
The Visual Computer manuscript No.
(will be inserted by the editor)

Enrico Gobbetti · Fabio Marton · José Antonio Iglesias Guitián

A single-pass GPU ray casting framework for interactive out-of-core
rendering of massive volumetric datasets

Abstract We present an adaptive out-of-core technique for
rendering massive scalar volumes employing single pass GPU
raycasting. The method is based on the decomposition of a
volumetric dataset into small cubical bricks, which are then
organized into an octree structure maintained out-of-core.
The octree contains the original data at the leaves, and a fil-
tered representation of children at inner nodes. At runtime
an adaptive loader, executing on the CPU, updates a view-
and transfer function-dependent working set of bricks main-
tained on GPU memory by asynchronously fetching data
from the out-of-core octree representation. At each frame,
a compact indexing structure, which spatially organizes the
current working set into an octree hierarchy, is encoded in
a small texture. This data structure is then exploited by an
efficient stackless raycasting algorithm, which computes the
volume rendering integral by visiting non-empty bricks in
front-to-back order and adapting sampling density to brick
resolution. Block visibility information is fed back to the
loader to avoid refinement and data loading of occluded zones.
The resulting method is able to interactively explore multi-
giga-voxel datasets on a desktop PC.

1 Introduction

The ability to interactively render rectilinear scalar volumes
containing billions of samples on desktop PCs is of primary
importance for a number of applications, which include med-
ical visualization and numerical simulation results analysis.

Many sophisticated techniques for real-time volume render-
ing have been proposed in the past, taking advantage of CPU
acceleration techniques, GPU acceleration using texture map-
ping, or special purpose hardware. In the last few years, im-
provements in programmability and performance of GPUs

CRS4 Visual Computing Group
Sardegna Ricerche Edificio 1, C.P. 25
09010 Pula, Italy
E-mail: gobbetti@crs4.it marton@crs4.it jalley@crs4.it
www: http://www.crs4.it/vic/

have made GPU solutions the main option for real-time ren-
dering on desktop platforms [4]. Current high quality solu-
tions, based on ray-casters fully executed by GPU fragment
programs, have demonstrated the ability to deliver real-time
frame rates for moderate-size data, but they typically require
the entire dataset to be contained in GPU memory. Render-
ing of large datasets can be achieved through compression,
multiresolution schemes, and out-of-core techniques. Cur-
rent solutions, however, are not fully adaptive and, with the
exception of flat blocking schemes [15], are not typically im-
plemented within a single-pass raycasting framework, with
increased frame buffer bandwidth demands and/or decreased
precision and flexibility in the computation of volume inte-
grals (see section 2).

In order to remove such limitations, we present an adaptive
out-of-core technique for rendering massive scalar datasets
within a single-pass GPU raycasting framework. The method
exploits an adaptive loader executing on the CPU for up-
dating a working set of bricks maintained on GPU memory
by asynchronously fetching data from an out-of-core vol-
ume octree representation. At each frame, a compact index-
ing structure, which spatially organizes the current working
set into an octree hierarchy, is encoded in a small texture.
This data structure is then exploited by an efficient raycast-
ing algorithm, which computes the volume rendering inte-
gral by enumerating non-empty bricks in front-to-back order
and adapting sampling density to brick resolution. The algo-
rithm is a streamlined octree extension of an efficient stack-
less ray traversal method for kd-trees [7,16], which reduces
costly texture memory accesses by computing neighbor in-
formation on-the-fly. In order to further optimize memory
and bandwidth efficiency, the method also exploits feedback
from the renderer to avoid refinement and data loading of
occluded zones.

Although not all the techniques presented here are novel in
themselves, their elaboration and combination in a single
system is not trivial and represents a substantial enhance-
ment to the state of the art. The resulting method is exten-
sible, fully adaptive, and able to interactively explore multi-
giga-voxel datasets on a desktop PC (see figure 1).



2 Enrico Gobbetti et al.

(a) Volume rendering overview (b) Volume rendering detail (c) Isosurface detail (d) Isosurface detail’s octree structure

Fig. 1 Interactive exploration of multi-gigabyte CT datasets. This two-Gvoxels 16bit dataset is interactively explored on a desktop PC with
a NVIDIA 8800 Ultra graphics board using a 1024× 1024 window size. Transfer functions and isovalues can be interactively changed during
navigation. The volume rendered images have a full Phong model with specular reflections and view-dependent transparency.

