the center vertex of the quad region, the base
vertex of 

 

e

 

l

 

, 

 

e

 

r

 

, is missing. Or from the opposite viewpoint,
the base vertex of triangles 

 

e

 

l

 

, 

 

e

 

r

 

 and 

 

f

 

l

 

, 

 

f

 

r

 

 cannot be removed
if any of the base vertices of triangle pairs 

 

a

 

l

 

,

 

a

 

r

 

, 

 

b

 

l,br, cl,cr
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quadtree triangulation define a binary, hierarchical depen-
dency relation between vertices as shown in Figure 11. Each
vertex to be included in a triangulation depends on two other
vertices (on the same or lower resolution level) to be
included first. Therefore, a triangulation of a (restricted)
quadtree is a matching triangulation only if no such depen-
dency relation is violated. The triangulation method pro-
posed in [LKR+96] recursively resolves the dependency
relations of a set S of selected vertices (i.e. all vertices
exceeding a given error tolerance) as follows: For each ver-
tex , all its dependent parents according to the depen-
dency rules shown in Figure 11 are recursively activated
and included in the triangulation as well.

FIGURE 11. Dependency relation of a restricted quadtree
triangulation. The center vertex in a) depends on the
inclusion of two corners of its quad region. The boundary
edge midpoints in b) depend on the center vertex of the
quad region. Dependencies within and between the next
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Another important feature presented in [LKR+96] is the
construction of triangle strips for fast rendering. In fact, a
triangulation of a restricted quadtree can be represented by
one single generalized triangle strip.1 The triangle strip
generation method described in [LKR+96] is based on a
recursive pre-order traversal of the triangular quadrants of
quadtree blocks. Starting with a counterclockwise ordering
of triangular quadrants of the root node as shown in

Figure 12-a, each quadrant is recursively traversed and the
traversal is stopped when a triangle is not further subdi-
vided. In alternating order, children of triangular quadrants
are visited left-first as for quadrant q0 (and in Figure 12-c),
or right-first as for the triangles in the next level shown in
Figure 12-b. Based on this traversal, vertices can be ordered
and outputted to form a generalized triangle strip for effi-
cient rendering (see [LKR+96] for code details).

FIGURE 12. Recursive quadtree traversal for triangle strip
generation. Initial order of triangular quadrants shown in a)
with left-first traversal for odd subdivisions shown in b), and
right-first traversal of even subdivision steps shown in c).

Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle
strips are formed for individual blocks only in [LKR+96].
For each frame a block-based view-dependent image-space
error metric is used (see Section 5) to form a (non-
restricted) quadtree subdivision S of the terrain. For each
block  of this subdivision, a vertex-based error metric
is applied to achieve a fine-grain selection of vertices to be
included in the triangulation. Furthermore, the vertex depen-
dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
gle strip is generated and used for rendering.

The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
The Restricted Quadtree Triangulation (RQT) approach
presented in [Paj98a, Paj98b] is focused on large scale real-
time terrain visualization. The triangulation method is based
on a quadtree hierarchy as in [SS92] and exploits the depen-
dency relation presented in [LKR+96] to generate minimally
matching quadtree triangulations. Both, top-down and bottom-
up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
recursive functions, and no hierarchical data structure actually
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quadtree triangulation define a binary, hierarchical depen-
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included first. Therefore, a triangulation of a (restricted)
quadtree is a matching triangulation only if no such depen-
dency relation is violated. The triangulation method pro-
posed in [LKR+96] recursively resolves the dependency
relations of a set S of selected vertices (i.e. all vertices
exceeding a given error tolerance) as follows: For each ver-
tex , all its dependent parents according to the depen-
dency rules shown in Figure 11 are recursively activated
and included in the triangulation as well.
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triangulation. The center vertex in a) depends on the
inclusion of two corners of its quad region. The boundary
edge midpoints in b) depend on the center vertex of the
quad region. Dependencies within and between the next
resolution levels are shown in c) and d).

Another important feature presented in [LKR+96] is the
construction of triangle strips for fast rendering. In fact, a
triangulation of a restricted quadtree can be represented by
one single generalized triangle strip.1 The triangle strip
generation method described in [LKR+96] is based on a
recursive pre-order traversal of the triangular quadrants of
quadtree blocks. Starting with a counterclockwise ordering
of triangular quadrants of the root node as shown in

Figure 12-a, each quadrant is recursively traversed and the
traversal is stopped when a triangle is not further subdi-
vided. In alternating order, children of triangular quadrants
are visited left-first as for quadrant q0 (and in Figure 12-c),
or right-first as for the triangles in the next level shown in
Figure 12-b. Based on this traversal, vertices can be ordered
and outputted to form a generalized triangle strip for effi-
cient rendering (see [LKR+96] for code details).

FIGURE 12. Recursive quadtree traversal for triangle strip
generation. Initial order of triangular quadrants shown in a)
with left-first traversal for odd subdivisions shown in b), and
right-first traversal of even subdivision steps shown in c).

Despite the fact that an entire triangulated restricted
quadtree can be represented by one triangle strip, triangle
strips are formed for individual blocks only in [LKR+96].
For each frame a block-based view-dependent image-space
error metric is used (see Section 5) to form a (non-
restricted) quadtree subdivision S of the terrain. For each
block  of this subdivision, a vertex-based error metric
is applied to achieve a fine-grain selection of vertices to be
included in the triangulation. Furthermore, the vertex depen-
dencies are resolved at this stage to guarantee a matching
triangulation. Finally, for each quadtree block  a trian-
gle strip is generated and used for rendering.

The triangulation method presented in [LKR+96] is very
efficient in terms of rendering performance. The triangula-
tion algorithm is output sensitive since the quadtree subdivi-
sion is performed top-down and does not need to examine
all vertices on the highest resolution. Furthermore, efficient
rendering primitives in form of triangle strips are generated
for optimized rendering. Despite the fact that the view-
dependent error metric does not provide a guaranteed error
bound, it is very efficient in practice and provides good ter-
rain simplification while maintaining plausible visual
results.

3.4 Restricted Quadtree Triangulation
The Restricted Quadtree Triangulation (RQT) approach
presented in [Paj98a, Paj98b] is focused on large scale real-
time terrain visualization. The triangulation method is based
on a quadtree hierarchy as in [SS92] and exploits the depen-
dency relation presented in [LKR+96] to generate minimally
matching quadtree triangulations. Both, top-down and bottom-
up triangulation algorithms are given for a terrain height-field
maintained in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that the
quadtree hierarchy can be defined implicitly on an array of the
regular grid input data set by appropriate point indexing and
recursive functions, and no hierarchical data structure actually
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Fig. 13 Recursive quadtree traversal for triangle strip generation. Ini-
tial order of triangular quadrants shown in a) withleft-first traversal for
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quadtree subdivisionS of the terrain. For each blockb ∈ S
of this subdivision, a vertex-based error metric is applied
to achieve a fine-grain selection of vertices to be included
in the triangulation. Furthermore, the vertex dependencies
are resolved at this stage to guarantee a conforming
triangulation. Finally, for each quadtree blockb ∈ S a
triangle strip is generated and used for rendering.

The triangulation method presented in [34] is very effi-
cient in terms of rendering performance. The triangulation
algorithm is output sensitive since the quadtree subdivision
is performed top-down and does not need to examine all ver-
tices on the highest resolution. Furthermore, efficient render-
ing primitives in form of triangle strips are generated for op-
timized rendering. Despite the fact that the view-dependent
error metric does not provide a guaranteed error bound, it is
very efficient in practice and provides good terrain simplifi-
cation while maintaining plausible visual results.

Restricted Quadtree Triangulation.The Restricted
Quadtree Triangulation(RQT) approach presented in [42,
43] is focused on large scale real-time terrain visualization.
The triangulation method is based on a quadtree hierarchy
as in [58,57] and exploits the dependency relation presented
in [34] to generate minimally conforming quadtree
triangulations. Both, top-down and bottom-up triangulation
algorithms are given for a terrain height-field maintained
in a region quadtree, and where each vertex has a an
approximation error associated with it. It is observed that
the quadtree hierarchy can be defined implicitly on an
array of the regular grid input data set by appropriate point
indexing and recursive functions, and no hierarchical data
structure actually needs to be stored. For such animplicit
quadtree, this reduces the storage cost effectively down to
the elevation and approximation error values per vertex.

As shown in [43], for each pointPi, j of the 2k+1×2k+1
height-field grid its levell in the implicit quadtree hierarchy
can efficiently be determined by arithmetic and logical oper-
ations on the integer index valuesi and j, see also Figure 14.
Furthermore, it is also observed that the dependency relation
of Figure 12 can be expressed by arithmetic expressions as
functions of the points indexi, j. The implicit definition of
quadtree levels and dependency relations between points by
arithmetic functions allows the top-down and bottom-up al-
gorithms presented in [42] to run very fast and directly on
the array of the height-field grid data instead of relying on a

hierarchical pointer-based data structure. (See also [56] for
efficient operations on quadtrees.)
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needs to be stored. For such an implicit quadtree, this reduces
the storage cost effectively down to the elevation and approxi-
mation error values per vertex.

As shown in [Paj98b], for each point Pi,j of the
 height-field grid its level l in the implicit

quadtree hierarchy can efficiently be determined by arith-
metic and logical operations on the integer index values i
and j, see also Figure 13. Furthermore, it is also observed
that the dependency relation of Figure 11 can be expressed
by arithmetic expressions as functions of the point’s index
i,j. The implicit definition of quadtree levels and depen-
dency relations between points by arithmetic functions
allows the top-down and bottom-up algorithms presented in
[Paj98a] to run very fast and directly on the array of the
height-field grid data instead of relying on a hierarchical
pointer-based data structure (i.e. as in [SS92]).

FIGURE 13. Implicit quadtree hierarchy and point indexing
defined on the height-field grid.

An optimal output-sensitive triangulation algorithm is
presented in [Paj98a] that exploits the strict error monotonicity
achieved by error saturation (see Section 5). This allows for
a simple top-down vertex selection algorithm which does
not have to resolve any restricted quadtree dependencies or
propagate triangle splits at run-time. The proposed saturated
error metric guarantees that the set of initially selected verti-
ces for a given threshold automatically satisfy the restricted
quadtree constraint and hence allow for a crack-free match-
ing triangulation.

To improve rendering performance, a triangle strip con-
struction algorithm is presented in [Paj98a] that traverses the
entire quadtree hierarchy instead of blocks as proposed in
[LKR+96]. As shown in Figure 14, the RQT triangle strip
that recursively circles counterclockwise around each
quadtree block’s center vertex is a space filling curve that
visits all triangles exactly once. It also represents a Hamilto-
nian path in the dual graph of the triangulation. This triangle
strip can be generated by a depth-first traversal of the
quadtree in linear time, proportional to the size of the gener-
ated triangle strip. Moreover, the proposed error saturation
technique in [Paj98a] and the quadtree based triangle strip
generation support a highly efficient unified vertex selec-
tion, triangle strip generation and rendering algorithm based
on a single depth-first traversal of the implicit height-field
quadtree.

FIGURE 14. Generalized RQT triangle strip shown in a) and
its Hamiltonian path on the dual graph in b).

3.5 4-8 Meshes
The class of 4-8 meshes [BLV01, VG00, Vel01] is based on
a quadtree subdivision and triangulation as illustrated in
Figure 15, which in its triangulation power is basically
equivalent to the previously outlined quadtree and triangle
bin-tree meshing approaches.

FIGURE 15. Recursive 4-8 triangle mesh subdivision.

However, instead of a vertex dependency graph as in
[LKR+96], a merging domain Mv is defined for each vertex
v in [BLV01] for the purpose of satisfying the triangulation
constraints that avoid cracks in the surface mesh. As shown
in Figure 16, the merging domain Mv is basically the transi-
tive hull of all vertices depending on v in the dependency
graph [LKR+96]. Consequently Mv is used to define all verti-
ces that must be removed from the triangulation jointly with v.
And hence the removal of multiple vertices is constrained by
the joint removal of the union of their merging domains. A sim-
ilar concept, the splitting domain, is introduced for inserting
vertices into the triangulation.

FIGURE 16. A vertex v and its merging domain Mv are
highlighted in a). The adaptive triangle mesh after removal
of v and Mv is shown in b).

The triangulation algorithms presented in [BLV01,
BAV98] require O(n log n) time to refine or merge n nodes.
This is in contrast to the algorithms presented in [LKR+96]
and [Paj98a] which can generate an adaptive mesh of n tri-
angles optimally in linear O(n) time.
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An optimal output-sensitive triangulation algorithm is
presented in [42] that exploits the strict error monotonic-
ity achieved byerror saturation(see Section 6). This allows
for a simple top-down vertex selection algorithm which does
not have to resolve any restricted quadtree dependencies or
propagate triangle splits at run-time. The proposed saturated
error metric guarantees that the set of initially selected ver-
tices for a given threshold automatically satisfy the restricted
quadtree constraint and hence allow for a crack-free con-
forming triangulation.

To improve rendering performance, a triangle strip con-
struction algorithm is presented in [42] that traverses the en-
tire quadtree hierarchy instead of blocks as proposed in [34].
As shown in Figure 15, the RQT triangle strip that recur-
sively circles counterclockwise around each quadtree blocks
center vertex is aspace filling curvethat visits all triangles
exactly once. It also represents aHamiltonian path in the
dual graph of the triangulation. This triangle strip can be
generated by a depth-first traversal of the quadtree in lin-
ear time, proportional to the size of the generated triangle
strip. Moreover, the proposed error saturation technique in
[42] and the quadtree based triangle strip generation support
a highly efficient unified vertex selection, triangle strip gen-
eration and rendering algorithm based on a single depth-first
traversal of the implicit height-field quadtree.
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An optimal output-sensitive triangulation algorithm is
presented in [Paj98a] that exploits the strict error monotonicity
achieved by error saturation (see Section 5). This allows for
a simple top-down vertex selection algorithm which does
not have to resolve any restricted quadtree dependencies or
propagate triangle splits at run-time. The proposed saturated
error metric guarantees that the set of initially selected verti-
ces for a given threshold automatically satisfy the restricted
quadtree constraint and hence allow for a crack-free match-
ing triangulation.

To improve rendering performance, a triangle strip con-
struction algorithm is presented in [Paj98a] that traverses the
entire quadtree hierarchy instead of blocks as proposed in
[LKR+96]. As shown in Figure 14, the RQT triangle strip
that recursively circles counterclockwise around each
quadtree block’s center vertex is a space filling curve that
visits all triangles exactly once. It also represents a Hamilto-
nian path in the dual graph of the triangulation. This triangle
strip can be generated by a depth-first traversal of the
quadtree in linear time, proportional to the size of the gener-
ated triangle strip. Moreover, the proposed error saturation
technique in [Paj98a] and the quadtree based triangle strip
generation support a highly efficient unified vertex selec-
tion, triangle strip generation and rendering algorithm based
on a single depth-first traversal of the implicit height-field
quadtree.

FIGURE 14. Generalized RQT triangle strip shown in a) and
its Hamiltonian path on the dual graph in b).

3.5 4-8 Meshes
The class of 4-8 meshes [BLV01, VG00, Vel01] is based on
a quadtree subdivision and triangulation as illustrated in
Figure 15, which in its triangulation power is basically
equivalent to the previously outlined quadtree and triangle
bin-tree meshing approaches.

FIGURE 15. Recursive 4-8 triangle mesh subdivision.

However, instead of a vertex dependency graph as in
[LKR+96], a merging domain Mv is defined for each vertex
v in [BLV01] for the purpose of satisfying the triangulation
constraints that avoid cracks in the surface mesh. As shown
in Figure 16, the merging domain Mv is basically the transi-
tive hull of all vertices depending on v in the dependency
graph [LKR+96]. Consequently Mv is used to define all verti-
ces that must be removed from the triangulation jointly with v.
And hence the removal of multiple vertices is constrained by
the joint removal of the union of their merging domains. A sim-
ilar concept, the splitting domain, is introduced for inserting
vertices into the triangulation.

FIGURE 16. A vertex v and its merging domain Mv are
highlighted in a). The adaptive triangle mesh after removal
of v and Mv is shown in b).

