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Abstract

This paper is devoted to premixed combustion modelling in turbulent flow.
First, we briefly give the main features of the SSTF model and its shortcom-
ings, more extensively developped in a former paper. Then, we carefully de-
scribe some improvement of the model. The turbulent flame velocity is based
on the observed self-similarity of the turbulent flame and uses the local flame
brush width as a fundamental parameter, which must be retreived. We derive
more rigorously the way density variations have to be taken into account in
the width retreiving fuction. We reformulate the diffusion term as a classical
flux divergence. We enforce the compatibility of the model for the limit of
small turbulence. We include a contracting effect of the source term, allowing
to give a stationnary monodimensional asymptotic solution with finite width.
We also include in a preliminary form, a stretch factor, which proves to be
useful for controling the flame behaviour close to the flame holder and near
the walls. The model implementation in the StarCD CFD code is then tested
on three different flame configuration. Finally we shortly discuss the model
improvements and the simulation results.
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1 Introduction

This paper is dedicated to a proper extension, taking into account addi-

tional features, of the Self Similar Turbulent Flame (SSTF) model to multi-

dimensional cases, its integration for CFD analysis and its validation, in the

framework of premixed turbulent combustion. We use the same formalism as

for the Turbulent Flame Closure (TFC) model [1] and use the same structure

of the mean progress variable equation c̃. The model construction is therefore

reduced to the finding of an appropriate propagation velocity and a suitable

diffusion-like term. Lipatnikov and Chomiak [2], from an extensive analysis

of experimental data, have clearly put in evidence that the flame brush has

a strong self-similarity property as a function of the mean progress variable.

The model proposed is constructed on this property. In fact, we invert the

classical approach in which the self-similarity is checked a posteriori to vali-

date the model. The SSTF model main peculiarity is the introduction of the

flame brush width as a fundamental parameter of the problem and the demon-

stration that it can be effectively used. Nevertheless, the former version of the

model had two major drawbacks. First, the effect of the density variation due

to the temperature was taken into account on a completely empirical manner.

Second, the velocity-based diffusion term was not by force of integral zero,

which is a rather large drawback for a diffusion term. In the following, we

show how we solve this two defects. Then we introduce a contracting effect of

the source term, enforcing the model compatibility with an asymptotical sta-

tionary mono-dimensional flame brush behaviour with finite width. We also

modify the source term to have a consistent behaviour in the limit of small

turbulence and introduce a strech factor which helps control some flash-back

phenomena (be it of numerical, modelling or physical nature) near the flame

holder and close to the walls.

2 Modelling Basis

We present here shortly the basis at the origin of the SSTF model.

In premixed turbulent combustion, the turbulent flame brush exhibits

strong self-similarity features [2]. It is now known to be locally made of

a highly corrugated flamelet sheet. In our study, we will suppose that the

flame brush characteristics depend on the unstrained laminar flamelet pa-

rameters, on the turbulence parameters and eventually on time. We will use

the “l” subscript for the laminar flamelet parameters and the “t” suscript

for the turbubent brush parameters. For turbulence, the self-similarity pa-

rameter, according to Kolmogorov’s theory is the energy dissipation ǫ. Lami-



CRS4 3

nar flamelets gives small scale parameters and should not influence the flame

brush self-similarity dimensionality. Moreover, we hope (and will suppose)

that the laminar flamelet behaviour will influence the flame brush charac-

teristics only through one unique combination of fundamental parameters.

Therefore, ǫt =
U3

t
δt

, where Ut and δt are the flame brush velocity and width,

is a good a priori choice. It is associated with the laminar flamelet parameter

ǫl =
S3

l
δl

=
S4

l
χ where Sl is the laminar flame speed, δl, its width and χ the gas

diffusion. If ǫt is a self-similar parameter, then one of its simpliest functional

dependence on turbulence and laminar flamelet parameters is the following:

ǫt = ǫa · ǫ1−a
l . (1)

There is no explicit time dependance in the former expression because the self-

similarity property is time invariant. We expect the coefficient a to be close to
1
2 for various reasons given elsewhere [3], so from now on, we consider a = 1

2 .

The flame brush has a very clearly defined front. Its width is therefore better

described by the distance δt between the boundary rather than by the mean

dispertion. Clearly, thanks to the self similarity property, the two approaches

give proportional results. So, we will address the brush width evolution having

in mind the evolution of its forward and backward fronts. By analogy with

classical turbulent diffusion propagation with front, we will consider that the

enlargement speed is proportional to the turbulent pulsation. As the width

seems to be convected by the combined effect of the main flow and of the

brush velocity, we arrive to the following simbolic representation:

∂tδt + (u + Ut · n) · ∇δt = u′, (2)

where u′ is the turbulent velocity pulsation and Ut · n the brush velocity.