2 Related Work

Volume visualization is a well researched subject. In the con-
text of this paper, we limit our discussion to the approaches
most closely related to ours. We refer the reader to the re-
cent book of Engel et al. [4] for a survey on GPU volume
rendering.

The out-of-core organization of massive volumetric data into
a volume octree is a classic one. Lamar et al.[12] proposed
a multiresolution sampling of octree tile blocks according to
view-dependent criteria. Boada et al. [2] proposed a coarse
octree built upon uniform sub-blocks of the volume, and
used, instead, data dependent measures to select block reso-
lution. In such systems, as in most previous GPU accelerated
multiresolution schemes, rendering of multiresolution vol-
umes on graphics hardware is accomplished by separate ren-
dering of blocks and frame buffer composition. For instance,
Guthe et al. [6] exploits a decomposition into wavelet com-
pressed blocks, uses block resolution to determine inter-slice
distance, and introduces methods for empty space skipping
and early ray termination. Li et al.[14] propose to acceler-
ate slice-based volume rendering by skipping empty blocks
and exploiting an opacity map for occlusion culling. Slice-
based implementations are, however, rasterization limited
and hard to optimize from an algorithmic point of view. Fur-
thermore, when applying a perspective projection the inte-
gration step size will vary along viewing rays when using
planar proxy geometries, leading to visible artifacts. In or-
der to solve some of these problems, other authors [8,9]
separately render blocks using volumetric raycasting on the
GPU and devise propagation methods to sort cells into lay-
ers for front-to-back rendering, therefore reducing frame-
buffer demands. The separate rendering of blocks, however,
is prone to rendering artifacts at block boundaries, and does
not easily allow an implementation of optical models with
viewing rays changing direction, as it does occur in refract-
ing volumes, or with non-local effects, as it does occur in
global illumination. Our method, instead, is based on a full-
volume GPU ray-casting approach [11,17], with a fragment
shader that performs the entire volume traversal in a single

pass [19]. Such an approach, made possible by modern pro-
grammable GPUs, is more general, but, until very recently,
has been limited to moderate size volumes that fit entirely
into texture memory. In this context, the issue of large vol-
umes has been typically addressed by compressing data us-
ing adaptive texturing schemes to fit entire datasets into GPU
memory in compressed form [20], or by using flat multires-
olution blocking methods [15]. In the first approach, data
is stored at various resolution levels using adaptive texture
maps [10] to reduce storage needs, but sampling density is
not adapted as the ray passes through different blocks of
data. The flat multiresolution blocking technique, instead,
represents a volume as a fixed grid of blocks and varies the
resolution of each block to achieve adaptivity. The disad-
vantage of this fine-grained approach in comparison with
our hierarchical approach is that the number of blocks is
constant and the method remains performing only if indi-
vidual blocks are within a small range of sizes. Our method
relies instead on the ability to rapidly traverse a octree struc-
ture and is based on the stackless ray traversal method for
kd-trees [7] recently extended to GPUs for surface render-
ing [16]. Our method exploits the regular structure of oc-
trees to reduce costly texture memory accesses by comput-
ing bounding boxes on-the-fly. In addition, our algorithm
takes advantage of occlusion queries to avoid loading oc-
cluded data. Other authors have proposed using depth infor-
mation to optimize full-volume GPU raycasters, but, in gen-
eral, the focus is on implementing early-ray termination in
multi-pass methods by exploiting early z-tests features [11,
17]. Our scheme exploits spatial and temporal coherence to
schedule queries in an order that strives to reduce end-to-end
latency, similarly to what is done for recent surface render-
ers [5,1]. The central idea of these methods is to issue multi-
ple queries for independent scene parts and to avoid repeated
visibility tests of interior nodes by exploiting the coherence
of visibility classification. In our case, the partitioning oc-
curs in image space, rather than in object space.



Out-of-core volumetric GPU ray casting 3

3 Method overview

Since massive volumetric datasets cannot be interactively
rendered by brute force methods, applications must ideally
employ adaptive rendering techniques whose runtime and
memory footprint is, as much as possible, proportional to the
number of image pixels, not to the total model complexity.

For efficiently updating the rendering working-set, these meth-
ods require the integration of level-of-detail and visibility
culling techniques. Out-of-core data management is used for
filtering out as efficiently as possible the data that is not con-
tributing to a particular image.

Fig. 2 Method overview. At runtime, an adaptive loader, executing on
the CPU, updates a view- and transfer function-dependent working set
of bricks maintained on GPU memory by asynchronously fetching data
from an out-of-core coarse-grained octree representation. A compact
indexing structure that spatially organizes the current working set is
exploited by an efficient stackless GPU raycaster for image generation.