The triangulation algorithms presented in [BLV01,
BAV98] require O(n log n) time to refine or merge n nodes.
This is in contrast to the algorithms presented in [LKR+96]
and [Paj98a] which can generate an adaptive mesh of n tri-
angles optimally in linear O(n) time.
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4-8 Meshes.The class of4-8 meshes[61,3,60] is based
on a quadtree subdivision and triangulation as illustrated
in Figure 16, which in its triangulation power is basically
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equivalent to the other outlined quadtree and triangle
bin-tree meshing approaches.
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However, instead of a vertex dependency graph as in
[34], a merging domain Mv is defined for each vertexv in
[3] for the purpose of satisfying the triangulation constraints
that avoid cracks in the surface mesh. As shown in Figure 17,
the merging domainMv is basically the transitive hull of all
vertices depending onv in the dependency graph [34]. Con-
sequentlyMv is used to define all vertices that must be re-
moved from the triangulation jointly withv. And hence the
removal of multiple vertices is constrained by the joint re-
moval of the union of their merging domains. A similar con-
cept, thesplitting domain, is introduced for inserting vertices
into the triangulation.
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And hence the removal of multiple vertices is constrained by
the joint removal of the union of their merging domains. A sim-
ilar concept, the splitting domain, is introduced for inserting
vertices into the triangulation.

FIGURE 16. A vertex v and its merging domain Mv are
highlighted in a). The adaptive triangle mesh after removal
of v and Mv is shown in b).
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Fig. 17 A vertex v and its merging domainMv are highlighted in a).
The adaptive triangle mesh after removal ofv andMv is shown in b).

The triangulation algorithms presented in [2,3] require
O(nlogn) time to refine or mergen nodes. This is in con-
trast to the algorithms presented in [34] and [42] which can
generate an adaptive mesh ofn triangles optimally in linear
O(n) time.

Irregular Quadtree Hierarchy.In [61,60] it has been shown
that arbitrary 3D surfaces can adaptively be triangulated by
a hierarchical 4-8 triangulation approach, given a parame-
terization of the manifold surface is known. TheQuadTIN
approach presented in [44] goes one step further and defines
a restricted quadtree hierarchy on top of any irregular point
set in 2D, i.e. given from a preprocessedtriangulated irreg-
ular network(TIN). As in [61,60], the idea of QuadTIN [44]
is based on the fact that points do not have to lie on a regular
grid to allow for a regular hierarchical triangle subdivision
as shown in Figure 18.

At each subdivision step, the diagonal edge of a quadri-
lateral is not necessarily split at its midpoint, but using a
nearby point from the input data set as shown in Figure 19-a.
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FIGURE 17. Irregular recursive QuadTIN subdivision.

At each subdivision step, the diagonal edge of a quadri-
lateral is not necessarily split at its midpoint, but using a
nearby point from the input data set as shown in
Figure 18 a). To avoid badly shaped triangles and inversion
of orientation, however, the domain for searching for good
input vertices is restricted as illustrated in Figure 18 b). If no
good candidate vertices exist, artificial Steiner Points are
inserted to guarantee a coherent restricted quadtree triangu-
lation hierarchy.

FIGURE 18. a) Vertex closest to the midpoint of diagonal
edge et,t’ is selected for recursive subdivision. b) Only
vertices from a restricted search domain are considered.

An example adaptive QuadTIN based terrain triangula-
tion is shown in Figure 19 which demonstrates its flexibility
to adapt to an irregular input point data set. This added flex-
ibility comes at the expense of extra points inserted into the
data set.

FIGURE 19. Adaptive QuadTIN triangulation of an irregular
distribution of elevation samples.

4. Triangle Bin-Trees
In this section we discuss alternative triangle bisection
based algorithms which generate equivalent triangulations
of grid-digital terrain height-fields as the methods presented
in the previous section.

4.1 Real-time Optimally Adapting Meshes
The Real-time Optimally Adapting Meshes (ROAM) trian-
gulation method presented in [DWS+97] is conceptually
very close to [LKR+96]. However, it is strictly based on the
notion of a triangle bin-tree hierarchy as shown in Figure 20,
which is a special case of the longest side bisection triangle
refinement method described in [Riv93, Riv95]. This
method recursively refines triangles by splitting their long-
est edge at the base vertex (see also Figure 10).

FIGURE 20. Binary longest side bisection hierarchy of
isosceles triangles with indicated split vertices on the
longest side.

As shown in Figure 21, for a refinement operation a pair
of triangles are split at the common base vertex of their
shared longest edge, and a simplification operation consists
of merging two triangle pairs at their common base vertex.

FIGURE 21. Split and merge operations on a bin-tree
triangulation.

An important observation is that in a matching triangula-
tion, all neighbors of a triangle t on level l in the bin-tree
hierarchy must be either on the same level as t, or on levels
l+1 or l-1 of the bin-tree hierarchy. Therefore, two pairs of
triangles ta,tb and tc,td sharing the same base vertex can only
be merged if they are all on the same level in the bin-tree
hierarchy as shown in Figure 21. Furthermore, a triangle t
cannot be split immediately if its neighbor tlong across its

level llevel l-1 level l level l+1

vcenter

a) b)

restricted
search domain

base edge et,t’

t t’
t

t’

level l+2level l level l+1 level l+3

base vertex, midpoint of longest side

split

merge

td tc

ta tb

Fig. 18 Irregular recursive QuadTIN subdivision.

To avoid badly shaped triangles and inversion of orientation,
however, the domain for searching for good input vertices is
restricted as illustrated in Figure 19-b. If no good candidate
vertices exist, artificialSteiner Pointsare inserted to guaran-
tee a coherent restricted quadtree triangulation hierarchy.

7

3.6 Irregular Quadtree Hierarchy
In [VG00, Vel01] it has been shown that arbitrary 3D sur-
faces can adaptively be triangulated by a hierarchical 4-8 tri-
angulation approach, given a parameterization of the
manifold surface is known. The QuadTIN approach pre-
sented in [PAL02] goes one step further and defines a
restricted quadtree hierarchy on top of any irregular point
set in 2D, i.e. given from a preprocessed triangulated irreg-
ular network (TIN). As in [VG00, Vel01], the idea of Quad-
TIN [PAL02] is based on the fact that points do not have to
lie on a regular grid to allow for a regular hierarchical trian-
gle subdivision as shown in Figure 17.

FIGURE 17. Irregular recursive QuadTIN subdivision.

At each subdivision step, the diagonal edge of a quadri-
lateral is not necessarily split at its midpoint, but using a
nearby point from the input data set as shown in
Figure 18 a). To avoid badly shaped triangles and inversion
of orientation, however, the domain for searching for good
input vertices is restricted as illustrated in Figure 18 b). If no
good candidate vertices exist, artificial Steiner Points are
inserted to guarantee a coherent restricted quadtree triangu-
lation hierarchy.

FIGURE 18. a) Vertex closest to the midpoint of diagonal
edge et,t’ is selected for recursive subdivision. b) Only
vertices from a restricted search domain are considered.

An example adaptive QuadTIN based terrain triangula-
tion is shown in Figure 19 which demonstrates its flexibility
to adapt to an irregular input point data set. This added flex-
ibility comes at the expense of extra points inserted into the
data set.

FIGURE 19. Adaptive QuadTIN triangulation of an irregular
distribution of elevation samples.

4. Triangle Bin-Trees
In this section we discuss alternative triangle bisection
based algorithms which generate equivalent triangulations
of grid-digital terrain height-fields as the methods presented
in the previous section.

4.1 Real-time Optimally Adapting Meshes
The Real-time Optimally Adapting Meshes (ROAM) trian-
gulation method presented in [DWS+97] is conceptually
very close to [LKR+96]. However, it is strictly based on the
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refinement method described in [Riv93, Riv95]. This
method recursively refines triangles by splitting their long-
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As shown in Figure 21, for a refinement operation a pair
of triangles are split at the common base vertex of their
shared longest edge, and a simplification operation consists
of merging two triangle pairs at their common base vertex.
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hierarchy must be either on the same level as t, or on levels
l+1 or l-1 of the bin-tree hierarchy. Therefore, two pairs of
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Fig. 19 a) Vertex closest to the midpoint of diagonal edgeet,t is se-
lected for recursive subdivision. b) Only vertices from a restricted
search domain are considered.

An example adaptive QuadTIN based terrain triangula-
tion is shown in Figure 20 which demonstrates its flexibility
to adapt to an irregular input point data set. This added flex-
ibility comes at the expense of extra points inserted into the
data set.

Fig. 20 Adaptive QuadTIN triangulation of an irregular distribution of
elevation samples.

4.2 Triangle Bin-Trees

In this section we discuss triangle bisection based algorithms
which generate equivalent triangulations of grid-digital ter-
rain height-fields as the methods presented previously.

Real-time Optimally Adapting Meshes.TheReal-time Opti-
mally Adapting Meshes(ROAM) triangulation method pre-
sented in [13] is conceptually very close to [34]. However, it
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is strictly based on the notion of atriangle bin-treehierarchy
as shown in Figure 21, which is a special case of thelongest
side bisectiontriangle refinement method described in [51,
52]. This method recursively refines triangles by splitting
their longest edge at thebase vertex(see also Figure 11).
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Fig. 21 Binary longest side bisection hierarchy of isosceles triangles
with indicated split vertices on the longest side.

As shown in Figure 22, for a refinement operation a pair
of triangles are split at the common base vertex of their
shared longest edge, and a simplification operation consists
of merging two triangle pairs at their common base vertex.
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Fig. 22 Split and merge operations on a bin-tree triangulation.

An important observation is that in a conforming trian-
gulation, all neighbors of a trianglet on levell in the bin-tree
hierarchy must be either on the same level ast, or on levels
l +1 or l −1 of the bin-tree hierarchy. Therefore, two pairs
of trianglesta, tb andtc, td sharing the same base vertex can
only be merged if they are all on the same level in the bin-
tree hierarchy as shown in Figure 22. Furthermore, a triangle
t cannot be split immediately if its neighbortlong across its
longest edge is from a coarser level as shown in Figure 23.
In that case, trianglet can only be split if its corresponding
neighbor isforcedto split first. These forced splits are con-
ceptually the same as the split propagation of [58] shown in
Figure 10. Moreover, the dependency relation of [34] in Fig-
ure 12 denotes exactly the same forced split propagation of
a bin-tree or restricted quadtree triangulation. All these con-
cepts for assuring a conforming triangulation are equivalent
in this context.

8

longest edge is from a coarser level as shown in Figure 22.
Triangle t can only be split if its corresponding neighbor is
forced to split first. These forced splits are conceptually the
same as the split propagation of [SS92] shown in Figure 8.
Moreover, the dependency relation of [LKR+96] in
Figure 11 denotes exactly the same forced split propagation
of a bin-tree or restricted quadtree triangulation. All these
concepts for assuring a matching triangulation are equiva-
lent in this context.

FIGURE 22. Propagation of forced triangle splits.

The run-time triangulation algorithm of ROAM is based
on a greedy algorithm using two priority queues of the trian-
gles  of the current mesh T: The split queue Qs stores
the triangles  according to their priority to be split next,
and the merge queue Qm maintains the mergible triangle
pairs of T. For each frame the priority queues Qm and Qs are
consulted and the current triangle mesh is adaptively refined
or simplified accordingly to satisfy the given error threshold
τ. The priorities are based on an error metric defined on tri-
angles.

To guarantee an ε-approximation with respect to a par-
ticular error metric, the proposed greedy algorithm requires
the error metric, and thus the priorities of Qm and Qs, to be
strictly monotonic. This means that the error or priority of
any triangle in the bin-tree hierarchy cannot be larger than
its parent’s priority. This monotonicity requirement limits
the direct applicability of many standard error metrics. For
example, neither the view-dependent error metric in
[LKR+96] nor the vertical distance measure of [SS92] or the
Hausdorff distance error metric defined hierarchically on
removed vertices or triangles initially satisfy this monoto-
nicity requirement (see also Section 5). Special care has to
be taken to enforce monotonicity of any error metric by a
bottom up traversal of the triangle bin-tree hierarchy in a
preprocess and calculating bounding priorities at each node.

Besides the two main contributions of ROAM which are
the priority-queue driven triangle-bin-tree based triangula-
tion method and a screen distortion error metric, the paper
[DWS+97] contains a number of interesting contributions. A
list of twelve criteria is given that generally apply to mesh
simplification and in particular to large scale terrain visual-
ization. Furthermore, a few performance enhancements that
are implemented in ROAM are described including view-
frustum culling, incremental triangle strip generation,
deferred priority recomputation, and progressive optimiza-
tion.

4.2 Right-Triangulated Irregular Networks
Right-Triangulated Irregular Networks (RTIN) as presented
in [EKT01] is a multiresolution triangulation framework for
the same class of triangle bin-tree meshes [DWS+97] as pre-
sented above. The RTIN approach is particularly focused on
the efficient representation of the binary triangle hierarchy,
and fast mesh traversal for neighbor-finding. Starting with a
square triangulated by choosing one diagonal, triangles are
split recursively at the base vertex or midpoint of their long-
est edge, identical to the method described above in
Section 4.1. To guarantee a matching triangulation without
cracks the same propagation of forced splits as shown in
Figure 22 is imposed on the RTIN triangulation. In [EKT01]
it is observed that split propagation caused by splitting a tri-
angle t on level lt cannot cause triangles smaller than t to be
split (on levels l > lt), and that at most two triangles on each
level l ≤ lt are split. Thus split propagation terminates in the
worst case in O(log n) steps, with n being the size of the tri-
angle bin-tree hierarchy (number of leaf nodes).

One of the main contributions of [EKT01] is an efficient
data structure to represent right-triangular surface approxi-
mations. Similar to Figure 10, child triangles resulting from
a split are labelled as left and right with respect to the split
vertex of their parent triangle. A binary labelling scheme as
shown in Figure 23 is used in RTIN to identify triangular
regions of the approximation. A RTIN triangulation is thus
represented by a binary tree denoting the triangle splits and
the elevation values (z coordinate) of the triangle vertices.
The geographical (x and y) coordinates do not have to be
stored for each vertex but can be computed from the trian-
gle’s label. As noted in [EKT01], a main memory imple-
mentation of such a binary tree structure with two pointers
and three vertex indices1 per node is space inefficient if used
to represent one single triangulated surface approximation.
However, a triangle bin-tree actually represents an entire
hierarchy of triangulations. To reduce the storage cost of a
triangle bin-tree hierarchy it is proposed to remove child
pointers by storing the nodes in an array and using an array
indexing scheme based on the node labels.

FIGURE 23. RTIN triangle bin-tree labelling using 0 for left
and 1 for right.

Based on the binary tree representation of the RTIN
hierarchy as shown in Figure 23, an efficient neighbor find-
ing scheme is the second main contribution of [EKT01].
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Fig. 23 Propagation of forced triangle splits.

The run-time triangulation algorithm of ROAM is based
on a greedy algorithm using two priority queues of the trian-
glest ∈ T of the current meshT: The split queueQs stores

the trianglest ∈ T according to their priority to be split next,
and the merge queueQm maintains the mergible triangle
pairs ofT. For each frame the priority queuesQm andQs are
consulted and the current triangle mesh is adaptively refined
or simplified accordingly to satisfy the given error thresh-
old τ. The priorities are based on an error metric defined on
triangles.

To guarantee an e-approximation with respect to a par-
ticular error metric, the proposed greedy algorithm requires
the error metric, and thus the priorities ofQm andQs, to be
strictly monotonic. This means that the error or priority of
any triangle in the bin-tree hierarchy cannot be larger than
its parents priority. This monotonicity requirement limits the
direct applicability of many standard error metrics. For ex-
ample, neither the view-dependent error metric in [34] nor
the vertical distance measure of [58] or the Hausdorff dis-
tance error metric defined hierarchically on removed vertices
or triangles initially satisfy this monotonicity requirement
(see also Section 6). Special care has to be taken to enforce
monotonicity of any error metric by a bottom up traversal of
the triangle bin-tree hierarchy in a preprocess and calculat-
ing bounding priorities at each node.