In synthesis, our model is:

ǫt = ǫ0.5 · ǫ0.5
l , (3)

∂tδt + (u + Ut · n) · ∇δt = u′. (4)

We note that, in the case of anchored flames, the modulus of the convect-

ing velocity decreases with increasing brush velocity. Therefore, for a given

distance from the flame holder, the brush has more time to increase. The

model predicts therefore an increase of the brush width when the flame brush

velocity increases.

To implement this model in a CFD code, one must be able to evaluate

locally δt. This is done using the self-similarity of the flame brush and choosing

a reasonable shape. The local value of δt can in this way be retrieved from the

local value of c̃ and |∇c̃|. In effect, stating the self-similarity of the flame is
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saying : c = f(x/δ) and by differentiation δ =
f ′(x/δ)

∂xc
. This last expression

is then adapted to multidimensional cases. The function f is chosen a priori.

As the brush width is retreived from the progress variable, we do not use its

equation. The behaviour described by equation 4 can be implemented through

the introduction in the mean progress variable equation of a diffusion velocity

Udiff whose value depends on c̃ and compatibly with the shape choice. To

be compatible with equation 4, we take Udiff = f−1(c̃)u′. The second order

classical diffusion term of the c̃-equation is then replaced by ρUdiff |∇c̃|.
This methodology allows in principle to generate a diffusion region with a

finite front velocity. And this velocity can be made dependent on the diffusion

layer width.

Two order one constants A and B are introduced in the CFD model to fit

the experiment. Finally, we have:

Ut = Aδ
1

3

t ǫ
1

6 · ǫ
1

6

l , (5)

“[∇ · Dt∇c̃]′′ = BρUdiff |∇c̃|. (6)

The mean progress variable equation that was implemented is therefore:

∂tρ̄c̃ + ∇ · ρ̄ũc̃ = BρUdiff |∇c̃| + ρuUt|∇c̃|. (7)

From a practical point of view, we have used the following function family to

get back the brush width:

δ = [

√
ρuρb

ρ̄
]a

[c̃(1 − c̃)]b

|∇c̃| (8)

with a and b between 0.5 and 1.

This modelling has been implemented in the Star-CD commercial CFD

software through user routine programming and numerical results have been

presented in [3].

Nevertheless, the RHS term in equation 6 is not satisfying because it is

not a pure diffusion term, not being by force of null integral. Moreover, the

arbitrariness of the”δ” retrieving function is really excessive, mainly for what

concerns the density dependency.

3 Modelling improvement

3.1 Basics

The original unclosed progress variable equation reads:
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∂tρc + ∇ · ρũc̃ = Ṡ −∇ · ρũ”c” (9)

takink into account that ρbc̄ = ρ̄c̃, where ρb is the (constant) density of the

burned mixture, and defining S by ρbS = Ṡ−ρũ”c”, equation 9 can rewritten

as:

∂tc̄ + ∇ · (ũc̄) = S. (10)

Taking into account that c̃ is function of ρ, one can combine the mass equation

and equation 9 to eliminate the time derivative term. One gets:

∇ · ũ = (1 − ρb

ρu
)S. (11)

To address the density consistency problem, we now turn to the classical

mono-dimensional case for which equation 11 can be integrated, giving:

ũ = u0 + (1 − ρb

ρu
)

∫ x

−∞
S. (12)

We seach a self-similar solution for which S has the functional form:

S = u0∂xF (c̄, δ) (13)

where δ is a non better defined length depending only on time and having

vocation to become the self-similarity parameter.

Inserting equation 13 in equation 10, one gets after some algebra:

∂tc̄ + u0∂x(c̄ − ρ̄
ρu

F (c̄, δ)) = 0. (14)

We need to separate the functional dependances in c̄ and δ, that is:

c̄ − ρ̄
ρu

F (c̄, δ)) = H(δ)G(c̄). (15)

This can be done taking:

F (c̄, δ)) =
ρu

ρ̄
[c̄ − u1

u0
H(δ)G(c̄)]. (16)

Noting g the derivative of G (g = G′), we have:

∂tc̄ + u1H(δ)g(c̄)∂xc̄ = 0. (17)
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This last equation has a self-similar solution whose profile is the inverse of the

function g.