In our approach, we separate the creation and maintainance
of the rendering working set, which is performed on the
CPU, from the actual rendering, which is fully performed
on the GPU based on an efficient encoding of the current
working set representation (see figure 2). In order to max-
imize CPU and bandwidth efficiency, we employ a coarse-
grained volume decomposition, which allows us to amortize
decision costs over a large number of rendered voxels and to
efficiently update the GPU representation with few calls.

The original volumetric model is decomposed into small cu-
bical bricks, which are then organized into a coarse octree
structure maintained out-of-core. The octree contains the orig-
inal data at the leaves, and a filtered representation of chil-
dren at inner nodes. Each node also stores the range of val-
ues, as well as, optionally, precomputed gradients. In or-
der to efficiently support runtime operations that require ac-
cess to neighboring voxels, such as linear interpolation or
gradient computations, blocks are made self-contained by
replicating neighboring samples. One layer is replicated for
linear interpolation support, while two layers are replicated
for additionally using central differences to compute gradi-
ents at rendering time. At runtime, an adaptive loader up-
dates a view- and transfer function-dependent working set
of bricks incrementally maintained on CPU and GPU mem-
ory by asynchronously fetching data from the out-of-core
octree. The working set is maintained by an adaptive refine-
ment method guided by suitably computed node priorities

(see section 4). At each frame, a compact indexing struc-
ture, which spatially organizes the current working set into
an octree hierarchy, is encoded in a small texture. This struc-
ture is not a multiresolution data representation, but simply
spatially organizes the leaves of the current view-dependent
representation into an octree with neighbor pointers. The in-
ner nodes of this structure simply contain pointers to chil-
dren, and only the leaves refer to volume data nodes stored
in the memory pool. The spatial index structure is exploited
by an efficient stackless GPU raycaster, which computes the
volume rendering integral by enumerating non-empty bricks
in front-to-back order, adapting sampling density to brick
resolution, and stopping as soon as the accumulated opac-
ity exceeds a certain threshold, updating both the frame- and
depth-buffer (see section 5).

Using an occlusion query mechanism designed to reduce
GPU stalls, feedback from the renderer is exploited by the
loader to avoid refinement and data loading of occluded zones
(see section 6).

4 Generating a view- and transfer-function dependent
working set

At each frame, an incremental refinement procedure con-
structs the current view-dependent working set by refining
a sorted set of visible non-empty nodes initialized with the
octree root. In the most basic case, the set is sorted by de-
creasing projected screen-space size of voxels, but we will
see in section 6 how visibility information can also be in-
corporated in the process. Empty nodes are terminal ones in
the refinement process, as well as nodes which fall outside of
the view frustum. As in [21], for isosurface rendering, a node
is considered non-empty if the isovalue is within the range
spanned by the minimum and maximum value of the cell. In
the case of volume rendering, as in [18], summed-area ta-
bles of the transfer function opacity are used to determine
if the block is empty by taking the difference of the table
entries for the minimum and maximum block values. The
refinement procedure stops when all nodes are considered
adequately refined, no data is currently available in-core to
perform a refinement, or no more space is available in the
GPU cache to contain a further subdivision. In order to hide
out-of-core data access latency, all data access requests are
performed asynchronously by a separate thread, and refine-
ment continues only if data is immediately available.

At the end of the refinement process, all nodes in the current
working set are present both in the CPU and GPU cache,
the CPU cache being used as a larger level-2 cache that
uses system memory to avoid disk accesses for recently used
blocks. Both memory pools are managed using a LRU pol-
icy. The GPU texture cache is devised as a large preallo-
cated 3D texture managed as a pool of blocks, or two of
them when using precomputed gradients. In our current im-
plementation, the value texture is configured as a 16bit sin-
gle channel texture, while the gradient texture is a RGBA8



4 Enrico Gobbetti et al.

texture with normalized gradients in the RGB components
and gradient norm in the A component. During incremental
refinement, the GPU texture cache is incrementally updated
with glTexSubImage calls to move data. Due to tempo-
ral and spatial coherence, the number of updated nodes per
frame is generally small.

5 GPU rendering

The incremental refinement procedure defines a cut of the
octree hierarchy that is considered adequate for the current
frame and stores all data blocks associated to non-empty
leaves in GPU memory. In order to render an image with
a single-pass GPU raycaster, the fragment shader must be
able to efficiently enumerate in front-to-back order for each
fragment all the blocks pierced by the associated view ray.
We reach this goal by using an octree with neighbor struc-
ture to spatially index the current leaf blocks, and using this
structure to accelerate ray traversal.