Besides the two main contributions of ROAM which are
the priority-queue driven triangle-bin-tree based triangula-
tion method and a screen distortion error metric, the paper
[13] contains a number of interesting contributions. A list of
twelve criteria is given that generally apply to mesh simpli-
fication and in particular to large scale terrain visualization.
Furthermore, a few performance enhancements that are im-
plemented in ROAM are described including view-frustum
culling, incremental triangle strip generation, deferred prior-
ity recomputation, and progressive optimization.

Right-Triangulated Irregular Networks. Right-Triangulated
Irregular Networks(RTIN) as presented in [14] is a mul-
tiresolution triangulation framework for the same class of
triangle bin-tree meshes [13] as presented above. The RTIN
approach is particularly focused on the efficient representa-
tion of the binary triangle hierarchy, and fast mesh traversal
for neighbor-finding. Starting with a square triangulated by
choosing one diagonal, triangles are split recursively at the
base vertex or midpoint of their longest edge, identical to the
method described above.To guarantee a conforming triangu-
lation without cracks the same propagation of forced splits
as shown in Figure 23 is imposed on the RTIN triangula-
tion. In [14] it is observed that split propagation caused by
splitting a trianglet on levellt cannot cause triangles smaller
thant to be split (on levelsl > lt), and that at most two tri-
angles on each levell ≤ lt are split. Thus split propagation
terminates in the worst case inO(logn) steps, withn being
the size of the triangle bin-tree hierarchy (number of leaf
nodes).

One of the main contributions of [14] is an efficient
data structure to represent right-triangular surface
approximations. Similar to Figure 11, child triangles
resulting from a split are labelled asleft and right with
respect to the split vertex of their parent triangle. A binary
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labelling scheme as shown in Figure 24 is used in RTIN
to identify triangular regions of the approximation. A
RTIN triangulation is thus represented by a binary tree
denoting the triangle splits and the elevation values (z
coordinate) of the triangle vertices. The geographical
(x and y) coordinates do not have to be stored for each
vertex but can be computed from the triangles label. As
noted in [14], a main memory implementation of such a
binary tree structure with two pointers and three vertex
indices2 per node is space inefficient if used to represent
one single triangulated surface approximation. However,
a triangle bin-tree actually represents an entire hierarchy
of triangulations. To reduce the storage cost of a triangle
bin-tree hierarchy it is proposed to remove child pointers by
storing the nodes in an array and using an array indexing
scheme based on the node labels.
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longest edge is from a coarser level as shown in Figure 22.
Triangle t can only be split if its corresponding neighbor is
forced to split first. These forced splits are conceptually the
same as the split propagation of [SS92] shown in Figure 8.
Moreover, the dependency relation of [LKR+96] in
Figure 11 denotes exactly the same forced split propagation
of a bin-tree or restricted quadtree triangulation. All these
concepts for assuring a matching triangulation are equiva-
lent in this context.

FIGURE 22. Propagation of forced triangle splits.

The run-time triangulation algorithm of ROAM is based
on a greedy algorithm using two priority queues of the trian-
gles  of the current mesh T: The split queue Qs stores
the triangles  according to their priority to be split next,
and the merge queue Qm maintains the mergible triangle
pairs of T. For each frame the priority queues Qm and Qs are
consulted and the current triangle mesh is adaptively refined
or simplified accordingly to satisfy the given error threshold
τ. The priorities are based on an error metric defined on tri-
angles.

To guarantee an ε-approximation with respect to a par-
ticular error metric, the proposed greedy algorithm requires
the error metric, and thus the priorities of Qm and Qs, to be
strictly monotonic. This means that the error or priority of
any triangle in the bin-tree hierarchy cannot be larger than
its parent’s priority. This monotonicity requirement limits
the direct applicability of many standard error metrics. For
example, neither the view-dependent error metric in
[LKR+96] nor the vertical distance measure of [SS92] or the
Hausdorff distance error metric defined hierarchically on
removed vertices or triangles initially satisfy this monoto-
nicity requirement (see also Section 5). Special care has to
be taken to enforce monotonicity of any error metric by a
bottom up traversal of the triangle bin-tree hierarchy in a
preprocess and calculating bounding priorities at each node.

Besides the two main contributions of ROAM which are
the priority-queue driven triangle-bin-tree based triangula-
tion method and a screen distortion error metric, the paper
[DWS+97] contains a number of interesting contributions. A
list of twelve criteria is given that generally apply to mesh
simplification and in particular to large scale terrain visual-
ization. Furthermore, a few performance enhancements that
are implemented in ROAM are described including view-
frustum culling, incremental triangle strip generation,
deferred priority recomputation, and progressive optimiza-
tion.

4.2 Right-Triangulated Irregular Networks
Right-Triangulated Irregular Networks (RTIN) as presented
in [EKT01] is a multiresolution triangulation framework for
the same class of triangle bin-tree meshes [DWS+97] as pre-
sented above. The RTIN approach is particularly focused on
the efficient representation of the binary triangle hierarchy,
and fast mesh traversal for neighbor-finding. Starting with a
square triangulated by choosing one diagonal, triangles are
split recursively at the base vertex or midpoint of their long-
est edge, identical to the method described above in
Section 4.1. To guarantee a matching triangulation without
cracks the same propagation of forced splits as shown in
Figure 22 is imposed on the RTIN triangulation. In [EKT01]
it is observed that split propagation caused by splitting a tri-
angle t on level lt cannot cause triangles smaller than t to be
split (on levels l > lt), and that at most two triangles on each
level l ≤ lt are split. Thus split propagation terminates in the
worst case in O(log n) steps, with n being the size of the tri-
angle bin-tree hierarchy (number of leaf nodes).

One of the main contributions of [EKT01] is an efficient
data structure to represent right-triangular surface approxi-
mations. Similar to Figure 10, child triangles resulting from
a split are labelled as left and right with respect to the split
vertex of their parent triangle. A binary labelling scheme as
shown in Figure 23 is used in RTIN to identify triangular
regions of the approximation. A RTIN triangulation is thus
represented by a binary tree denoting the triangle splits and
the elevation values (z coordinate) of the triangle vertices.
The geographical (x and y) coordinates do not have to be
stored for each vertex but can be computed from the trian-
gle’s label. As noted in [EKT01], a main memory imple-
mentation of such a binary tree structure with two pointers
and three vertex indices1 per node is space inefficient if used
to represent one single triangulated surface approximation.
However, a triangle bin-tree actually represents an entire
hierarchy of triangulations. To reduce the storage cost of a
triangle bin-tree hierarchy it is proposed to remove child
pointers by storing the nodes in an array and using an array
indexing scheme based on the node labels.

FIGURE 23. RTIN triangle bin-tree labelling using 0 for left
and 1 for right.

Based on the binary tree representation of the RTIN
hierarchy as shown in Figure 23, an efficient neighbor find-
ing scheme is the second main contribution of [EKT01].
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Fig. 24 RTIN triangle bin-tree labelling using 0 forleft and 1 forright.

Based on the binary tree representation of the RTIN hi-
erarchy as shown in Figure 24, an efficient neighbor find-
ing scheme is the second main contribution of [14]. Given
a counterclockwise numbering fromv1 to v3 of the vertices
of trianglet with vertexv3 being the right-angled vertex, the
i−neighborof trianglet is defined as the adjacent triangle
ti that does not share vertexi. Furthermore, thesame-size
i-neighborsof any triangle are the edge adjacent triangles
at the same level in the bin-tree hierarchy. For example, tri-
angle 10 in Figure 24 is the same-size 1-neighbor of trian-
gle 11, and triangle 001 is the 3-neighbor of triangle 0000
but not a same-size neighbor. The neighbor-finding function
NI (t) presented in [14] first finds the same-size i-neighbor of
a triangle and then determines the actual i-neighbor for a par-
ticular triangulation. The recursive neighbor-finding func-
tion NI (t), that returns the label of the same-size i-neighbor
of a given trianglet, is conceptually identical to a recur-
sive tree traversal for finding adjacent regions in any bi-
nary space partition (BSP-tree), see also [54,53]. An effi-
cient non-recursive implementation ofNI (t) based on arith-
metic and logical operations is also given in [14].

For terrain visualization, each triangle is assigned
an approximation error during the preprocess phase of
constructing the RTIN hierarchy. At run-time, starting
with the two triangles at the root of the RTIN hierarchy
a depth-first traversal recursively splits triangles whose
approximation errors exceed a given tolerance threshold.

2 could be reduced to only one vertex index, others are known from
parent triangle nodes

Forced splits are propagated to the corresponding
i-neighbors to avoid cracks in the triangulated surface
approximation.

The main focus of RTIN is efficient representation of the
triangle bin-tree hierarchy and neighbor finding techniques
on the adaptively triangulated surface. Similar to [34,13,42],
RTIN is efficient in creating an adaptive surface triangula-
tion since its top-down algorithm is output sensitive. In fact,
the RTIN approach is almost identical to the ROAM method
and only differs in notation and representation of the trian-
gle bin-tree hierarchy. No detailed algorithms are given in
[14] on how to incorporate propagation of forced splits to
generate a conforming triangulation.

Right-Triangular Bin-Tree.In [19], the class of restricted
quadtree or right-triangular bin-tree triangulations is studied
with respect to efficient data storage and processing, search
and access methods, and data compression. It is proposed
to always manage the data in compressed form, even inter-
active processing is performed on the compressed data. The
multiresolution triangulation framework in [19] follows the
binary triangle hierarchy approach as used in [13] and [14].
To prevent cracks in the triangulation resulting from recur-
sive triangle bisection, error saturation is used as presented
in [42].

The main contribution of [19] is a compressed represen-
tation of the triangle bin-tree hierarchy based on an efficient
mesh traversal and triangle numbering scheme. The traversal
order of triangles in the bin-tree hierarchy is equivalent to the
triangle strip ordering as shown in Figure 15. Furthermore,
each triangle is numbered such that the left child of a trian-
gle with numbern receives the number 2n and the right child
is numbered 2n+1 if the levell of the parent triangle is odd
and vice versa if it is even as shown in Figure 25. For a given
triangle, bitwise logical operations can be used to compute
the adjacent triangle that shares the common refinement ver-
tex. Each vertex is associated with the two numbers of the
triangles that it refines.
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Given a counterclockwise numbering from v1 to v3 of the
vertices of triangle t with vertex v3 being the right-angled
vertex, the i-neighbor of triangle t is defined as the adjacent
triangle ti that does not share vertex i. Furthermore, the
same-size i-neighbors of any triangle are the edge adjacent
triangles at the same level in the bin-tree hierarchy. For
example, triangle 10 in Figure 23 is the same-size 1-neigh-
bor of triangle 11, and triangle 001 is the 3-neighbor of tri-
angle 0000 but not a same-size neighbor. The neighbor-
finding function NI(t) presented in [EKT01] first finds the
same-size i-neighbor of a triangle and then determines the
actual i-neighbor for a particular triangulation. The recursive
neighbor-finding function NI(t), that returns the label of the
same-size i-neighbor of a given triangle t, is conceptually iden-
tical to a recursive tree traversal for finding adjacent regions in
any binary space partition (BSP-tree), see also [Sam89b,
Sam89a]. An efficient non-recursive implementation of NI(t)
based on arithmetic and logical operations is also given in
[EKT01].

For terrain visualization, each triangle is assigned an
approximation error during the preprocess phase of con-
structing the RTIN hierarchy. At run-time, starting with the
two triangles at the root of the RTIN hierarchy a depth-first
traversal recursively splits triangles whose approximation
errors exceed a given tolerance threshold. Forced splits are
propagated to the corresponding i-neighbors to avoid cracks
in the triangulated surface approximation.

The main focus of RTIN is efficient representation of the
triangle bin-tree hierarchy and neighbor finding techniques
on the adaptively triangulated surface. Similar to [LKR+96,
DWS+97, Paj98a], RTIN is efficient in creating an adaptive
surface triangulation since its top-down algorithm is output
sensitive. In fact, the RTIN approach is almost identical to
the ROAM method and only differs in notation and repre-
sentation of the triangle bin-tree hierarchy. No detailed algo-
rithms are given in [EKT01] on how to incorporate propagation
of forced splits to generate a matching triangulation.

4.3 Right-Triangular bin-tree
In [Ger99], the class of restricted quadtree or right-triangular
bin-tree triangulations is studied with respect to efficient
data storage and processing, search and access methods, and
data compression. It is proposed to always manage the data
in compressed form, even interactive processing is per-
formed on the compressed data. The multiresolution trian-
gulation framework in [Ger99] follows the binary triangle
hierarchy approach as used in [DWS+97] and [EKT01]. To
prevent cracks in the triangulation resulting from recursive
triangle bisection, error saturation is used as presented in
[Paj98a].

The main contribution of [Ger99] is a compressed repre-
sentation of the triangle bin-tree hierarchy based on an effi-
cient mesh traversal and triangle numbering scheme. The
traversal order of triangles in the bin-tree hierarchy is equiv-
alent to the triangle strip ordering as shown in Figure 14.
Furthermore, each triangle is numbered such that the left

child of a triangle with number n receives the number 2n
and the right child is numbered 2n+1 if the level l of the par-
ent triangle is odd and vice versa if it is even as shown in
Figure 24. For a given triangle, bitwise logical operations
can be used to compute the adjacent triangle that shares the
common refinement vertex. Each vertex is associated with
the two numbers of the triangles that it refines.

FIGURE 24. Triangle numbering.

This ordering and triangle numbering imposes a binary
classification of triangles in a matching bin-tree triangula-
tion into up- or down-triangles. In a depth-first traversal of
the bin-tree hierarchy, an up-triangle can only be followed
by a triangle on the same or higher level (coarser triangle) in
the hierarchy. Similarly, a down-triangle can only have a
neighbor on the same or lower level of the hierarchy. There-
fore, the starting triangle and one bit per triangle is suffi-
cient to encode an adaptive bin-tree triangulation.
Furthermore, vertices only need to be specified on their first
occurrence in the bin-tree traversal. Based on this traversal
and numbering technique an efficient compressed represen-
tation of a triangle bin-tree hierarchy is proposed. Moreover,
it is shown how an arbitrary adaptive triangulation can effi-
ciently be extracted from the code stream that represents the
entire bin-tree hierarchy, and that can be read and processed
efficiently from disk.

The triangulation algorithm and data structure presented
in [Ger99] are particularly tailored towards efficient repre-
sentation and traversal of the binary triangle hierarchy. The
proposed encoding of the triangle bin-tree is very interesting
from the point of view that it can be used to access an adap-
tive triangulation efficiently even if the bin-tree is stored
sequentially on disk. The proposed multiresolution triangu-
lation framework provides most of the important features
such as continuous LOD, fast rendering, and compact repre-
sentation.

5. LOD Error Metric
In this section we review the major error metrics that have
been proposed for the discussed terrain triangulation algo-
rithms.

5.1 Object-Space Approximation Error
To render deformed parametric surfaces, several recursive
subdivision criteria are given in [VHB87] that take into account
local curvature, intersection of surfaces, and silhouette bound-
aries. While these subdivision criteria are not directly applica-
ble to terrain height-fields, the local curvature criterion, or
flatness, is similar to other geometric approximation error
metrics used for terrain triangulation.

The approximation error proposed in [SS92] is the verti-
cal distance of a removed vertex with respect to its linear
interpolation provided by the parent node as shown in
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Fig. 25 Triangle numbering.

This ordering and triangle numbering imposes a binary
classification of triangles in a conforming bin-tree triangula-
tion into up- or down-triangles. In a depth-first traversal of
the bin-tree hierarchy, anup-trianglecan only be followed
by a triangle on the same or higher level (coarser triangle)
in the hierarchy. Similarly, adown-trianglecan only have a
neighbor on the same or lower level of the hierarchy. There-
fore, the starting triangle and one bit per triangle is sufficient
to encode an adaptive bin-tree triangulation. Furthermore,
vertices only need to be specified on their first occurrence
in the bin-tree traversal. Based on this traversal and number-
ing technique an efficient compressed representation of a tri-
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angle bin-tree hierarchy is proposed. Moreover, it is shown
how an arbitrary adaptive triangulation can efficiently be ex-
tracted from the code stream that represents the entire bin-
tree hierarchy, and that can be read and processed efficiently
from disk.