Turning back to the original source term, with some additional algebra,

we get for the monodimensional case:

Ṡ −∇ · ρũ”c” = ρuu0∂xc̃ − u1H(δ)∂x[
ρuρb

ρ̄
G(c̄)]. (18)

As usual, we must stress the fact that there is no a priori one to one cor-

rispondance between the tho left hand side and the two right hand side terms.

Nevertheless, in the following will report the first RHS term as the ”source”

term Σ, and the second one as the ”diffusion” term D.

A reasonable extension of the source term to the multidimensional case is:

Σ = ρuUt|∇c̃| (19)

= −ρuUtn · ∇c̃ (20)

where Ut is now the turbulent burning velocity and n is the normal vector

defined by n = − ∇c̃
|∇c̃| .

The function G is defined up to a constant. If we add a constant to G, as
1
ρ̄ is proportional to c̃, the constant part can be moved to the first RHS term

in equation 18. Doing this, we are just stating that Ut can be dependent on

δ.

In a former version of the SSTF model, the diffusion term was velocity

based and was written as a classical convective transport term. Here, we will

rewrite the monodimensional diffusion term such as to make naturally appear

a divergence term more classical and natural for a diffusion effect. We have:

D = −u1H(δ)∂x[
ρuρb

ρ̄
G(c̄)] (21)

= ∂x[u1H(δ)
ρuρb

ρ̄
G(c̄)n]. (22)

Here, n = −1 is the normal to the front for a fresh mixture at x negative:

n = − ∂xc̃
|∂xc̃| or n = − ∂xc̄

|∂xc̄| . In the turbulence context, the velocity u1

should be strongly linked to the turbulent velocity pulsation u′ and we have

the following natural extension:

D = ∇ · [u′H(δ)
ρuρb

ρ̄
G(c̄)n]. (23)
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An intersting particular case is when H(δ) = L
δ

where L is proportional to

the integral length scale. Recalling that δ = 1
g′(c̄)|∇c̄| , we have:

D = ∇ · [u′Lg′(c̄)G(c̄)
ρuρb

ρ̄
∇c̄]

= ∇ · [u′Lg′(c̄)G(c̄)ρ̄∇c̃]

= ∇ · [Dtg
′(c̄)G(c̄)ρ̄∇c̃] (24)

where Dt is proportional to the turbulent diffusion.

This means that when the profile is based on the error function ( primitive

of a Gaussian), then g′G is constant. This is possible only if G(0) = 0.

For other reasonable profiles, to have Dt bounded, it is necessary (but not

sufficient) to have G(0) = 0. Consistently with the possible dependance of Ut

on δ, we will now on always consider that G(0) = 0.

Equation 24 shows that our diffusion term is both i) a generalisation of the

classical diffusion term because it is not restricted to the error function profile

and to only one temporal behaviour, and also ii) a restriction of the classical

diffusion term because it applies, as is, only to normalized front profiles.

One can remark that, while the progress variable equation is stated in

term of the Favre variable, that is a mean weigthed by density, the profile is

naturally set in term of the Reynolds variable, that is a mean weighted by

the volume. This is more consistent with the feeling that diffusion is funda-

mentally an exchange of volumes with different concentrations. It is also clear

that for self-similar profiles of finite length, if the c̃−profile is symmetrical,

then the c̄− profile is not, and reciprocally. We will focus our attention to

profiles which are symmetrical in term of the Reynolds variable.

In light of these considerations, we give an updated general representation

form for the diffusion term:

D = ∇ · [Dt
H(δ)G(c̄)

L|∇c̄| ρ̄∇c̃] (25)

and if we introduce the turbulent flame Prandtl number

σ = − L|∇c̄|
H(δ)G(c̄)

=
L

δH(δ)g′(c̄)G(c̄)
(26)

we revert to the classical form

D = −∇ · [Dt

σ
ρ̄∇c̃]. (27)

Now, we are faced with the problem of choosing a reasonable and practical

profile. By reasonable, we mean quite regular (at least continuous derivative),

monotonous, with only one inflexion point having a non zero finite slope. By
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x ∈ [−π
2
, π

2
] [−1, 1] ] −∞, +∞[ ] −∞, +∞[

f sin(x)+1
2

1+x
√

2−x2

2
ex

1+ex
1+erf(x)