Fig. 3 Octree with neighbor pointers. Neighbor pointers link each
leaf node of the octree via its six faces directly to the corresponding
adjacent node of that face, or to the smallest node enclosing all adjacent
nodes if there are multiple ones.

5.1 Spatial index construction

The octree with neighbors structure augments a branch-on-
need octree with links, so that a direct traversal to adjacent
nodes is possible (see figure 3). In this structure, neighbor
pointers directly link each leaf node of the octree via its six
faces to the corresponding adjacent node of that face, or to
the smallest node enclosing all adjacent nodes if there are
multiple ones. We create such a structure on-the-fly at each
frame directly from the view-dependent octree, and encode
it into a 3D texture that acts as a spatial index.

The layout of the spatial index texture is designed to encode
the minimum amount of data required for octree traversal
(see figure 4). Similarly to Octree Textures on GPU [13], we
use a 8 bit RGBA texture encoding information in the RGB

component pointer information, and various kinds of tags in
the A components. With this encoding, we can potentially
address 16M nodes or data blocks, which is several orders
of magnitude larger than what is needed.

Fig. 4 Spatial index and memory pool textures. Each octree node is
encoded in 8 of consecutive texels arranged in the x direction.

The octree structure is encoded using a tagged pointer per
node. The A component of the tagged pointer determines the
node kind, and it is A = 1.0 for inner nodes, A = 0.5 for for
data nodes, and A = 0.0 for empty nodes. Inner nodes used
the RGB component of the tagged pointer to point to the
first of 8 children arranged consecutively in the x direction.
Leaf nodes use the RGB component of the tagged pointer
to point to leaf information, which consists in a data pointer
(if the node is not empty), and 6 consecutive texels storing
pointers to neighbors. The last leaf data texel always con-
tains a NULL pointer, used in our traversal code to simplify
the handling of rays that do not exit from the current box
and thus should not continue to neighbors. Neighbor point-
ers use their A value to encode the octree level of the neigh-
bor, which can be the same as the level of current node or
coarser. The level information is all that is required in our
traversal algorithm to rapidly compute the bounding box in-
formation of neighbors during traversal.

The on-the-fly construction of the index texture is fast, since
our structure is coarse-grained and the view-dependent tree
is composed of only a few thousands leafs. Once the struc-
ture is constructed in a memory area, the GPU texture is
updated using a glTexSubImage call, and the fragment
shader implementing volume raycasting is activated by ren-
dering a quad.

5.2 Spatial index traversal

The spatial index structure is exploited by an efficient ray-
casting algorithm, which computes the volume rendering in-
tegral by enumerating non-empty bricks in front-to-back or-
der and adapting sampling density to brick resolution. The
traversal algorithm is a streamlined octree extension of an
efficient stackless ray traversal method for kd-trees [7,16],
which reduces costly texture memory accesses by comput-
ing neighbor information on-the-fly (see figure 5). In our ap-
proach, children and neighbor bounding boxes are implicitly
computed on-the-fly by the shader without any additional ac-
cess to texture memory by exploiting the regular structure of
the octree. The basic concept behind the stackless traversal
is to start by performing a down traversal of the octree for
locating the leaf node that contains the current sampling po-
sition, which, at the start, is the position at which the ray
enters the volume. Then, the leaf node is processed by accu-
mulating color and opacity by stepping through the associ-
ated brick if it contains data, or simply skipping the node if
it is empty. If the ray does not terminate because maximum



Out-of-core volumetric GPU ray casting 5

opacity is reached, the algorithm determines the face and
the intersection point through which the ray exits the node.
Then traversal continues by following the neighbor pointer
of this face to the adjacent node, eventually performing a
down traversal to locate the leaf node that contains the exit
point, which is now the entry point of the new leaf node.
This approach has the important advantage of not requiring
a stack to remember nodes that still need to be visited, since
the state of the ray only consists of its current node and its
entry point.

fragment.color=float4(0,0,0,0);

fragment.depth=FAR;

// Start at octree root

node_ptr = float3(0,0,0); octree_level=0;

box_min=float3(0,0,0); box_dim=float3(1,1,1);

while (!is_null(node_ptr) and color.a<1) {
// Find leaf containing current sampling point