The triangulation algorithm and data structure presented
in [19] are particularly tailored towards efficient representa-
tion and traversal of the binary triangle hierarchy. The pro-
posed encoding of the triangle bin-tree is very interesting
from the point of view that it can be used to access an adap-
tive triangulation efficiently even if the bin-tree is stored se-
quentially on disk. The proposed multiresolution framework
provides most of the important features such as continuous
LOD, fast rendering, and compact representation.

4.3 Discussion

The different multiresolution terrain triangulation
approaches reviewed in this section all contribute unique
features and improvements to the class of restricted
quadtree and bin-tree triangulations. The basic adaptive
multiresolution triangulation framework has been
introduced in [58]. The approaches of [34] and [42] follow
this concept of an adaptive quadtree hierarchy, while the
methods presented in [13], [14] and [19] describe the same
class of triangulations from the point of a binary triangle
subdivision hierarchy.

Very efficient triangulation algorithms are the focus of
[34], [42], [35] and [5], which are based on a simple ver-
tex selection strategy, and [13], which is based on a priori-
tized triangle merge and split concept. Error saturation con-
forming to the restricted quadtree triangulation constraints
introduced in [42] and [19], has been extended to efficient
view-dependent error metrics and LOD selection algorithms
in [35], [20] and [5]. While effective, most other triangle
bin-tree based approaches are slightly more complex due
to recursively splitting triangles and resolving propagated
forced splits, and thus have some disadvantages compared
to the simple quadtree based vertex selection algorithms. All
surveyed methods are capable of generating smooth adap-
tive LODs for efficient terrain surface approximation, and,
though not explicitly described, RTIN [14] can generate tri-
angle strips for fast rendering.

The main objective of this kind of algorithms was to
compute on the CPU the minimum number of triangles to
render each frame, so that the graphic board was able to sus-
tain the rendering. More recently, the impressive improve-
ments of the graphics hardware both in term of computa-
tion and communication speed shifted the bottleneck of the
process from the GPU to the CPU. In the next section we
will show how these methods can be made more efficient in
terms of raw triangle throughput by employing cluster based
approaches.

5 Cluster Triangulations

The impressive improvement of graphics hardware in terms
of computation and communication speed is reshaping the
real-time rendering domain. A number of performance and
architectural aspects have a major impact on the design of
real-time rendering methods.

Todays GPUs are able to sustain speeds of hundreds
of millions of triangles per second; this fact has two
important implications for real-time rendering methods.
First of all, to sustain such speeds, the CPU workload of
the adaptive rendered has to be reduced to few instruction
cycles per rendered triangle. Second, since the target
rendering speed is two orders of magnitudes larger than
the number of screen pixels, there is an expectation for
high quality scenes with millions of triangles per frame.
On classic vertex- or triangle-based structures, managing
and storing very large dependency graphs at run-time
becomes a major bottleneck, mostly due to random-access
traversals with poor cache-coherence. Moreover, current
GPUs are optimized for retained mode graphics, and
their maximum performance is obtained only when using
specific preferential data paths. This typically means using
stripified, indexed, and well packed and aligned primitives
to exploit on-board vertex caches and fast render routes. In
addition, the number of primitive batches (i.e. the number of
DrawIndexedPrimitivecalls) per frame has to be kept low,
as driver overhead would otherwise dominate rendering
time [64]. Finally, maximum performance is only obtained
when rendering from on-board memory. Editing on-board
memory introduces however synchronization issues
between CPU and GPU, which is a problem for dynamic
LOD techniques. In this setting, approaches which select,
at each frame, the minimum set of triangles to be rendered
in the CPU typically do not have a sufficient throughput to
feed the GPU at the top of its capacity, both because of the
per-triangle cost and the complexity associated to sending
geometry in the correct format through preferential paths.
Since the processing rate of GPUs is increasing faster than
that of CPUs, the gap between what could be rendered by
the graphics hardware and what the CPU is able to compute
on the fly to generate adaptive triangulations is doomed to
widen.

For such reasons many techniques have been recently
proposed to reduce the per-primitive workload by compos-
ing at run-time pre-assembled optimized surface patches,
making it possible to employ theretained-moderendering
model instead of the less efficient direct rendering approach
for all CPU-GPU communication tasks. The main common
point of these methods, that we call hereCluster Triangu-
lations, is that they move the LOD unit up from points or
triangles to small contiguous portions of a mesh.
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5.1 Tiled Blocks

A classic example of aCluster Triangulationsapproach
are tiled blocks techniques (e.g. [26,63]), which partition
the terrain into square patches tessellated at different
resolutions. A full survey of this subject is beyond this
survey, devoted to quadtree approaches. We restrict our
presentation to [55] which proposes a combination of tiled
blocks and restricted quadtree triangulations. The method
strives to improve CPU / GPU communication efficiency
by incremental batched communication of updates. In this
approach, the terrain mesh is partitioned into equal tiles
of size 257x257, with an overlap of one sample in either
direction. For each tile, a fixed set of restricted quadtree
meshes of increasing error is generated, resulting in a
nested mesh hierarchy per tile. At run-time a specific LOD
is selected independently for each tile, and the relevant
updates are sent to the GPU. Each finer level is represented
by all coarser level vertices plus the additional ones. By
caching the current mesh on the GPU, only the additional
vertices need to be sent, reducing the required bandwidth
by 50%. Since vertices are transferred by groups, efficient
vertex array techniques can be employed to boost transfer
efficiency. In [55] all vertex data for a given tile is stored
in a single vertex array, which grows by a block for each
LOD, while the connectivity is stored in a separate per
level element array. In order to smoothly transition surface
changes, the method exploits the concept ofgeomorphing
[27] which interpolates vertex attributes between LODs.

The main challenge for this technique, as for all tiled
block techniques, is to seamlessly stitch block boundaries,
which requires extra run-time work. In [55] boundaries of
neighboring tiles are detected and connected using run-time
generated triangles. This need to remesh boundaries
is avoided in the quadtree-based techniques that will
be presented next. Moreover, the technique is not fully
adaptive, and limits simplification to pure subsampling, in
order to support progressive vertex transmission.

5.2 Cached Triangle Bin-Trees

RUSTIC [47] and CABTT [31] are both extensions of the
ROAM [13] algorithm that improve rendering performance
through the addition of coarse-grained on-board caching.
RUSTIC is an extension of the basic ROAM algorithm in
which preprocessed static subtrees of the ROAM triangle
bin-tree are used. The CABTT approach is very similar
to RUSTIC, but triangle clusters are dynamically created,
cached and reused during rendering. Triangle clusters
form the unit for LOD refinement/coarsening operations,
and can be cached on the GPU as vertex arrays. Improved
performance over ROAM is gained by rendering the meshes
as triangle strips. Since all adaptively refined graphs are still
ROAM graphs, adaptive triangulations are guaranteed to be
conforming.

These methods demonstrate the performance benefits
of coarse grain LOD adaptation, but limited its application

to geometry caching. A particular contribution of these
methods was to show that, even though the number of
triangles per frame increased by a factor of 50%, with
respect to ROAM, the overall rendering performance was
boosted by a factor of four due to the order of magnitude
raw performance increase of the rendering interface.

5.3 Combining Regular and Irregular Triangulations

BDAM [7], P-BDAM [8], and HyperBlock-QuadTIN [30]
generalized the caching approach by combining regular
and irregular triangulations in the same GPU friendly
framework. The main insight of these methods is to
separate the coarse topology of the multiresolution method,
managed using semi-regular fine geometry of the objects,
managed using triangulations. In other words, the task of
the multiresolution structure is to generate adaptive regular
partitions of the terrain domain using data independent
techniques, while the task of the geometry is to approximate
the data inside the partition with a fixed triangle count mesh
with appropriate boundary constraints.

HyperBlock-QuadTIN.QuadTIN [44] is an efficient
quadtree-based triangulation approach to irregular input
point sets with improved storage cost and feature adaptive
sampling resolution. It preserves a regular quadtree
multiresolution hierarchy over the irregular input data set
(see Section 4.1). HyperBlock-QuadTIN [30] extends the
basic QuadTIN [44] method by creating a coarse grained
tree structure of blocks that store different triangulation
levels. Similar to the clustering performed by RUSTIC
[47] and CABTT [31] on ROAM hierarchies but with the
additional advantage of direct support of irregular point
sets. The construction process starts by a full QuadTIN
hierarchy which is then clustered into fixed size blocks by
traversing it coarse to fine. At run-time, the coarse block
hierarchy is traversed, and resolution levels are selected on
a block-by-block basis. A global crack-free triangulation
is ensured by adjusting the selected block levels so that
they meet restricted quadtree constraints. A simplified
illustration of an example of restricted quadtree blocks of
HyperBlock-QuadTIN [30] is given in Figure 26.

Fig. 26 Adaptive elevation grid and the corresponding LOD hyper-
blocks of levels 1 and 2.
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Batched Dynamic Adaptive Meshes (BDAM).The BDAM
approach [7] seamlessly combines the benefits of TINs and
restricted quadtree triangulation in a single data structure for
multiresolution terrain modeling. BDAM is a specialization
of the more general Batched Multi-Triangulation framework
[9]. It is based on the idea of exploiting the partitioning in-
duced by a recursive subdivision of the input domain in ahi-
erarchy of right triangleclusters to generate a coarse grained
multiresolution structure. The partitioning consists of a for-
est of triangle bin-trees (see also Section 4.2) covering the
input domain.

The partitioning consists of replacing a triangular region
σ with two triangular regions obtained by splittingσ at the
midpoint of its longest edge [51,52]. To guarantee that a
conforming mesh is always generated after a bisection, the
two triangular regions sharingσ ’s longest edge are split at
the same time. These pairs of triangular regions are called
diamondsand cover a square. The dependency graph encod-
ing the multiresolution structure is thus a DAG with at most
two parents and at most four children per node (conceptually
the same as in [34]).

This structure has the important property that, by selec-
tively refining or coarsening it on a diamond by diamond
basis, it is possible to extract conforming variable resolution
mesh representations. BDAM exploits this property to con-
struct a coarse grained LOD structure. This is done by as-
sociating to each triangle region s a small triangle patch, up
to a given triangle count, of the portion of the surface con-
tained in it. Each patch is constructed so that vertices along
the longest edge of the region are kept fixed during a dia-
mond coarsening operation (or, equivalently, so that vertices
along the shortest edge are kept fixed when refining). In this
way, it is ensured that each mesh composed by a collection
of small triangle patches arranged as a triangle bin-tree gen-
erates a globally correct and conforming triangulation (see
Figure 27).

a)

b)
level i

c)
level i−1

Fig. 27 a) BDAM triangle clusters of a diamond structure. Coarsening
of two diamonds in b) to one in c) with coarsening vertices along the
shared boundary (in yellow). Highlighted vertices (in red) shared with
neighboring diamonds remain unchanged.

At run-time, the LOD is chosen by a triangle bin-tree re-
finement over the triangle patches (based on saturated error
[7,8] or incremental refinement based on a dual queue tech-

nique [9]). The selection cost is thus amortized over patches
of thousands of triangles.

The highest resolution triangle patches sample the input
data at a matching resolution, while coarser level patches
contain TINs constructed by constrained edge-collapse sim-
plification of child patches. In a preprocess, simplification is
carried out fine-to-coarse level-by-level, and independently
for each diamond. The whole simplification process is inher-
ently massively parallel, because the grain of the individual
task is very fine and synchronization is required only at the
completion of each bin-tree level (see also Figure 28).

Fig. 28 Construction of a BDAM through a sequence of (parallel) sim-
plification and marking steps. Each triangle represents a terrain patch
composed by many triangles, as in Figure 27.

5.4 4-8 Mesh Cluster Hierarchies

An approach similar to BDAM, but described in terms of a
4-8 mesh hierarchy and optimized for regular grids is intro-
duced in [28]. The authors remark that, with current ren-
dering rates, it is now possible to render adaptive scenes
with triangles that have a projected size of one or few pix-
els. At this point, it is no longer desirable to make trian-
gles nonuniform in screen space due to variations in sur-
face roughness, since this will only lead to sub-pixel trian-
gles and thus to artifacts. The authors therefore rewrite the
BDAM approach in terms of regular grids, replacing geo-
metric patch simplification with low-pass filtering. In ad-
dition, while the original BDAM work encoded the hierar-
chy with triangle bin-trees, this work explicitly encodes the
graph of diamonds, and incrementally refines and coarsens
it using ROAM’s dual queue incremental method. Another
contribution of the work is that geometry and texture are
handled in the same framework. That is, both geometry and
textures are treated as small regular grids, called tiles, de-
fined for each diamond in the hierarchy. Each grid corre-
sponds to two patches sharing the main diagonal. The rela-
tive density of the grids are adjusted to maintain a fixed ratio
of texels per triangle.

6 LOD Error Metric

In this section we review the major error metrics that have
been proposed for the discussed terrain triangulation algo-
rithms.
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6.1 Object-Space Approximation Error

To render deformed parametric surfaces, several recursive
subdivision criteria are given in [62] that take into
account local curvature, intersection of surfaces, and
silhouette boundaries. While these subdivision criteria are
not directly applicable to terrain height-fields, the local
curvature criterion, or flatness, is similar to other geometric
approximation error metrics used for terrain triangulation.

The approximation error proposed in [58] is the vertical
distance of a removed vertex with respect to its linear inter-
polation provided by the parent node as shown in Figure 29.
The error of vertex B is its vertical distance to the average el-
evation of A and C. An example of mergible nodes, with re-
spect to Section 4.1, is given in Figure 29. Given that the ap-
proximation error of all removed vertices (outlined points in
Figure 29-b) is within the given tolerance, and given that no
other neighboring nodes violate the restricted quadtree con-
straint, the nodes and triangles of Figure 29-a can be merged
into the larger node Figure 29-b.
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Figure 25. The error of vertex B is its vertical distance to the
average elevation of A and C. An example of mergible
nodes, with respect to Section 3.2, is given in Figure 25.
Given that the approximation error of all removed vertices
(outlined points in Figure 25-b) is within the given toler-
ance, and given that no other neighboring nodes violate the
restricted quadtree constraint, the nodes and triangles of
Figure 25-a can be merged into the larger node Figure 25-b.

FIGURE 25. Initial four leaf nodes shown in a) that are
merged in b) with the outlined points denoting the removed
vertices in the merged node.

A major problem of the proposed bottom-up quadtree
initialization in [SS92] is the computation of the approxima-
tion error metric. While the vertical distance of a removed
vertex (B in Figure 25) with respect to its linear interpola-
tion (line between A and C in Figure 25) in the immediate
parent node may be below a given error threshold τ, it is not
clear that this removed vertex is within τ distance to the
final result of an iterative bottom-up merging process. As
shown for a 2D example in Figure 26, this error metric is not
monotonic. In fact, the resulting simplified surface based on
this method does not interpolate the removed vertices within
a bounded distance.

However, the top-down triangulation approach in [SS92]
computes the distance to the original surface for each vertex
with respect to the current adaptive restricted quadtree sur-
face approximation. Therefore, no accumulation of errors
beyond the given threshold τ can occur, and the recon-
structed surface map is a correct τ-approximation.

FIGURE 26. Merging of nodes satisfying the approximation
error threshold locally may result in intolerable large
accumulated errors with respect to the final result.

A similar vertical distance measure has been used in
[EKT01] and [Paj98a], modified to satisfy the monotonicity
requirement outlined in [DWS+97]. However, in contrast to
[EKT01], and also [DWS+97], which define the error metric
on triangles, the RQT approach [Paj98a] defines the error
metric on vertices. If precomputed per triangle it is straight

forward to make the error metric monotonic, setting it to the
maximum distance of vertices within the domain of the tri-
angle. However, a geometric approximation error attribute
has to be stored for each triangle that can ever be formed by
the adaptive multiresolution triangulation method. This can
be quite a costly approach in terms of memory usage as this
number is several times larger than the number of input ele-
ments (elevation values). The per-vertex error metric pro-
posed in [Paj98a] eliminates this memory cost.