2

g arcsin(2c − 1) c0.5 − (1 − c)0.5 ln( c
1 − c) −

g′ 1√
c(1 − c)

c−0.5 + (1 − c)−0.5

2
1

c(1 − c)
−

G −
√

c(1 − c) 2
3
[c1.5 + (1 − c)1.5 − 1] c ln c −

+
(2c−1) arcsin(2c−1)−π

2

2
+(1 − c) ln(1 − c)

g′G 1 −1
3

√
c(1 − c) c ln c+(1−c) ln(1−c)

c(1−c)
−C1

+
(2c−1) arcsin(2c−1)−π

2

2
√

c(1−c)
×[2 − 1

(1+c0.5)(1+(1−c)0.5)
]

g′G(0) 0 0 −∞ −C1

g′G(0.5) 1 − π
2 −1+

√
2

6
−4 ln 2 −C1

Table 1: Tentative profile functions f with their inverse g, the primitive G and the
derivative g′ of the inverse. The exact value of C1 is yet unknown but is strictly
positive (about 1) and finite.

practical, we mean explicite, with explicite inverse (g) and explicite primitive

of the inverse (G).

In table 1, we can see that if we want to have a non-standart self-similar

evolution of the profile, we just do not know how to do it easily for an error

function based profile. The exponential profile would have been an optimum

candidate because it has the great property that the Reynolds and Favre pro-

files are identical, just shifted one from the other. Unfortunately, it gives for

the standart diffusion time behaviour a diffusion coefficient that goes to infin-

ity for c = 0 and c = 1. The sinusoidal and square root based profiles are both

relatively acceptable. The square root based profile has the slight advantage

that the product −g′G can be put in a form that avoids indetermined ratio

which always need to be carefully treated numerically. A minor drawback of

these two profiles is that they are only C1, because their curvature is discon-

tinuous at c = 0 and c = 1. Looking forward to improve this regularity, we

can see that if g′ behaves like c1/n−1 close to c = 0, then profile regularity is

Cn−1. This constatation naturally leads to consider a profile such that:

g(c) = N(n)[c1/n − (1 − c)1/n] (28)

where the parameter n is greater than 2 and N(n) is a normalisation factor

such that −g′G(1/2) = 1. That is:

N(n) =

√
n + 1

2
√

0.51/n − 0.52/n
. (29)
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n 1 2 3 4 5 6
δslope

δbound
1 0.71 0.53 0.42 0.35 0.30

Table 2: Ratio ot the length based on the maximum slope to the length based on
distance between the boundaries for different values of the parameter n

.

The case n = 2 is the one given in table 1. For n greater than 2, their is no

practical explicite profile anymore. But, as the profile f is never explicitely

used, it does not give rise to practical implementation problems.

Looking at the funcion −g′G for different values of n, we can see that

between n = 2 and n = 6, it looks very much like the function [c(1 − c)]1/n,

seemingly tending to a flat profile for larger n. Unfortunately, for n = 7

and greater, the maximum is no more in c = 0.5 and the shape is no more

convenient. This restrict the field of interesting values for n to integers (for

convenience) between 2 and 6; or, if we want a continuous curvature, between

3 and 6. To help making this choice, we can look at the ratio between the

length given by the effective width of the profile and the length based on the

profile derivative in x = 0 or c = 0.5 for different n. These ratio are given in

table 2.

δbound = g(1) − g(0) =
√

n + 1[0.51/n − 0.52/n] (30)

δslope = g′(0.5) = 21−1/n

√
n + 1
n

[0.51/n − 0.52/n] (31)

gives

δslope =
21−1/n

n
δbound. (32)

In the following will consider n = 3, which is the minimum integer giving

a continuous curvature and giving a length ratio about 0.5 which seems rea-

sonable. Higher values of n lead to stiffer functions maybe more difficult to

handle while not giving consistant improvements.

3.2 Short time/width behaviour

We still have to decide on the shape of the function H(δ). From the standart

turbulent diffusion theory, we have that a sharp front should enlarge at con-

stant speed, while a diffuse front has an enlargement rate proportional to the

inverse of its width. Taking the turbulent lenght scale as the reference scale,

this means:

H(δ) ∼ 1 for δ ≪ L (33)

H(δ) ∼ L

δ
for δ > L. (34)
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This behaviour can be reproduced just by setting:

H(δ) =
1√

1 + ( δ
L)2

. (35)

Numerically, it is implemented using a ”switch” parameter, say ”Ini” (for

Initial), with value one (on) or zero (off) and writting:

H(δ) =
1√

1 + Ini · ( δ
L)2

. (36)