P = ray.start+ray.dir*t_min;

node = tex3d(spatial_index, node_ptr);

while (is_inner(node.w)) {
box_dim/=2; box_mid=box_min+box_dim;

s=step(P,box_mid); box_min+=s*box_dim;

child_offset=dot3(s,float3(1,2,4))*texel_sz;

node_ptr=node.xyz+float4(child_offset,0,0,0);

node=tex3d(spatial_index, node_ptr);

++octree_level;

}
// Clip ray to box and find exit face

(box_t_max, exit_face_idx, exit_dir) =

box_clip(ray, t_min, t_max, box_min, box_dim);

// If non-empty block, access data and accumulate

if (!is_empty(node.w)) {
data_ptr=tex3d(spatial_index, node.xyz);

(fragment.color, fragment.depth) =

accumulate(fragment.color,

ray, t_min, box_t_max,

data_ptr, box_min, box_max);

}
// If ray exits from current block, move to neighbor

neighbor_offset=float3(1+exit_face_idx,0,0)*texel_sz;

neighbor=tex3d(spatial_index, node.xyz+neighbor_offset);

node_ptr=neighbor.xyz;

octree_level=neighbor.w;

box_dim=exp2(-octree_level);

box_min=trunc(box_min/box_dim)*box_dim;

t_min=box_t_max;

}

Fig. 5 Stackless octree traversal on the GPU. The code minimizes
memory accesses by computing visited boxes on the fly.

In order to implement this approach, the information a node
should provide in addition to tags and pointers consists in
its bounding box, which is used for locating points during a
down traversal, and exit ray positions during neighbor traver-
sal. All our computations are done in texture coordinates,
and we assume that the octree subdivides the unit cube. Dur-
ing all out traversal steps, we maintain a current box, ini-
tialized with the unit cube, as well the current octree level,
initialized at 0.

A down traversal step from a node to the child containing
a point P can be efficiently implemented by box subdivi-
sion, using a step function that compares P with the center
of the current box. For each component of P, this function
returns 0 if that component is less than the center’s value,
and 1 otherwise. The child box coordinates are thus obtained

by translating the parent box origin by an amount stepi ×
child box dimi, where i is x, y or z. The values returned by
the step function are also combined to access the proper chil-
dren pointer inside the spatial index texture, which is stored
at an offset stepx ∗ 1 + stepy ∗ 2 + stepz ∗ 4 from the current
pointed node. Each time the box is subdivided, the octree
level is incremented by one.

Computing the bounding box of a neighbour relies on oc-
tree level tracking. When moving to a neighbor, the origin
of the box is in a first step simply shifted in the direction
of the box face from which the ray is exiting by translating
it by dir ∗ box dim, where the exiting face direction dir is
either ±x or ±y or ±z. This operation is sufficient to com-
pute the neighbor box if it is at the same octree level. If, in-
stead, the neighbor level is at a coarser level than the current
node, the shifted box must be coarsened, an operatation that
can performed effciently in closed form by first updating the
box dimension to box dim = 2−neighbor level and then snap-
ping the box origin to the neighbor level grid by computing
box min = ⌊box min/box dim⌋ ·box dim.

5.3 Adaptive sampling

The stackless traversal technique allows the fragment shader
to enumerate all non-empty leaves pierced by a ray in front-
to-back order. Each time the ray enters a leaf with data, the
ray chooses a step size matching the local voxel density
and accumulates color and opacity information depending
on the active rendering mode. Entry and exit points within
the block are determined during the octree traversal pro-
cess. For isosurface rendering, we simply look for intervals
that bracket the selected isovalue, while for semitransparent
direct volume rendering, we have currently implemented a
Phong illumination model with boundary enhancement and
view-dependent transparency [3]. Stepping by a discrete num-
ber of intervals, which are directly associated to octree lev-
els, enables the use of a compact precomputed 2D trans-
fer function, using the octree level for the second dimen-
sion, where the transfer function opacity and color weighting
are adjusted accordingly. Both the isovalue and the transfer
function can be modified interactively. When the ray exits
the block, the current opacity is checked, and, if it exceeds
a certain threshold (0.99 in our tests), the ray terminates and
the depth of the fragment is updated.

6 Incorporating visibility information

With the described techniques, we are able to perform fully
adaptive GPU ray casting: as a matter of fact the structure
provides support for empty space skipping, adaptive sam-
pling and occlusion culling through early ray termination.
Occlusion culling during ray accumulation is performed by
early ray termination. This approach optimizes computations
but is not optimal in terms of data management, since oc-
cluded areas are discovered only at rasterization time, after



6 Enrico Gobbetti et al.

the data is already part of the working set. In order to avoid
wasting GPU memory resources and exploit bandwidth, we
have incorporated a feedback mechanism in the system, that
allows us to exploit visibility information gathered during
rendering in the loader.