It has been observed in [Paj98a, Paj98b] that for object-
space geometric error metrics the dependency graph shown
in Figure 11 can be encoded into the error metric itself by a
technique known as error saturation. As demonstrated in
Figure 27-a, the selection of a particular vertex P (black
square) due to its error value ε = 9, exceeding the allowed
tolerance τ = 5, causes several forced triangle splits (dashed
grey lines). To avoid such forced splits, error values are
propagated and maximized along the dependency graph, as
shown in Figure 27-b. This error saturation is performed in
the preprocess: Each vertex stores the maximum value of all
propagated errors and its own computed error, and propa-
gates this maximum further along the dependency graph.
This preprocess can be implemented by a simple traversal
over the grid-digital elevation values. Therefore, a fast top-
down selection of vertices according to their saturated error
metric directly yields an adaptive and matching triangula-
tion of a restricted quadtree, without the need of enforcing
any quadtree constraints, forced splits or resolving depen-
dency relations. This error saturation techniques has also
been observed in [GRW00] and can be applied in various
ways to enforce constraints on multiresolution hierarchies
such as topology preservation in isosurface extraction
[GP00].

FIGURE 27. Initial error metric shown in a) for selected
vertices, white vertices are below and black vertices above
the error threshold τ=5. Forced splits are indicated with
dashed grey lines. Propagation of error saturation shown in
b) for the vertex causing the forced splits.

Other geometric distance metrics, instead of the vertical
offset measure, must be treated in a similar way to preserve
monotonicity for an efficient output sensitive top-down
adaptive mesh refinement approach.

An object-space geometric approximation error metric is
defined in [DWS+97] by calculating for each triangle t in the
bin-tree hierarchy the thickness εt of a bounding wedgie that
encloses all children of its subtree as shown in Figure 28.
This measure bounds the maximal deviation of a simplified
mesh with respect to the full resolution input data, however,
has to be computed and stored for every triangle that can
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Figure 25. The error of vertex B is its vertical distance to the
average elevation of A and C. An example of mergible
nodes, with respect to Section 3.2, is given in Figure 25.
Given that the approximation error of all removed vertices
(outlined points in Figure 25-b) is within the given toler-
ance, and given that no other neighboring nodes violate the
restricted quadtree constraint, the nodes and triangles of
Figure 25-a can be merged into the larger node Figure 25-b.

FIGURE 25. Initial four leaf nodes shown in a) that are
merged in b) with the outlined points denoting the removed
vertices in the merged node.

A major problem of the proposed bottom-up quadtree
initialization in [SS92] is the computation of the approxima-
tion error metric. While the vertical distance of a removed
vertex (B in Figure 25) with respect to its linear interpola-
tion (line between A and C in Figure 25) in the immediate
parent node may be below a given error threshold τ, it is not
clear that this removed vertex is within τ distance to the
final result of an iterative bottom-up merging process. As
shown for a 2D example in Figure 26, this error metric is not
monotonic. In fact, the resulting simplified surface based on
this method does not interpolate the removed vertices within
a bounded distance.

However, the top-down triangulation approach in [SS92]
computes the distance to the original surface for each vertex
with respect to the current adaptive restricted quadtree sur-
face approximation. Therefore, no accumulation of errors
beyond the given threshold τ can occur, and the recon-
structed surface map is a correct τ-approximation.

FIGURE 26. Merging of nodes satisfying the approximation
error threshold locally may result in intolerable large
accumulated errors with respect to the final result.

A similar vertical distance measure has been used in
[EKT01] and [Paj98a], modified to satisfy the monotonicity
requirement outlined in [DWS+97]. However, in contrast to
[EKT01], and also [DWS+97], which define the error metric
on triangles, the RQT approach [Paj98a] defines the error
metric on vertices. If precomputed per triangle it is straight

forward to make the error metric monotonic, setting it to the
maximum distance of vertices within the domain of the tri-
angle. However, a geometric approximation error attribute
has to be stored for each triangle that can ever be formed by
the adaptive multiresolution triangulation method. This can
be quite a costly approach in terms of memory usage as this
number is several times larger than the number of input ele-
ments (elevation values). The per-vertex error metric pro-
posed in [Paj98a] eliminates this memory cost.

It has been observed in [Paj98a, Paj98b] that for object-
space geometric error metrics the dependency graph shown
in Figure 11 can be encoded into the error metric itself by a
technique known as error saturation. As demonstrated in
Figure 27-a, the selection of a particular vertex P (black
square) due to its error value ε = 9, exceeding the allowed
tolerance τ = 5, causes several forced triangle splits (dashed
grey lines). To avoid such forced splits, error values are
propagated and maximized along the dependency graph, as
shown in Figure 27-b. This error saturation is performed in
the preprocess: Each vertex stores the maximum value of all
propagated errors and its own computed error, and propa-
gates this maximum further along the dependency graph.
This preprocess can be implemented by a simple traversal
over the grid-digital elevation values. Therefore, a fast top-
down selection of vertices according to their saturated error
metric directly yields an adaptive and matching triangula-
tion of a restricted quadtree, without the need of enforcing
any quadtree constraints, forced splits or resolving depen-
dency relations. This error saturation techniques has also
been observed in [GRW00] and can be applied in various
ways to enforce constraints on multiresolution hierarchies
such as topology preservation in isosurface extraction
[GP00].

FIGURE 27. Initial error metric shown in a) for selected
vertices, white vertices are below and black vertices above
the error threshold τ=5. Forced splits are indicated with
dashed grey lines. Propagation of error saturation shown in
b) for the vertex causing the forced splits.

Other geometric distance metrics, instead of the vertical
offset measure, must be treated in a similar way to preserve
monotonicity for an efficient output sensitive top-down
adaptive mesh refinement approach.

An object-space geometric approximation error metric is
defined in [DWS+97] by calculating for each triangle t in the
bin-tree hierarchy the thickness εt of a bounding wedgie that
encloses all children of its subtree as shown in Figure 28.
This measure bounds the maximal deviation of a simplified
mesh with respect to the full resolution input data, however,
has to be computed and stored for every triangle that can

a) b)

A

B

C

allowed error tolerance τ

accumulated
approximation error ε

d
d/2

d/4
d/8

a)
6 67

76

9

2

47 3

b)

a) b)

Fig. 29 Initial four leaf nodes shown in a) that are merged in b) with
the outlined points denoting the removed vertices in the merged node.

A major problem of the proposed bottom-up quadtree
initialization in [58] is the computation of the approximation
error metric. While the vertical distance of a removed vertex
(B in Figure 29) with respect to its linear interpolation (line
between A and C in Figure 29) in the immediate parent node
may be below a given error thresholdτ, it is not clear that
this removed vertex is within t distance to the final result of
an iterative bottom-up merging process. As shown for a 2D
example in Figure 30, this error metric is not monotonic. In
fact, the resulting simplified surface based on this method
does not interpolate the removed vertices within a bounded
distance.

However, the top-down triangulation approach in [58]
computes the distance to the original surface for each ver-
tex with respect to the current adaptive restricted quadtree
surface approximation. Therefore, no accumulation of er-
rors beyond the given thresholdτ can occur, and the recon-
structed surface map is a correctτ-approximation.

A similar vertical distance measure has been used in [14]
and [42], modified to satisfy the monotonicity requirement
outlined in [13]. However, in contrast to [14], and also [13],
which define the error metric on triangles, the RQT approach
[42] defines the error metric on vertices. If precomputed per
triangle it is straight forward to make the error metric mono-
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Figure 25. The error of vertex B is its vertical distance to the
average elevation of A and C. An example of mergible
nodes, with respect to Section 3.2, is given in Figure 25.
Given that the approximation error of all removed vertices
(outlined points in Figure 25-b) is within the given toler-
ance, and given that no other neighboring nodes violate the
restricted quadtree constraint, the nodes and triangles of
Figure 25-a can be merged into the larger node Figure 25-b.

FIGURE 25. Initial four leaf nodes shown in a) that are
merged in b) with the outlined points denoting the removed
vertices in the merged node.

A major problem of the proposed bottom-up quadtree
initialization in [SS92] is the computation of the approxima-
tion error metric. While the vertical distance of a removed
vertex (B in Figure 25) with respect to its linear interpola-
tion (line between A and C in Figure 25) in the immediate
parent node may be below a given error threshold τ, it is not
clear that this removed vertex is within τ distance to the
final result of an iterative bottom-up merging process. As
shown for a 2D example in Figure 26, this error metric is not
monotonic. In fact, the resulting simplified surface based on
this method does not interpolate the removed vertices within
a bounded distance.

However, the top-down triangulation approach in [SS92]
computes the distance to the original surface for each vertex
with respect to the current adaptive restricted quadtree sur-
face approximation. Therefore, no accumulation of errors
beyond the given threshold τ can occur, and the recon-
structed surface map is a correct τ-approximation.

FIGURE 26. Merging of nodes satisfying the approximation
error threshold locally may result in intolerable large
accumulated errors with respect to the final result.

A similar vertical distance measure has been used in
[EKT01] and [Paj98a], modified to satisfy the monotonicity
requirement outlined in [DWS+97]. However, in contrast to
[EKT01], and also [DWS+97], which define the error metric
on triangles, the RQT approach [Paj98a] defines the error
metric on vertices. If precomputed per triangle it is straight

forward to make the error metric monotonic, setting it to the
maximum distance of vertices within the domain of the tri-
angle. However, a geometric approximation error attribute
has to be stored for each triangle that can ever be formed by
the adaptive multiresolution triangulation method. This can
be quite a costly approach in terms of memory usage as this
number is several times larger than the number of input ele-
ments (elevation values). The per-vertex error metric pro-
posed in [Paj98a] eliminates this memory cost.

It has been observed in [Paj98a, Paj98b] that for object-
space geometric error metrics the dependency graph shown
in Figure 11 can be encoded into the error metric itself by a
technique known as error saturation. As demonstrated in
Figure 27-a, the selection of a particular vertex P (black
square) due to its error value ε = 9, exceeding the allowed
tolerance τ = 5, causes several forced triangle splits (dashed
grey lines). To avoid such forced splits, error values are
propagated and maximized along the dependency graph, as
shown in Figure 27-b. This error saturation is performed in
the preprocess: Each vertex stores the maximum value of all
propagated errors and its own computed error, and propa-
gates this maximum further along the dependency graph.
This preprocess can be implemented by a simple traversal
over the grid-digital elevation values. Therefore, a fast top-
down selection of vertices according to their saturated error
metric directly yields an adaptive and matching triangula-
tion of a restricted quadtree, without the need of enforcing
any quadtree constraints, forced splits or resolving depen-
dency relations. This error saturation techniques has also
been observed in [GRW00] and can be applied in various
ways to enforce constraints on multiresolution hierarchies
such as topology preservation in isosurface extraction
[GP00].

FIGURE 27. Initial error metric shown in a) for selected
vertices, white vertices are below and black vertices above
the error threshold τ=5. Forced splits are indicated with
dashed grey lines. Propagation of error saturation shown in
b) for the vertex causing the forced splits.

Other geometric distance metrics, instead of the vertical
offset measure, must be treated in a similar way to preserve
monotonicity for an efficient output sensitive top-down
adaptive mesh refinement approach.

An object-space geometric approximation error metric is
defined in [DWS+97] by calculating for each triangle t in the
bin-tree hierarchy the thickness εt of a bounding wedgie that
encloses all children of its subtree as shown in Figure 28.
This measure bounds the maximal deviation of a simplified
mesh with respect to the full resolution input data, however,
has to be computed and stored for every triangle that can
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Fig. 30 Merging of nodes satisfying the approximation error threshold
locally may result in intolerable large accumulated errors with respect
to the final result.

tonic, setting it to the maximum distance of vertices within
the domain of the triangle. However, a geometric approxi-
mation error attribute has to be stored for each triangle that
can ever be formed by the adaptive multiresolution triangu-
lation method. This can be quite a costly approach in terms
of memory usage as this number is several times larger than
the number of input elements (elevation values). The per-
vertex error metric proposed in [42] eliminates this memory
cost.

It has been observed in [42,43] and [41] that for
object-space geometric error metrics the dependency
graph shown in Figure 12 can be encoded into the error
metric itself by a technique known aserror saturation. As
demonstrated in Figure 31-a, the selection of a particular
vertex P (black square) due to its error valueε = 9,
exceeding the allowed toleranceτ = 5, causes several
forced triangle splits (dashed grey lines). To avoid such
forced splits, error values are propagated and maximized
along the dependency graph, as shown in Figure 31-b.
This error saturationis performed in the preprocess: Each
vertex stores the maximum value of all propagated errors
and its own computed error, and propagates this maximum
further along the dependency graph. This preprocess can
be implemented by a simple traversal over the grid-digital
elevation values. Therefore, a fast top-down selection of
vertices according to their saturated error metric directly
yields an adaptive and conforming triangulation of a
restricted quadtree, without the need of enforcing any
quadtree constraints, forced splits or resolving dependency
relations. This error saturation technique has also been
observed in [22] and can be applied in various ways to
enforce constraints on multiresolution hierarchies such as
topology preservation in isosurface extraction [21].
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Figure 25. The error of vertex B is its vertical distance to the
average elevation of A and C. An example of mergible
nodes, with respect to Section 3.2, is given in Figure 25.
Given that the approximation error of all removed vertices
(outlined points in Figure 25-b) is within the given toler-
ance, and given that no other neighboring nodes violate the
restricted quadtree constraint, the nodes and triangles of
Figure 25-a can be merged into the larger node Figure 25-b.

FIGURE 25. Initial four leaf nodes shown in a) that are
merged in b) with the outlined points denoting the removed
vertices in the merged node.

A major problem of the proposed bottom-up quadtree
initialization in [SS92] is the computation of the approxima-
tion error metric. While the vertical distance of a removed
vertex (B in Figure 25) with respect to its linear interpola-
tion (line between A and C in Figure 25) in the immediate
parent node may be below a given error threshold τ, it is not
clear that this removed vertex is within τ distance to the
final result of an iterative bottom-up merging process. As
shown for a 2D example in Figure 26, this error metric is not
monotonic. In fact, the resulting simplified surface based on
this method does not interpolate the removed vertices within
a bounded distance.

However, the top-down triangulation approach in [SS92]
computes the distance to the original surface for each vertex
with respect to the current adaptive restricted quadtree sur-
face approximation. Therefore, no accumulation of errors
beyond the given threshold τ can occur, and the recon-
structed surface map is a correct τ-approximation.

FIGURE 26. Merging of nodes satisfying the approximation
error threshold locally may result in intolerable large
accumulated errors with respect to the final result.

A similar vertical distance measure has been used in
[EKT01] and [Paj98a], modified to satisfy the monotonicity
requirement outlined in [DWS+97]. However, in contrast to
[EKT01], and also [DWS+97], which define the error metric
on triangles, the RQT approach [Paj98a] defines the error
metric on vertices. If precomputed per triangle it is straight

forward to make the error metric monotonic, setting it to the
maximum distance of vertices within the domain of the tri-
angle. However, a geometric approximation error attribute
has to be stored for each triangle that can ever be formed by
the adaptive multiresolution triangulation method. This can
be quite a costly approach in terms of memory usage as this
number is several times larger than the number of input ele-
ments (elevation values). The per-vertex error metric pro-
posed in [Paj98a] eliminates this memory cost.

It has been observed in [Paj98a, Paj98b] that for object-
space geometric error metrics the dependency graph shown
in Figure 11 can be encoded into the error metric itself by a
technique known as error saturation. As demonstrated in
Figure 27-a, the selection of a particular vertex P (black
square) due to its error value ε = 9, exceeding the allowed
tolerance τ = 5, causes several forced triangle splits (dashed
grey lines). To avoid such forced splits, error values are
propagated and maximized along the dependency graph, as
shown in Figure 27-b. This error saturation is performed in
the preprocess: Each vertex stores the maximum value of all
propagated errors and its own computed error, and propa-
gates this maximum further along the dependency graph.
This preprocess can be implemented by a simple traversal
over the grid-digital elevation values. Therefore, a fast top-
down selection of vertices according to their saturated error
metric directly yields an adaptive and matching triangula-
tion of a restricted quadtree, without the need of enforcing
any quadtree constraints, forced splits or resolving depen-
dency relations. This error saturation techniques has also
been observed in [GRW00] and can be applied in various
ways to enforce constraints on multiresolution hierarchies
such as topology preservation in isosurface extraction
[GP00].