3.3 Contracting effect of the source term

In the specific case of reactive flows, the turbulent flame brush can be asked

to have a maximum width due to a slight contractive effect of the real source

term. For exemple, one can consider that the complessive contracting effect

of the real source term is proportional both to Sl and to δ, or alternatively,

proportional to Sl and independent of δ, remembering that this effect may

not be perceived for a brush width of order L. As the complessive turbulent

diffusion effect scales like Dt/δ, the combined diffusion term should go to zero

when Sl(δ/L)a, with a = 1 or a = 0, is of order Dt/δ, and this independently

of the modeling of the purely convective part by Ut of the source. Modelling

separately the contracting effect of the real source term, for consistency, we

should rewrite equation 23 and following with Sl instead of u′ and with H(δ) =

(δ/L)a:

Cont = ∇ · [Sl
δaG(c̄)

La|∇c̄| ρ̄∇c̃] (37)

or

Cont = ∇ · [Cf ρ̄∇c̃] (38)

Cf =
Slδ

1+ag′(c̄)G(c̄)
La (39)

defining in this way the ”flame contraction coefficient” Cf .

In the end, the turbulent flame diffusion coefficient Df is:

Df =
Dt

σ
− Cf . (40)

The turbulent diffusion Dt is proportional to the turbulent viscosity, both

being related through the Schmidt number Sch which value for reacting scalars

is usually taken to Sch = 0.7. As our treatment (even without contracting

term) essentially lowers the turbulent diffusion value, but was not intended to
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modify its mean value, we take Sch = 0.6 to approximately compensate this

effect.

Solving Df = 0 in equation 40, we get the asymptotic brush width δ∞ and

the asymptotic flame brush velocity Uf∞. Considering H(δ) = L/δ for the

diffusion term, the result is:

δ∞ = L(u′/Sl)
1/(1+a) (41)

Uf∞ = u′(Sl/u
′)(3a+1)/6(1+a)(L/δl)

1/6. (42)

This last expression can be expressed in term of the traditional adimen-

sional numbers, the turbulent Reynolds number Ret = u′L
Slδl

, the Damköhler

number Da = L/u′

δl/Sl
and the Karlovitz number Ka = (u′

Sl
)2Re−1/2.

Uf∞ = u′Da(2a+1)/6(1+a)Re
−a/6(1+a)
t = u′Da1/6Ka−a/3(1+a). (43)

To keep a small contribution for the contractive term even for brush widths

somewhat greater than the turbulent length scale, we will consider a = 0 in

the following. That is:

Cf = Slδg
′(c̄)G(c̄) (44)

δ∞ = L(u′/Sl) (45)

Uf∞ = u′(Sl/u
′)1/6(L/δl)

1/6 = u′Da1/6. (46)

Note that these last considerations have generaly no practical effect on

real flame modelling because there are apparently no known existing highly

turbulent flame wide enough to critically feel the contracting effect. By the

way, for a pure theoretical point of view, we provide the model with a station-

ary monodimentional solution. Moreover, we also get a sound limit both for

δ and Uf , for exemple when the profile is highly disturbed close to the walls.

Another way to decide the asymptotic length, is to state that the asymp-

totic velocity is independent of the laminar flame properties, as in [4]. This

directly leads to the following formula:

δ∞ = L(ǫ/ǫl)
1/2 = (L · δl)

1/2(u′/Sl)
3/2 (47)

Uf∞ = u′. (48)

This formula looks sound only for high ratio ǫ/ǫl which in turn is not very

consistent with the idea of critical dissipation presented later on.

More generaly, the problem is that also Uf is likely to be also involved

in the mechanism creating the contraction. A better attention paid to the
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contractive effect is likely to lead to a different expression in a future model

improvement.

If, by chance, in an hypotetical case, the contracting effect is a relevant

feature, and due to changes in the turbulence parameters, the brush is larger

than the asymptotic limit, then the diffusion term becomes negative. In this

kind of cases, it may be wiser to incorporate the contracting effect into the

source term, using equation 22 with u1 = −Sl to get:

Cont = SlH(δ)ρuρb∂c̃
G(c̄)

ρ̄
|∇c̃|. (49)

In alternative, the contracting term can be split in two parts, one cancelling

the diffusion term setting the diffusion coefficient (close) to zero, and the

residual part added to the source term.

This approach, while not applied in this paper, shall be prefered for an

eventual extension of the model in the framework of Large Eddy Simulation

(LES). Moreover, requiring that the contractive effect scales naturally with

the LES filter size should help better define the contractive term.