The basic principle of the method is to update at each frame
the visibility status of the nodes in the graph, and, during
the refinement cycle, only refine nodes that were marked
as visible during the previous frame. Under this approach,
the available GPU texture slots will be used mainly to re-
fine nodes present in the visible part of the model, and load
requests will not be posted for invisible ones. In order to
gather node visibility information, we assume that the frag-
ment shader write the depth of the last visited sample into the
depth buffer. By issuing an occlusion query for the bound-
ing box of non-empty leaves after volume rendering has fin-
ished, visibility information can be gathered by exploiting
the rasterization hardware. If the occlusion query results in-
dicates that the number of visible pixels is below a visibility
threshold (4 pixels in our benchmarks), the node is marked
not visible. The visibility information of leaves can then be
propagated up to the root by considering an inner node visi-
ble only if at least one of its children is visible.

A straightforward implementation of this method, which would
issue queries for all rendered nodes after the volume render-
ing call, is possible, but would be inefficient. It should be
noted that, although queries are processed quickly using the
rasterization power of the GPU, their results are not avail-
able immediately, due to the delay between issuing a query
and its actual processing by the graphics pipeline, which
would only occur when the rasterizers have finished with
raycasting. For this reason, we exploit spatial and temporal
coherence to schedule queries in a way that reduces end-to-
end latency. Since we perform full-volume raycasting, the
rendering procedure is separated into independent parts us-
ing a screen space subdivision. Given a budget of visibility
queries per frame, the screen is recursively partitioned into
tiles with the purpose of separating blocks for which visibil-
ity will be queried from all others (see figure 6). The parti-
tioning uses a 2D binary space subdivision of the list of 2D
rectangles that bound the block projection. Computing this
set adds little overhead, since node bounding boxes are al-
ready projected onto the screen when computing node prior-
ities. At each subdivision step, a split plane along one of the
axes is placed at the position that separates the set into two
equally sized subsets, defining two screen tiles. One of the
two tiles is selected as containing the occlusion queried sub-
set of octree nodes. The subdivision process continues only
on that tile, until its size is below a certain threshold. At each
frame, we take different decisions when selecting the half-
spaces to ensure that we cover the entire set of octree nodes
after a minimum number of frames. At the end of this pro-
cess, we obtain a list of tiles partitioning the original view-
port, as well as a list of blocks whose projection is entirely
contained within one of the tiles, placed at the beginning of
the list. The rendering process continues by instructing the

graphics pipeline to raycast each of the tiles, and to perform
occlusion queries for the selected subset of octree nodes just
after issuing the rendering command of the first one (see fig-
ure 6). This approach reduces end-to-end latency because
of the interleaving of the processing of occlusion queries in
the first tile with the rasterization of the other tiles. Visibil-
ity information is incorporated in the system with a delay of
N + 1 frames, where N is the number of partitions required
to cover all blocks. In practice, this number is very small, 2
to 4 in our tests, since we use a coarse-grained octree sub-
division and the working set if made up of few hundreds to
few thousands nodes.

Fig. 6 Screen space subdivision. The screen is recursively partitioned
into tile for the purpose of separating blocks for which visibility will
be queried from other blocks, thus enabling interleaving of query pro-
cessing with rasterization.

7 Implementation and results

An experimental software library and a rendering applica-
tion supporting the technique have been implemented on
Linux using C++ with OpenGL, and Cg 2.0. The octree is
stored in an out-of-core structure, based on Berkeley DB,
and data is losslessly compressed with the LZO compres-
sion library.

We have tested our system with a variety of high resolu-
tion models. In this paper, we discuss the results obtained
with the inspection of a large volumetric model contain-
ing two high resolution X-Ray CT datasets of biological
specimens 1. The overall volume has a resolution of 2048×
1024×1080 with 16 bit/sample, and has been embedded in
a 20483 cubical grid.