FIGURE 27. Initial error metric shown in a) for selected
vertices, white vertices are below and black vertices above
the error threshold τ=5. Forced splits are indicated with
dashed grey lines. Propagation of error saturation shown in
b) for the vertex causing the forced splits.

Other geometric distance metrics, instead of the vertical
offset measure, must be treated in a similar way to preserve
monotonicity for an efficient output sensitive top-down
adaptive mesh refinement approach.

An object-space geometric approximation error metric is
defined in [DWS+97] by calculating for each triangle t in the
bin-tree hierarchy the thickness εt of a bounding wedgie that
encloses all children of its subtree as shown in Figure 28.
This measure bounds the maximal deviation of a simplified
mesh with respect to the full resolution input data, however,
has to be computed and stored for every triangle that can
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Figure 25. The error of vertex B is its vertical distance to the
average elevation of A and C. An example of mergible
nodes, with respect to Section 3.2, is given in Figure 25.
Given that the approximation error of all removed vertices
(outlined points in Figure 25-b) is within the given toler-
ance, and given that no other neighboring nodes violate the
restricted quadtree constraint, the nodes and triangles of
Figure 25-a can be merged into the larger node Figure 25-b.

FIGURE 25. Initial four leaf nodes shown in a) that are
merged in b) with the outlined points denoting the removed
vertices in the merged node.

A major problem of the proposed bottom-up quadtree
initialization in [SS92] is the computation of the approxima-
tion error metric. While the vertical distance of a removed
vertex (B in Figure 25) with respect to its linear interpola-
tion (line between A and C in Figure 25) in the immediate
parent node may be below a given error threshold τ, it is not
clear that this removed vertex is within τ distance to the
final result of an iterative bottom-up merging process. As
shown for a 2D example in Figure 26, this error metric is not
monotonic. In fact, the resulting simplified surface based on
this method does not interpolate the removed vertices within
a bounded distance.

However, the top-down triangulation approach in [SS92]
computes the distance to the original surface for each vertex
with respect to the current adaptive restricted quadtree sur-
face approximation. Therefore, no accumulation of errors
beyond the given threshold τ can occur, and the recon-
structed surface map is a correct τ-approximation.

FIGURE 26. Merging of nodes satisfying the approximation
error threshold locally may result in intolerable large
accumulated errors with respect to the final result.

A similar vertical distance measure has been used in
[EKT01] and [Paj98a], modified to satisfy the monotonicity
requirement outlined in [DWS+97]. However, in contrast to
[EKT01], and also [DWS+97], which define the error metric
on triangles, the RQT approach [Paj98a] defines the error
metric on vertices. If precomputed per triangle it is straight

forward to make the error metric monotonic, setting it to the
maximum distance of vertices within the domain of the tri-
angle. However, a geometric approximation error attribute
has to be stored for each triangle that can ever be formed by
the adaptive multiresolution triangulation method. This can
be quite a costly approach in terms of memory usage as this
number is several times larger than the number of input ele-
ments (elevation values). The per-vertex error metric pro-
posed in [Paj98a] eliminates this memory cost.

It has been observed in [Paj98a, Paj98b] that for object-
space geometric error metrics the dependency graph shown
in Figure 11 can be encoded into the error metric itself by a
technique known as error saturation. As demonstrated in
Figure 27-a, the selection of a particular vertex P (black
square) due to its error value ε = 9, exceeding the allowed
tolerance τ = 5, causes several forced triangle splits (dashed
grey lines). To avoid such forced splits, error values are
propagated and maximized along the dependency graph, as
shown in Figure 27-b. This error saturation is performed in
the preprocess: Each vertex stores the maximum value of all
propagated errors and its own computed error, and propa-
gates this maximum further along the dependency graph.
This preprocess can be implemented by a simple traversal
over the grid-digital elevation values. Therefore, a fast top-
down selection of vertices according to their saturated error
metric directly yields an adaptive and matching triangula-
tion of a restricted quadtree, without the need of enforcing
any quadtree constraints, forced splits or resolving depen-
dency relations. This error saturation techniques has also
been observed in [GRW00] and can be applied in various
ways to enforce constraints on multiresolution hierarchies
such as topology preservation in isosurface extraction
[GP00].

FIGURE 27. Initial error metric shown in a) for selected
vertices, white vertices are below and black vertices above
the error threshold τ=5. Forced splits are indicated with
dashed grey lines. Propagation of error saturation shown in
b) for the vertex causing the forced splits.

Other geometric distance metrics, instead of the vertical
offset measure, must be treated in a similar way to preserve
monotonicity for an efficient output sensitive top-down
adaptive mesh refinement approach.

An object-space geometric approximation error metric is
defined in [DWS+97] by calculating for each triangle t in the
bin-tree hierarchy the thickness εt of a bounding wedgie that
encloses all children of its subtree as shown in Figure 28.
This measure bounds the maximal deviation of a simplified
mesh with respect to the full resolution input data, however,
has to be computed and stored for every triangle that can
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Fig. 31 Initial error metric shown in a) for selected vertices, white
vertices are below and black vertices above the error thresholdτ = 5.
Forced splits are indicated with dashed grey lines. Propagation of error
saturation shown in b) for the vertex causing the forced splits.
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Other geometric distance metrics, instead of the verti-
cal offset measure, must be treated in a similar way to pre-
serve monotonicity for an efficient output sensitive top-down
adaptive mesh refinement approach.

An object-space geometric approximation error metric
is defined in [13] by calculating for each trianglet in the
bin-tree hierarchy the thicknessεt of a boundingwedgiethat
encloses all children of its subtree as shown in Figure 32.
This measure bounds the maximal deviation of a simplified
mesh with respect to the full resolution input data, however,
has to be computed and stored for every triangle that can
possibly be defined by the multiresolution hierarchy. This
basic object-space approximation bound is input to a view-
dependent image-space error metric as discussed in the fol-
lowing section.
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FIGURE 28. The thickness of a bounding wedgie defines an
object-space geometric approximation error.

5.2 Image-Space Approximation Error
A static object-space geometric error metric is not sufficient
to adaptively simplify terrain for perspective rendering. This
is because far away regions must be simplified more aggres-
sively than nearby areas. As this depends on the observer’s
location and changes continually, the error metric must be
defined dynamically and view-dependently.

In [LKR+96] the definition of an efficient view-depen-
dent image-space error metric has been proposed that deter-
mines removal or inclusion of vertices for a given
viewpoint. As illustrated in Figure 29, the basic idea of this
error metric is that triangle pairs can be merged if the
change in slope εv at the removed base vertex v projected
into screen space is smaller than a given threshold τ. The
line segment  between the removed base vertex v
and its linear interpolation  is perspectively
projected onto the screen space viewing plane as ρv. If ρv is
smaller than the tolerance τ then the vertex v can be
removed and the corresponding triangle pairs merged. Note
that the projected delta segment ρv is not defined with
respect to the highest resolution mesh or the current LOD
mesh but rather based on the adjacent vertices vl and vr of
the next lower resolution in the quadtree. Therefore,
although hardly noticeable in practice, the metric as defined
in [LKR+96] suffers from the same limitations as the error
computation of the bottom-up triangulation method pre-
sented in [SS92] and does not provide a guaranteed error
bound on the final triangulation. For this, the error metric
must either be saturated correctly, or defined and maximized
on each triangle with respect to the full resolution mesh.

FIGURE 29. Vertical distance δbetween removed base
vertex v and its linear interpolation v.

For efficient block-based mesh simplification, the view-
dependent image-space error metric is extended to entire
quadtree blocks in [LKR+96]. In particular, if for a quadtree
region R the maximum delta projection of all higher resolu-
tion vertices within R is smaller than the threshold τ then
they can be ignored. For an axis-aligned bounding box of a
quadtree block R and given viewing parameters, one can
compute the smallest elevation delta εl and largest εh of that

box that when projected onto screen may exceed τ. There-
fore, if the maximum vertical error εmax of all vertices 
is smaller than εl then R can be replaced by a lower LOD
block, and if εmax is larger than εh then R has to be refined
into smaller blocks. Otherwise the screen space projected
errors ρv of all vertices  have to be computed and com-
pared to τ individually.

The thickness εt of a bounding wedgie as introduced in
[DWS+97] (see Figure 28) can be used to estimate the maxi-
mal image-space distortion ρt of a triangle t for view-depen-
dent simplification similar to the approach presented in
[LKR+96]. Consequently, for any given triangulation T, its
image-space distortion can be bounded by the maximum
projected length ρt of εt of all triangles . Additionally
to this image-space distortion error metric, [DWS+97] pro-
poses several other mesh refinement and simplification
measures such as: backface detail reduction, surface normal
distortion, texture-coordinate distortion, silhouette preserva-
tion, view frustum culling, atmospheric or depth attenua-
tion, and region of interest.

In [LP01] and [Ger03] it has been observed that also
view-dependent error metrics can, in a sense, conservatively
be saturated similar to [Paj98a, Paj98b] for object-space
measures. This works if the image-space error metric ρv of a
vertex v is based on a static geometric approximation error
εv which is perspectively projected into image-space
(divided by dv given the distance dv of the vertex v to the
viewer). For this to work, additionally to εv, a conservative
bounding sphere radius rv is needed for each vertex. This
attribute rv defines a nested bounding sphere hierarchy on
the restricted quadtree vertex dependency graph [LP01]. A
vertex v will be selected for the current LOD triangulation if its
conservative image-space error  is larger than the
given threshold τ.

In SMART [BPS04] the same basic error metric and view-
dependent vertex selection criterion  gives rise to a
τ-sphere defined for each vertex by the radius .
Hence vertex selection is simplified to all vertices whose τ-
spheres contain the viewpoint. Further it is elaborated in
[BPS04] that a so called τ-save-distance can dynamically be
maintained, which bounds for each vertex the deviation of the
viewpoint that does not change the LOD level of the vertex.
This concept allows for optimized LOD computations as well
as efficient vertex caching, and results in significantly
improved LOD meshing and rendering performance.

6. Cluster Triangulations
The impressive improvement of graphics hardware in terms
of computation and communication speed is reshaping the
real-time rendering domain. A number of performance and
architectural aspects have a major impact on the design of
real-time rendering methods.

Todays GPUs are able to sustain speeds of hundreds of
millions of triangles per second; this fact has two important
implications for real-time rendering methods. First of all, to
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Fig. 32 The thickness of a bounding wedgie defines an object-space
geometric approximation error.

6.2 Image-Space Approximation Error

A static object-space geometric error metric is not sufficient
to adaptively simplify terrain for perspective rendering. This
is because far away regions must be simplified more aggres-
sively than nearby areas. As this depends on the observers
location and changes continually, the error metric must be
defined dynamically and view-dependently.

In [34] the definition of an efficient view-dependent
image-space error metric has been proposed that determines
removal or inclusion of vertices for a given viewpoint. As
illustrated in Figure 33, the basic idea of this error metric
is that triangle pairs can be merged if the change in slope
εv at the removed base vertexv projected into screen space
is smaller than a given thresholdτ. The line segment
ε = v− v̄ between the removed base vertexv and its linear
interpolation ¯v = (vl + vr)/2 is perspectively projected
onto the screen space viewing plane asρv. If ρv is smaller
than the toleranceτ then the vertexv can be removed and
the corresponding triangle pairs merged. Note that the
projected delta segmentρv is not defined with respect to
the highest resolution mesh or the current LOD mesh
but rather based on the adjacent verticesvl and vr of the
next lower resolution in the quadtree. Therefore, although
hardly noticeable in practice, the metric as defined in [34]
suffers from the same limitations as the error computation
of the bottom-up triangulation method presented in [58]
and does not provide a guaranteed error bound on the
final triangulation. For this, the error metric must either
be saturated correctly, or defined and maximized on each
triangle with respect to the full resolution mesh.
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FIGURE 28. The thickness of a bounding wedgie defines an
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For efficient block-based mesh simplification, the view-
dependent image-space error metric is extended to entire
quadtree blocks in [LKR+96]. In particular, if for a quadtree
region R the maximum delta projection of all higher resolu-
tion vertices within R is smaller than the threshold τ then
they can be ignored. For an axis-aligned bounding box of a
quadtree block R and given viewing parameters, one can
compute the smallest elevation delta εl and largest εh of that

box that when projected onto screen may exceed τ. There-
fore, if the maximum vertical error εmax of all vertices 
is smaller than εl then R can be replaced by a lower LOD
block, and if εmax is larger than εh then R has to be refined
into smaller blocks. Otherwise the screen space projected
errors ρv of all vertices  have to be computed and com-
pared to τ individually.

The thickness εt of a bounding wedgie as introduced in
[DWS+97] (see Figure 28) can be used to estimate the maxi-
mal image-space distortion ρt of a triangle t for view-depen-
dent simplification similar to the approach presented in
[LKR+96]. Consequently, for any given triangulation T, its
image-space distortion can be bounded by the maximum
projected length ρt of εt of all triangles . Additionally
to this image-space distortion error metric, [DWS+97] pro-
poses several other mesh refinement and simplification
measures such as: backface detail reduction, surface normal
distortion, texture-coordinate distortion, silhouette preserva-
tion, view frustum culling, atmospheric or depth attenua-
tion, and region of interest.

In [LP01] and [Ger03] it has been observed that also
view-dependent error metrics can, in a sense, conservatively
be saturated similar to [Paj98a, Paj98b] for object-space
measures. This works if the image-space error metric ρv of a
vertex v is based on a static geometric approximation error
εv which is perspectively projected into image-space
(divided by dv given the distance dv of the vertex v to the
viewer). For this to work, additionally to εv, a conservative
bounding sphere radius rv is needed for each vertex. This
attribute rv defines a nested bounding sphere hierarchy on
the restricted quadtree vertex dependency graph [LP01]. A
vertex v will be selected for the current LOD triangulation if its
conservative image-space error  is larger than the
given threshold τ.

In SMART [BPS04] the same basic error metric and view-
dependent vertex selection criterion  gives rise to a
τ-sphere defined for each vertex by the radius .
Hence vertex selection is simplified to all vertices whose τ-
spheres contain the viewpoint. Further it is elaborated in
[BPS04] that a so called τ-save-distance can dynamically be
maintained, which bounds for each vertex the deviation of the
viewpoint that does not change the LOD level of the vertex.
This concept allows for optimized LOD computations as well
as efficient vertex caching, and results in significantly
improved LOD meshing and rendering performance.

6. Cluster Triangulations
The impressive improvement of graphics hardware in terms
of computation and communication speed is reshaping the
real-time rendering domain. A number of performance and
architectural aspects have a major impact on the design of
real-time rendering methods.

Todays GPUs are able to sustain speeds of hundreds of
millions of triangles per second; this fact has two important
implications for real-time rendering methods. First of all, to
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Fig. 33 Vertical distanceεv between removed base vertexv and its
linear interpolation ¯v.

For efficient block-based mesh simplification, the view-
dependent image-space error metric is extended to entire
quadtree blocks in [34]. In particular, if for a quadtree re-
gion R the maximum delta projection of all higher resolu-
tion vertices withinR is smaller than the thresholdτ then
they can be ignored. For an axis-aligned bounding box of
a quadtree blockR and given viewing parameters, one can
compute the smallest elevation deltaεl and largestεh of that
box that when projected onto screen may exceedτ. There-
fore, if the maximum vertical errorεmax of all verticesv∈R
is smaller thanεl thenR can be replaced by a lower LOD
block, and ifεmax is larger thanεh thenR has to be refined
into smaller blocks. Otherwise the screen space projected
errorsρv of all verticesv∈Rhave to be computed and com-
pared toτ individually.

The thicknessεt of a boundingwedgieas introduced in
[13] (see Figure 32) can be used to estimate the maximal
image-space distortionρt of a trianglet for view-dependent
simplification similar to the approach presented in [34].
Consequently, for any given triangulationT, its image-space
distortion can be bounded by the maximum projected
length ρt of et of all trianglest ∈ T. Additionally to this
image-space distortion error metric, [13] proposes several
other mesh refinement and simplification measures such
as: backface detail reduction, surface normal distortion,
texture-coordinate distortion, silhouette preservation, view
frustum culling, atmospheric or depth attenuation, and
region of interest.