All tests have been performed on a Linux PC with a dual
2.4GHz CPU, 4GB RAM, a GeForce8800 Ultra graphics
board and SATA2 disks storing the out-of-core models. The
construction of the octree with precomputed gradients from
the source datasets was performed using a granularity of 323

for octree bricks with 1 layer overlap. The preprocessor was
instructed to filter out data by discarding all blocks with a
value lower than 6400, in order to discard most of the noisy
empty space. Data preprocessing took 95 minutes to com-

1 Source: Digital Morphology Project, the CTLab and the Texas Ad-
vanced Computing Center, University of Texas, Austin



Out-of-core volumetric GPU ray casting 7

Fig. 7 Real-time inspection. These images, taken from the accompanying video, show successive instants of interactive exploration of the test
CT dataset. The overall volume has a resolution of 2048×1024×1080 with 16 bits/sample.

plete on a single CPU and produced an octree database with
an on-disk size of 4.1 GB.

We evaluated the rendering performance of the technique on
a number of interactive inspection sequences. The qualita-
tive performance of our adaptive GPU ray-caster is illus-
trated in an accompanying video. Representative frames are
shown in figure 7. Because of video recording constraints,
the sequence is recorded using a window size of 640× 480
pixels. In all recorded sequences, we used a 1 voxel/pixel ac-
curacy to drive the adaptive renderer. As shown in the video,
the system is fully interactive, and it is possible to translate,
rotate, and scale the model as well as to change rendering
mode, transfer functions, and isovalue parameters.

The average frame rate of the DVR sequence varies between
12 Hz and 30 Hz, with an average of 16 Hz. A few occa-
sional frames have a delay of 200 ms, which correspond to
cases in which many textures have to be updated in response
to rapidly varying view conditions. These frame-rate jitters
could be avoided by introducing a texture upload budget and
stopping refinement when this budget is exceeded. In the

case of isosurfaces, the frame rate is higher, 20 Hz on av-
erage, with peaks of up to 40 Hz. We repeated the same tests
on a 1024× 1024 window, and obtained an average slow-
down of a factor of 3, roughly corresponding to the increase
in number of pixels.

The higher performance of isosurface rendering is due to
the simplicity of the inner accumulation loop, that has only
to bracket the isovalue and accesses the gradient texture only
once per fragment to shade the detected surface. By contrast,
the direct volume rendering code requires an additional tex-
ture look-up for implementing the transfer function and ac-
cumulates more samples per fragment in the case of semi-
transparent materials. This latter fact is also reflected in the
higher texture memory needs of semitransparent volume ren-
dering, caused by the decreased effectiveness of visibility
culling. During the entire inspection sequences, the resident
set size of the application is maintained within the 600 MB
of pre-allocated cache size by the out-of-core data manage-
ment system. Both the isosurface and volume rendering se-
quences have a minimum texture memory occupation of about
475 octree bricks, corresponding to the first few frames with



8 Enrico Gobbetti et al.

(a) 2505 blocks without occlusion

culling, 1334 blocks with occlusion

culling

(b) 2455 blocks without occlusion

culling, 1038 blocks with occlusion

culling

Fig. 8 Occlusion culling feedback. Direct volume rendering images
with different transfer functions, rendered on a 1024× 1024 window.
Visibility culling reduces the working set by about 50% in the semi-
transparent case, and by about 60% when surfaces get more opaque.

a view from a distance. However, the isosurface rendering
sequence had an average memory occupation of 1560 bricks
and a peak of 1820, while the direct volume rendering se-
quence had a average memory occupation of 1890 bricks
and a peak of 2450.

The occlusion query mechanism has proved to be able to
reduce the size of the working set, especially when using
isosurface rendering or transfer functions with moderate to
high opacity. A simple illustration of the benefits of visibil-
ity feedback is given in figure 8, which shows two direct vol-
ume rendering images with different transfer functions, ren-
dered on a 1024× 1024 window. Visibility culling reduces
the working set by about 50% in the semitransparent case,
and by about 60% when surfaces get more opaque.

8 Conclusions

We have presented an adaptive out-of-core technique for ren-
dering massive scalar datasets within a single-pass GPU ray-
casting framework. The method separates the adaptive incre-
mental maintenance of the rendering working set, which is
performed on the CPU, from the actual rendering, which is
fully performed on the GPU by a stackless raycaster that tra-
verses a spatially indexed version of the current working set
maintained in texture memory. Our results demonstrate that
the resulting method is able to interactively explore giga-
voxel datasets on a desktop PC. Besides optimizing and im-
proving the proof-of-concept implementation, we plan to ex-
tend the presented approach in a number of ways. In particu-
lar, we are currently working on incorporating compression
in the GPU representation to reduce GPU memory costs, as
well as techniques to further reduce the working set through
a more aggressive visibility culling based on tighter bound-
ing volumes. We are also exploring ways to exploit the ca-
pability of our system to perform a full-volume raytacing
to produce higher quality images that incorporate more ad-
vanced shading effects.

Acknowledgments. This work is partially supported by the Italian

Ministry of Research under the CYBERSAR project and by the EU

Marie Curie Program under the 3DANATOMICALHUMAN project

(MRTN-CT-2006-035763).

References

1. Bittner, J., Wimmer, M., Piringer, H., Purgathofer, W.: Coher-
ent hierarchical culling: Hardware occlusion queries made useful.
Computer Graphics Forum 23(3), 615–624 (2004)

2. Boada, I., Navazo, I., Scopigno, R.: Multiresolution volume visu-
alization with a texture-based octree. The Visual Computer 17(3),
185–197 (2001)

3. Bruckner, S., Gröller, M.E.: Style transfer functions for illustra-
tive volume rendering. Computer Graphics Forum 26(3), 715–724
(2007)

4. Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., Weiskopf,
D.: Real-time Volume Graphics. AK-Peters (2006)

5. Govindaraju, N.K., Sud, A., Yoon, S.E., Manocha, D.: Interac-
tive visibility culling in complex environments using occlusion-
switches. In: 2003 ACM Symposium on Interactive 3D Graphics,
pp. 103–112 (2003)

6. Guthe, S., Strasser, W.: Advanced techniques for high quality mul-
tiresolution volume rendering. Computers & Graphics 28, 51–?58
(2004)

7. Havran, V., Bittner, J., Sára, J.: Ray tracing with rope trees. In:
L.S. Kalos (ed.) 14th Spring Conference on Computer Graphics,
pp. 130–140 (1998)

8. Hong, W., Qiu, F., Kaufman, A.: Gpu-based object-order ray-
casting for large datasets. In: Eurographics / IEEE VGTC Work-
shop on Volume Graphics, pp. 177–186 (2005)

9. Kaehler, R., Wise, J., Abel, T., Hege, H.C.: Gpu-assisted raycast-
ing for cosmological adaptive mesh refinement simulations. In:
Eurographics / IEEE VGTC Workshop on Volume Graphics, pp.
103–110 (2006)

10. Kraus, M., Ertl, T.: Adaptive texture maps. In: Graphics Hardware
2002, pp. 7–16 (2002)

11. Krueger, J., Westermann, R.: Acceleration techniques for GPU-
based volume rendering. In: Proc. Visualization, pp. 287–292
(2003)

12. LaMar, E.C., Hamann, B., Joy, K.I.: Multiresolution techniques
for interactive texture-based volume visualization. In: IEEE Visu-
alization ’99, pp. 355–362 (1999)

13. Lefebvre, S., Hornus, S., Neyret, F.: Octree Textures on the GPU,
pp. 595–613. Addison-Wesley (2005)

14. Li, W., Mueller, K., Kaufman, A.: Empty space skipping and oc-
clusion clipping for texture-based volume rendering. In: VIS ’03:
Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 42.
IEEE Computer Society, Washington, DC, USA (2003)

15. Ljung, P.: Adaptive sampling in single pass, gpu-based raycast-
ing of multiresolution volumes. In: Eurographics / IEEE VGTC
Workshop on Volume Graphics, pp. 39–46 (2006)

16. Popov, S., Günther, J., Seidel, H.P., Slusallek, P.: Stackless kd-
tree traversal for high performance gpu ray tracing. Computer
Graphics Forum 26(3), 415–424 (2007)

17. Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart
hardware-accelerated volume rendering. In: Proc. VISSYM, pp.
231–238 (2003)

18. Scharsach, H.: Advanced GPU raycasting. In: Proceedings of the
9th Central European Seminar on Computer Graphics, p. 69?76
(2005)

19. Stegmaier, S., Strengert, M., Klein, T., Ertl, T.: A simple and flex-
ible volume rendering framework for graphics-hardware-based
raycasting. In: Eurographics/IEEE VGTC Workshop on Volume
Graphics, pp. 187–195 (2005)

20. Vollrath, J.E., Schafhitzel, T., Ertl, T.: Employing complex gpu
data structures for the interactive visualization of adaptive mesh
refinement data. In: Eurographics / IEEE VGTC Workshop on
Volume Graphics, pp. 55–58 (2006)

21. Wilhelms, J., Gelder, A.V.: Octrees for faster isosurface genera-
tion. ACM Transactions on Graphics 11(3), 201–227 (1992)