In [35,36] and [20] it has been observed that also view-
dependent error metrics can, in a sense, conservatively be
saturated similar to [42,42] for object-space measures. This
works if the image-space error metricρv of a vertexv is
based on a static geometric approximation errorεv which
is perspectively projected into image-space (divided bydv
given the distancedv of the vertexv to the viewer). For this
to work, additionally toεv, a conservative bounding sphere
radiusrv is needed for each vertex. This attributerv defines a
nested bounding sphere hierarchy on the restricted quadtree
vertex dependency graph [35,36]. A vertexv will be selected
for the current LOD triangulation if its conservative image-
space errorρv = ε

dv−rv
is larger than the given thresholdτ.

In SMART [5] the same basic error metric and view-
dependent vertex selection criteriondv < εv

τ
+ rv gives rise to

aτ-sphere defined for each vertex by the radiusrτ
v = εv

τ
+ rv.

Hence vertex selection is simplified to all vertices whose t-
spheres contain the viewpoint. Further it is elaborated in [5]
that a so calledτ-save-distancecan dynamically be main-
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tained, which bounds for each vertex the deviation of the
viewpoint that does not change the LOD level of the ver-
tex. This concept allows for optimized LOD computations as
well as efficient vertex caching, and results in significantly
improved LOD meshing and rendering performance.

6.3 Discussion

The error metric of triangle bin-tree approaches is defined on
the triangles in the binary hierarchy. Due to the property of
a binary tree having roughly 2n nodes forn leaf nodes and
a triangle mesh having 2n triangles forn vertices, storage
of a triangle based error metric requires maintaining about
4n error values. In contrast, the quadtree based approaches
define the error metric on vertices and only requiren error
values to be stored. Simple geometric approximation error
metrics based on vertical displacement can be found in [58],
[14], [42] and [19]. More sophisticated view-dependent er-
ror metrics such as screen space distortion are discussed in
[34] and [13], and saturated view-dependent error metrics
are presented in [35] and [5]. Projection of a global geo-
metric approximation error metric into image-space will be
most efficient for large scale terrain visualization in practice.
In [13] it was observed that an error metric must be hierar-
chically monotonic to guaranteeε-bounded approximations.
RTIN [14] and RQT [42] in object-space as well as SOAR
[35,36] and SMART [5] in image-space provide such mono-
tonic geometric error metrics.

The type or error metric and error representation has thus
important consequences also on structure size and efficiency.
Arguably the most space efficient representation of a mul-
tiresolution triangulation of a height-field is an implicit hi-
erarchical structure, embedded in an array, with a saturated
error metric defined on the grid of elevation values as pro-
posed in [42] and [35]. This representation does not require
any information to be stored that describes the structure of
the multiresolution hierarchy, and only needs the elevation
and error values for each grid point. Furthermore, such an
elevation grid can also efficiently be partitioned and stored
on a remote server as shown in [42] and [43], or mapped
linearly to disk as demonstrated in [35]. However, this fully
implicit representation is only possible if the tree is com-
plete, i.e., if the input data is a uniformly sampled square.

Other related techniques fot the rfficient representation
and compression of a triangle bin-tree hierarchy is
discussed in [14] and [19]. However, both approaches use
triangle based error metrics which are space inefficient
due to the large number of error values that have to be
stored. Efficient LOD-based spatial access and triangulation
is discussed in [42], and extraction of an adaptive
triangulation in a sequentially stored and compressed
triangle bin-tree representation is considered in [19]. Very
efficient representations are further achieved in cluster
based triangulation approaches such as [7,7,63,28], since
errors and other structural information is only stored per
cluster.

7 System Issues

In this section we want to briefly review a few system and
database level aspects of terrain visualization in conjunction
with the LOD triangulation and rendering algorithms dis-
cussed so far. This includes topics such as dynamic scene
management, progressive or incremental meshing, data stor-
age and retrieval, or client-server architectures that are im-
portant for large scale real-time terrain visualization sys-
tems.

7.1 Dynamic Scene Management

Most of the discussed real-time terrain triangulation and vi-
sualization algorithms assume the entire terrain data set to
be accessed directly in virtual memory and do not explic-
itly consider dynamically loading terrain from disk or from
a database server. Also most algorithms can dynamically
extract a particular LOD triangle mesh from a hierarchical
multiresolution data structure holding the terrain data.

Fully main-memory resident approaches generally gen-
erate a space-LOD query for each rendered frame given the
current view frustum and LOD tolerance threshold t settings.
This query is generally answered using the multiresolution
terrain triangulation hierarchy. Efficient recursive top-down
LOD selection and triangulation algorithms for real-time ter-
rain rendering are presented in [58,34,13,42,14], of which
[34] and [42] address the issue of out-of-core data manage-
ment and are discussed in the following section.

Specifically designed for fast real-time LOD triangula-
tion and rendering in main memory is the system presented
in [13] (ROAM). As discussed in Section 4.2, the run-time
triangulation algorithm of ROAM is based on a greedy algo-
rithm that maintains two priority queues, the split queueQs
and the merge queueQm. For each frame the priority queues
Qm andQs are used to incrementally simplify and refine the
current triangle mesh to reach a triangulation that satisfies
the given error thresholdt. The priorities ofQs andQm are
based on the error metric defined on the triangles.

The ROAM terrain rendering system [13] is designed to
support guaranteed frame rates in an interactive visualiza-
tion application. Despite the maintenance of priority queues
at run-time, which requires orderO(nlogn) cost for each
update, the method is efficient as it is output sensitive (for
monotonic error metrics) and because the triangulation can
be updated incrementally between rendered frames. In addi-
tion to the basic algorithms, a couple of system level issues
are discussed as well such as reducing the amount of CPU
time spent on updating priorities between frames, or limit-
ing the number of split and merge operations to bound the
triangle count and guarantee consistent frame rates.

Clustered triangulation approaches typically adapt their
representation by traversing an in-core structure that repre-
sents the coarse-grained multiresolution models. BDAM [7],
and P-BDAM [8] use a top-down refinement approach based
on saturated errors and bounding volumes similar to SOAR
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[35,36]. The 4-8 texture hierarchy system [28] use instead
the dual queue approach of ROAM [13]. All these systems
maintain in-core the dependency graph (for a conforming
triangulation) and incrementally fetch from external mem-
ory the required LOD data. The choice of the particular re-
finement strategy is less important for clustered triangulation
approaches than for the other methods surveyed here, since
the run-time dependency graph size is output sensitive and
small, and all operations are amortized over thousands of
rendered triangles.

7.2 Out-of-Core Data Organization

While early systems such asVGIS[29,34,33],ViRGIS[42,
45,46], [27] andTerraVision II [50], as well as extremely
successful viewers such asGoogle Earthor NASA World-
wind, generally manage the terrain data as a set of rectan-
gular elevation grid tiles, more recent approaches [35,36,5]
use clever indexing and, when possible, memory mapping
techniques.

In tile-based systems the terrain data can easily exceed
the main (or even virtual) memory capacity of the worksta-
tion used for rendering as the data is dynamically loaded
on-demand from disk. VGIS [29,34,33] maintains the ter-
rain data on disk partitioned into a hierarchy of blocks of
129x129 vertices each. Hence at run-time, retrieval of the
terrain data from disk is based on block access at fixed grid
resolutions. In main memory a partial global terrain quadtree
is maintained, and updated dynamically by loading eleva-
tion data blocks on demand from disk. Adaptive simplifica-
tion is performed from this in-core data for each frame based
on the view-dependent block- and vertex-level error metrics
discussed in Section 4.1.

In ViRGIS [42,45,46], a tiled sliding window concept is
applied that dynamically maintains a fraction of the entire
data set in main memory, similar to Figure 1. A dynamic
scene manager dynamically updates the set of visible tiles,
by loading from disk on demand, and maintains each tile it-
self as a RQT. To avoid excessive loading from disk, a strat-
egy ofdeferred cumulative updatesis proposed which incre-
mentally updates grid tiles in-core based on the required ad-
ditional LOD. A multi-client capable terrain server manages
the elevation data in a quadtree database structure, support-
ing LOD-based rectangular range queries as well as LOD-
interval range queries for incremental tile updates. Given a
rectangular query rangeR an adaptive triangulation for any
specified LOD-interval can be retrieved as indicated in Fig-
ure 34. In that process, the boundary∂R of the query re-
gion R is resolved such that a conforming triangulation of
the query regionR is generated.

Instead of using grid tiles to partition the elevation data,
[4] combines spatial grouping with a LOD priority to clus-
ter elevation data on disk. Starting with a simple group of
vertices of the restricted quadtree triangulation hierarchy,
a cluster is formed by recursively adding same, or similar
LOD child nodes until: the size limit for a single cluster is
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the terrain data to be managed on a separate server and not
locally on the rendering workstation.

VGIS maintains the terrain data on disk partitioned into
files of 129x129 vertices each. All levels of the quadtree
hierarchy are stored on disk, each as a set of blocks of 1292

vertices. Due to this multi-level sub-sampling of the height-
field, elevation values are duplicated on multiple levels. At
run-time, retrieval of the terrain data from disk is strictly
constraint to accessing fixed grid resolutions of 129x129
vertex blocks at a time and no further LOD based access is
supported. In main memory, an approximation of the entire
data set as a global quadtree of the terrain is maintained that
can be dynamically updated by loading macro nodes of
129x129 vertex blocks from disk. On this macro-level, the
decision on which parts of the terrain are loaded at which
fixed grid resolution from disk into main memory is based
on the distance of the viewpoint from the surface. The
height-field data in main memory is then simplified for each
frame based on the view-dependent block- and vertex-level
error metrics discussed in Section 3.3 to render a continuous
adaptive LOD triangulation of the visible terrain.

In contrast, ViRGIS applies a windowing concept that
dynamically maintains a fraction of the entire data set in
main memory, and uses a tiling of the visible scene. This til-
ing approach supports efficient dynamic scene management,
and updates from the terrain database can be composed from
fixed sized rectangular range-queries, one range-query for
every newly visible tile. The dynamic scene manager main-
tains each terrain tile as a restricted quadtree triangulation
that generates adaptive LOD triangle strips for fast render-
ing. To avoid computing updates of the terrain triangulation
for each frame, a deferred cumulative updates strategy is
proposed to reduce data management costs without signifi-
cant loss of display quality. The terrain-server, accessible by
multiple concurrent ViRGIS rendering-clients, maintains
the terrain height-field in a quadtree database that efficiently
supports LOD-based rectangular range queries as outlined
below. Furthermore, it supports LOD-interval range queries
which refine a client’s current ε-approximation by incre-
mentally loading more detail for a particular LOD update
interval.

The RQT approach in ViRGIS supports efficient space-
LOD access by supporting rectangular range queries for a
particular LOD [POS+98, PW01]. The query range can be
any height-field grid aligned rectangular region R, and the
LOD can be specified either by an error threshold, or toler-
ance interval. As shown in Figure 33, special attention is
paid to the border ∂R of the query region R. The geometrical
test wether a vertex is inside the query region or not, is
extended by constraints of the restricted quadtree triangula-
tion. The border ∂R must include vertices to form a match-
ing restricted quadtree triangulation of the query region R as
further discussed in [Paj98a, POS+98, PW01].

FIGURE 33. Rectangular range query shown in a) and
initial vertex selection given in b). RQT constraints are
enforced on the range query as shown in c).

Instead of using grid tiles to partition the elevation data,
[BP03] combines spatial grouping with a LOD priority to clus-
ter elevation data on disk. Starting with a simple group of verti-
ces of the restricted quadtree triangulation hierarchy, a cluster is
formed by recursively adding same, or similar LOD child
nodes until: the size limit for a single cluster is reached, or the
LOD priority of the vertices in the cluster exceeds a tolerated
evenness bound. Hence each cluster forms a part of the
quadtree hierarchy structure and preserves spatial selectivity as
well as uniform LOD distribution within the cluster.

In [Hop98] the entire terrain data set is block-partitioned
into quadratic patches on disk. Each patch may be pre-sim-
plified to a minimum tolerance and stored on disk, however,
block boundaries are preserved at the finest resolution to
guarantee matching triangulations. In main memory, the
interior of each quadratic block is adaptively simplified for
each frame. Simplification across the highly tessellated
block boundaries is performed in a second stage, after
block-internal simplification, to reduce artifacts between
block regions.

A different approach for out-of-core memory manage-
ment of multiresolution data has been presented in [LP01,
LP02] which relies purely on the virtual memory management
functionality of modern operating systems. The basic principle
is to sequentially order the grid-digital elevation samples based
on a hierarchical, recursively defined space-filling curve index-
ing scheme [ARR+97]. The space-filling property of such an
index preserves spatial proximity between index neighbors, and
the hierarchical definition – e.g. of the z-curve index as used in
[LP01] – provides a basic LOD ordering. The multiresolution
restricted quadtree, or bin-tree triangulation hierarchy is thus
mapped to a linear data layout that can be stored on external
memory. The out-of-core data management is then solved by
memory mapping this file at run-time to an array data structure.
View-dependent adaptive LOD triangulation and real-time ren-
dering can then be carried out fully in (virtual) main memory
without specific out-of-core data access mechanisms.

Clustered triangulation approaches obtain their effi-
ciency by moving the granularity of all LOD operations
from individual vertices or triangles to small mesh portions.
This reduces memory needs, since less dependency informa-
tion has to be stored, and offers the possibility to optimize
the throughput by exploiting block-transfer features and
compression at the level of individual mesh portions. As a

triangulation for
error tolerance τ

points and triangles
inside query region R

constrained triangulation
for query region R

a) b) c)

15

the terrain data to be managed on a separate server and not
locally on the rendering workstation.

VGIS maintains the terrain data on disk partitioned into
files of 129x129 vertices each. All levels of the quadtree
hierarchy are stored on disk, each as a set of blocks of 1292

vertices. Due to this multi-level sub-sampling of the height-
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run-time, retrieval of the terrain data from disk is strictly
constraint to accessing fixed grid resolutions of 129x129
vertex blocks at a time and no further LOD based access is
supported. In main memory, an approximation of the entire
data set as a global quadtree of the terrain is maintained that
can be dynamically updated by loading macro nodes of
129x129 vertex blocks from disk. On this macro-level, the
decision on which parts of the terrain are loaded at which
fixed grid resolution from disk into main memory is based
on the distance of the viewpoint from the surface. The
height-field data in main memory is then simplified for each
frame based on the view-dependent block- and vertex-level
error metrics discussed in Section 3.3 to render a continuous
adaptive LOD triangulation of the visible terrain.

In contrast, ViRGIS applies a windowing concept that
dynamically maintains a fraction of the entire data set in
main memory, and uses a tiling of the visible scene. This til-
ing approach supports efficient dynamic scene management,
and updates from the terrain database can be composed from
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block boundaries is performed in a second stage, after
block-internal simplification, to reduce artifacts between
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This reduces memory needs, since less dependency informa-
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hierarchy are stored on disk, each as a set of blocks of 1292
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field, elevation values are duplicated on multiple levels. At
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vertex blocks at a time and no further LOD based access is
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can be dynamically updated by loading macro nodes of
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formed by recursively adding same, or similar LOD child
nodes until: the size limit for a single cluster is reached, or the
LOD priority of the vertices in the cluster exceeds a tolerated
evenness bound. Hence each cluster forms a part of the
quadtree hierarchy structure and preserves spatial selectivity as
well as uniform LOD distribution within the cluster.

In [Hop98] the entire terrain data set is block-partitioned
into quadratic patches on disk. Each patch may be pre-sim-
plified to a minimum tolerance and stored on disk, however,
block boundaries are preserved at the finest resolution to
guarantee matching triangulations. In main memory, the
interior of each quadratic block is adaptively simplified for
each frame. Simplification across the highly tessellated
block boundaries is performed in a second stage, after
block-internal simplification, to reduce artifacts between
block regions.

A different approach for out-of-core memory manage-
ment of multiresolution data has been presented in [LP01,
LP02] which relies purely on the virtual memory management
functionality of modern operating systems. The basic principle
is to sequentially order the grid-digital elevation samples based
on a hierarchical, recursively defined space-filling curve index-
ing scheme [ARR+97]. The space-filling property of such an
index preserves spatial proximity between index neighbors, and
the hierarchical definition – e.g. of the z-curve index as used in
[LP01] – provides a basic LOD ordering. The multiresolution
restricted quadtree, or bin-tree triangulation hierarchy is thus
mapped to a linear data layout that can be stored on external
memory. The out-of-core data management is then solved by
memory mapping this file at run-time to an array data structure.
View-dependent adaptive LOD triangulation and real-time ren-
dering can then be carried out fully in (virtual) main memory
without specific out-of-core data access mechanisms.

Clustered triangulation approaches obtain their effi-
ciency by moving the granularity of all LOD operations
from individual vertices or triangles to small mesh portions.
This reduces memory needs, since less dependency informa-
tion has to be stored, and offers the possibility to optimize
the throughput by exploiting block-transfer features and
compression at the level of individual mesh portions. As a
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Fig. 34 Rectangular range query shown in a) and initial vertex selec-
tion given in b). RQT constraints are enforced on the range query as
shown in c).

reached, or the LOD priority of the vertices in the cluster ex-
ceeds a tolerated evenness bound. Hence each cluster forms
a part of the quadtree hierarchy structure and preserves spa-
tial selectivity as well as uniform LOD distribution within
the cluster.

In [27] the entire terrain data set is block-partitioned into
quadratic patches on disk. Each patch may be pre-simplified
to a minimum tolerance and stored on disk, however, block
boundaries are preserved at the finest resolution to guarantee
conforming triangulations. In main memory, the interior of
each quadratic block is adaptively simplified for each frame.
Simplification across the highly tessellated block boundaries
is performed in a second stage, after block-internal simplifi-
cation, to reduce artifacts between block regions.

A different approach for out-of-core memory
management of multiresolution data has been presented
in [35,36] which relies purely on the virtual memory
management functionality of modern operating systems.
The basic principle is to sequentially order the grid-digital
elevation samples based on a hierarchical, recursively
defined space-filling curve indexing scheme [1]. The
space-filling property of such an index preserves spatial
proximity between index neighbors, and the hierarchical
definition e.g. of thez-curve index as used in [35] provides
a basic LOD ordering. The multiresolution restricted
quadtree, or bin-tree triangulation hierarchy is thus mapped
to a linear data layout that can be stored on external
memory. The out-of-core data management is then solved
by memory mappingthis file at run-time to an array data
structure. View-dependent adaptive LOD triangulation and
real-time rendering can then be carried out fully in (virtual)
main memory without specific out-of-core data access
mechanisms.

Clustered triangulation approaches obtain their
efficiency by moving the granularity of all LOD operations
from individual vertices or triangles to small mesh portions.
This reduces memory needs, since less dependency
information has to be stored, and offers the possibility
to optimize the throughput by exploiting block-transfer
features and compression at the level of individual mesh
portions. As a representative example, the BDAM and
P-BDAM [7,8] systems encode the hierarchy of right
triangles that guide their multiresolution partitioning as
a triangle bin-tree, and store the geometry associated to
each bin-tree region in a out-of-core patch repository which
is accessed on a patch by patch basis. This repository
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is constructed in a preprocessing step by a distributed
algorithm that builds the patches bottom-up using
edge collapse simplification with appropriate boundary
constraints. Patches are stored in the repository in a packed
stripified form ready for rendering. Similarly to [36], the
data layout is optimized to improve memory coherency
by sorting patches by level and spatial position. Spatial
sorting is realized using an indexing function based on
a space-filling curve. A separate index, kept in-core,
establishes the relation between triangle bin-tree regions
and stored mesh patches. At run time, the most recently
used patches are cached on the GPU using a LRU strategy,
while the new patches are retrieved by accessing the
repository through memory-mapping primitives. When
dealing with textured terrains, a tiled texture quadtree,
stored in compressed DXT format is overlaid on the
geometry.

The 4-8 texture hierarchy system [28] improves over the
previous approach by integrating geometry and texture in the
same framework. In this case, the diamond region is used in
the data structure rather than the bin-tree triangles. Both ge-
ometry and textures are treated as small regular grids, called
tiles, defined for each diamond in the hierarchy and paged-in
from disk on demand. Loading a new diamond corresponds
to loading two patches sharing the main diagonal. For effi-
cient input and output, files and disk blocks are laid out using
a diamond indexing scheme based on the Sierpinski space-
filling curve. In [23], the client and data access components
are separated to support thin clients and network servers.

7.3 Compression

Various authors have concentrated on combining data com-
pression methods with multiresolution schemes to reduce
data transfer bandwidths and memory footprints. Tiled block
techniques typically use standard 2D compressors to inde-
pendently compress each tile. In [28], the authors point out
that, when using a 4-8 hierarchy, the rectangular tiles as-
sociated to each diamond could be also compressed using
standard 2D image compression methods.

Geometry clipmaps [37] organize the terrain height data
in a pyramidal multiresolution scheme and the residual be-
tween levels are compressed using an advanced image coder
that supports fast access to image regions [40]. Storing in a
compressed form just the heights and reconstructing at run-
time both normal and color data (using a simple height color
mapping) provides a very compact representation that can
be maintained in main memory even for large datasets. The
method is possibly the current state-of-the-art in terms of
compression rates.

The Compressed Batched Dynamic Adaptive Meshes
(C-BDAM) technique [23], an extension of the BDAM
and P-BDAM chunked level-of-detail hierarchy, strives to
combine the generality and adaptivity of chunked bin-tree
multiresolution structures with the compression rates of
nested regular grid techniques. Similarly to BDAM, coarse

grain refinement operations are associated to regions in a
bin-tree hierarchy. Each region, called diamond, is formed
by two triangular patches that share their longest edge. In
BDAM, each patch is a general precomputed triangulated
surface region. In the C-BDAM approach, however, all
patches share the same regular triangulation connectivity
and incrementally encode their vertex attributes when
descending in the multiresolution hierarchy. The encoding
follows a two-stage wavelet based near-lossless scheme
in which lossy wavelet prediction are corrected to keep
approximated values within user imposed bounds. The
approach supports both mean-square error and maximum
error metrics allowing to introduce a strict bound on the
maximum error introduced in the visualization process. The
scheme requires storage of two small square matrices of
residuals per diamond, which are maintained in a repository.
At run-time, a compact in-core multiresolution structure
is traversed, and incrementally refined or coarsened on a
diamond-by-diamond basis until screen space error criteria
are met. The data required for refining is either retrieved
from the repository or procedurally generated to support
runtime detail synthesis. At each frame, updates are
communicated to the GPU with a batched communication
model.

The main take home message of the C-BDAM work is
that it is not necessary to use non-adaptive techniques, such
as geometry clipmaps, to incorporate aggressive compres-
sion in a high performance view-dependent terrain renderer.
This comes, however, at the cost of increased implementa-
tion complexity.

7.4 Numerical Accuracy

Numerical accuracy issues are one of the most neglected as-
pects in the management of huge data sets. Sending posi-
tions to the graphics hardware pipeline needs particular care,
given that the highest precision data-type is the IEEE float-
ing point, whose 23 bit mantissa leads to noticeable vertex
coalescing problem for metric data sets on the Earth and to
camera jitter problems in the general case [50]. In P-BDAM
[8], BDAM’s structural properties that guarantee overall ge-
ometric continuity are exploited for planetary sized render-
ing applications. Programmable graphics hardware is in par-
ticular exploited to cope with the accuracy issues introduced
by single precision floating point numbers, resulting in the
first fully hardware accelerated system able to provide sub-
metric positioning accuracy on the Earth.

The method uses as basic primitive a general triangula-
tion of points on a displaced triangle (see Figure 35). Each
corner vertex contains a pair of parametric coordinatesTi ,
that correspond to the position of the vertex in(u,v) coor-
dinates, as well as a planetocentric positionPi and a nor-
mal vectorNi , that are computed fromTi during the patch
construction preprocess as a function of the particular pro-
jection used. The vertices of the internal triangulation are
stored by specifying a barycentric coordinate and an offset
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along the interpolated normal direction, and all the informa-
tion required at rendering time is linearly interpolated from
the base corner vertex data. As for BDAM, the interior of
the patch is an arbitrary triangulation of the vertices, that
is represented by a cache-coherent generalized triangle strip
stored as a single ordered list of vertex indices. The only as-
pect that requires particular care is the computation of plan-
etocentric positions, since all other information is local to
the patch. P-BDAM therefore storesPi in double precision.
At each frame, all patches are rendered in camera coordi-
nates, simply subtracting the camera position fromPi on the
host before converting them to single precision for transfer
to the GPU. This way a single reference frame is used for
each frame, and positional accuracy decreases with the dis-
tance from the camera, which is exactly what is needed. In
contrast to common linear transformation approaches [33,
50], neighboring patches remain unconditionally connected
because displaced vertex values only depend on the com-
mon base corner vertices (along the edges, the weight for
the opposite vertex is null). The conversion cost (9 subtrac-
tions and 9 floating point conversion) is negligible, since it is
amortized over all the internal triangles. Moreover, the trans-
formation from barycentric to Cartesian/texture coordinates
can be efficiently computed from corner data on the GPU.
This has the important advantage that, since the vertices of
the internal triangulation are invariant in barycentric coordi-
nates, they can be cached in a static vertex array directly in
graphics memory. Moreover, the rendering routine can fully
benefit from the post-transform-and-lighting cache of cur-
rent graphics architectures, which is fully exploited when
drawing from the indexed representation.

Fig. 35 P-BDAM patches are represented as arbitrary triangulations of
points over a displaced triangle.

8 Conclusions

The investigation of multiresolution methods to dynamically
adapt rendered model complexity has been, and still is, a
very active computer graphics research area, which is ob-
viously impossible to fully cover in a short survey. In this
article, we analyzed the most common semi-regular multi-
resolution approaches for grid-digital terrain models. De-
spite the slightly increased size of the produced LOD tri-
angle meshes compared to fully irregular approaches, the
semi-regular multiresolution methods described in this pa-
per are among the best choices for real-time visualization of
very large scale height-field data sets. The various reviewed

approaches provide different alternatives in data structures,
triangulation algorithms, error metrics, dynamic scene man-
agement and rendering methods that can be exploited for an
optimized implementation.

Models based on tiled blocks and nested regular grids
are generally simple to implement and maintain, and offer
optimized interfaces to the graphics hardware at the cost of
limited adaptivitity and/or approximation quality and/or do-
main generality. Quadtree and triangle bin-trees triangula-
tions offer a sound mathematical basis upon which efficient
dynamic structures providing fully adaptive conforming tri-
angulations can be programmed. Cluster based approaches,
that build upon this basis, have recently shown how these
methods can efficiently harness the performance of current
commodity graphics platforms, at the cost of a slight reduc-
tion in adaptivity.

Even though the domain is mature and has a long history,
open problems remain. In particular, while networked and
out-of-core rendering systems have been demonstrated for
most of the structures discussed in this survey, limited solu-
tions have been proposed for fully out-of-core data construc-
tion. Moreover efficient techniques for incrementally updat-
ing an already constructed multiresolution hierarchy are still
to be devised.
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Mathematik, Universiẗat Bonn (1999). To appear in Geoinformat-
ica 2001

20. Gerstner, T.: Top-down view-dependent terrain triangulation using
the octagon metric. Tech. rep., Institute of Applied Mathematics,
University of Bonn (2003)

21. Gerstner, T., Pajarola, R.: Topology preserving and controlled
topology simplifying multiresolution isosurface extraction. In:
Proceedings IEEE Visualization, pp. 259–266. Computer Society
Press (2000)

22. Gerstner, T., Rumpf, M., Weikard, U.: Error indicators for multi-
level visualization and computing on nested grids. Computers &
Graphics24(3), 363–373 (2000)

23. Gobbetti, E., Marton, F., Cignoni, P., Benedetto, M.D., Ganov-
elli, F.: C-BDAM – compressed batched dynamic adap-
tive meshes for terrain rendering. Computer Graphics Fo-
rum 25(3) (2006). URL http://www.crs4.it/vic/cgi-bin/bib-
page.cgi?id=’Gobbetti:2006:CCB’. Proc. Eurographics 2006

24. Hebert, D., Kim, H.: Image encoding with triangulation wavelets.
In: Proceedings of SPIE, vol. 2569, pp. 381–392. SPIE (1995)

25. Heckbert, P.S., Garland, M.: Survey of polygonal surface simpli-
fication algorithms. SIGGRAPH 97 Course Notes 25 (1997)

26. Hitchner, L.E., McGreevy, M.W.: Methods for user-based reduc-
tion of model complexity for virtual planetary exploration. In:
Proceedings Symposium on Electronic Imaging, pp. 1–16. SPIE
(1993)

27. Hoppe, H.: Smooth view-dependent level-of-detail control and its
application to terrain rendering. In: Proceedings IEEE Visualiza-
tion, pp. 35–42. Computer Society Press (1998)

28. Hwa, L.M., Duchaineau, M.A., Joy, K.I.: Real-time optimal
adaptation for planetary geometry and texture: 4-8 tile hierar-
chies. IEEE Transactions on Visualization and Computer Graphics
11(4), 355–368 (2005)

29. Koller, D., Lindstrom, P., Ribarsky, W., Hodges, L.F., Faust, N.,
Turner, G.: Virtual GIS: A real-time 3D geographic information
system. In: Proceedings IEEE Visualization, pp. 94–100. Com-
puter Society Press (1995)

30. Lario, R., Pajarola, R., Tirado, F.: Hyperblock-QuadTIN: Hyper-
block quadtree based triangulated irregular networks. In: Proceed-
ings IASTED Invernational Conference on Visualization, Imaging
and Image Processing (VIIP), pp. 733–738 (2003)

31. Levenberg, J.: Fast view-dependent level-of-detail rendering using
cached geometry. In: Proceedings IEEE Visualization, pp. 259–
266. Computer Society Press (2002)

32. Lindstrom, P., Koller, D., Hodges, L.F., Ribarsky, W., Faust, N.,
Turner, G.: Level-of-detail management for real-time rendering of
phototextured terrain. Tech. rep., Graphics, Visualization, and Us-
ability Center, Georgia Tech (1995). TR 95-06

33. Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L., Faust, N.:
An integrated global GIS and visual simulation system. Tech.
Rep. GVU Technical Report 97-0, Georgia Tech Research Insti-
tute (1997). Http://www.gvu.gatech.edu/gvu/virtual/VGIS/

34. Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L.F., Faust, N.,
Turner, G.A.: Real-time, continuous level of detail rendering of
height fields. In: Proceedings ACM SIGGRAPH, pp. 109–118.
ACM SIGGRAPH (1996)

35. Lindstrom, P., Pascucci, V.: Visualization of large terrains made
easy. In: Proceedings IEEE Visualization, pp. 363–370. Computer
Society Press (2001)

36. Lindstrom, P., Pascucci, V.: Terrain simplification simplified: A
general framework for view-dependent out-of-core visualization.
IEEE Transaction on Visualization and Computer Graphics8(3),
239–254 (2002)

37. Losasso, F., Hoppe, H.: Geometry clipmaps: Tterrain
rendering using nested regular grids. ACM Trans-
actions on Graphics 23(3), 769–776 (2004). URL
http://doi.acm.org/10.1145/1015706.1015799

38. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B.,
Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann
Publishers, San Francisco, California (2003)

39. Luebke, D.P.: A developer’s survey of polygonal simplification al-
gorithms. IEEE Computer Graphics & Applications21(3), 24–35
(2001)

40. Malvar, H.S.: Fast progressive image coding without wavelets.
In: Data Compression Conference, pp. 243–252 (2000). URL
http://www.computer.org/proceedings/dcc/0592/05920243abs.htm

41. Ohlberger, M., Rumpf, M.: Adaptive projection operators in mul-
tiresolution scientific visualization. IEEE Transactions on Visual-
ization and Computer Graphics5(1), 74–93 (1999)

42. Pajarola, R.: Large scale terrain visualization using the restricted
quadtree triangulation. In: Proceedings IEEE Visualization, pp.
19–26,515 (1998)

43. Pajarola, R.: Large scale terrain visualization us-
ing the restricted quadtree triangulation. Tech. Rep.
292, Dept. of Computer Science, ETH Zürich (1998).
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