3.4 Low Reynolds Asymptotic behaviour

The SSTF model is thought primarily for highly turbulent flows whose turbu-

lent pulsation is quite larger than the laminar flame velocity. And therefore,

as is, the model has not a correct behaviour when turbulence becomes arbi-

trarily small. A simple way to remedy is to simply add the Laminar flame

velocity to the turbulent part. To get eventually a smooth transition from one

regime to the other, or not to overestimate the flame brush velocity when the

laminar and the turbulent velocities are about the same, we combine both ve-

locity through some exponent α to define the Low Reynolds turbulent Flame

velocity in the following form:

UfLR = (Uα
f + Sα

l )1/α. (50)

with α a priori close to the intervalle [1, 2].

For numerical implementation, here also we use a switch parameter, say

Lrab (from the subsection title), with value zero or one and writting:

UfLR = (Uα
f + Lrab · Sα

l )1/α. (51)

3.5 Wall treatment by quenching

For the mean progress variable, the boundary condition used in presence of a

solid wall is the no flux condition, that is a zero gradient normal to the wall.
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This condition is not satisfying because it is contradictory with the profile

shape. The result is that the brush width is highly overestimated close to the

walls and this may lead to the appearance, development and propagation of a

spurious flame along these walls. A simple way to eliminate this spurious flame

is to give an upper limit to the flame width. There are two relatively natural

limits for the flame width. The first comes from the eventual theoretical

estimation of the mono-dimensional stationary asyptotic width. The second,

much more prosaic, limit is to state that the brush width cannot be larger

than the available space. Anyway, whatever reasonable limiting criteria should

remove this problem without other effects on the simulation. In practice, this

procedure is not always sufficient to prevent the flame to rise back along the

wall. When the flow has time to develop, the turbulent dissipation tends to

be very high along the wall, several order higher than the dissipation in the

mean flow. Therefore, the flame burning velocity is also quite large there,

due to its functional dependency. Looking for a sound criteria to limit this

velocity, we found out that we neglected any possible stretch induced local

extinction effect. In [5], the problem has been treated introducing a critical

dissipation ǫcrit proportional to the flame dissipation ǫl with a quite large

proportionality coefficient. When the turbulent dissipation increases up to

order ǫcrit there is an increasing probability to have the flame locally quenched,

and therefore the flame velocity must be correspondingly damped. Following

the same argument, we will replace the turbulent dissipation by an effective

(or damped) turbulent dissipation ǫeff in the definition of the flame brush

velocity. We set:

ǫeff =
ǫ

(1 + ǫ2

ǫ2crit
)3/2

(52)

ǫcrit = B2 · 15ǫl (53)

(54)

with B about 2 from first preliminary simulations. The exponent 3/2 at the

denominator is chosen so that the perturbation acts at power 1/2 in the source

term. In case one uses the Low Reynolds variant, it is wiser to damp also the

laminar part.

The quite high coefficient (corresponding also to B = 2 in the cited paper)

can be justified by the extremely high intermittency of the real dissipation.

While for the applications shown hereafter, this features is used to get rid

of wall boundary problems, a closer attention in the future could give the

possibility to effectively simulate some flash-back phenomena.
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3.6 Source overshot

From the numerical point of view, the source term in the progress variable

equation is not a transport term and is not constrained by some maximum

principle. The result is that close to the burned flame brush boundary, mainly

when the brush is very sharp, the progress variable overcomes unity at the

end of each algorithm iteration. While the value is reset to unity at the be-

gining of each iteration, the profile is modified and reaches unity with a not

so small slope, leading to an apparent local brush width extremely sharp. As

the source term depends on the width, it is locally lowered by this mecha-

nism, and in some way the overshoot is self-controled. This may be however

a concern for the diffusion which goes to zero in the cell concerned, if one

uses the diffusion control for small brush width. One can limit the smalest

value of the apparent width, for example to the laminar flame width or the

the computational cell width. Some tests (not shown here) have shown that

there is no substantial change, except for the automatic scale displayed when

visualising the sharpness field (the inverse width field).

4 Numerical results

In the following, we show some simulation performed using the updated Self-

Similar Turbulent Flame (SSTF) model. The numerical test cases are the

same as the one presented for the preliminary version of the SSTF model.

The first series of simulation is based on a V-shaped flame and is compared

with visual experimental data given in [6]. The second test case is based on a

Volvo experimental facility. The flame is maintained by a central triangular

flame holder. The simulation is based on the one presented earlier and based

also on input data given in [7]. The third test case is the Moreau burner as

reported in [9] and [8].

Unless otherwise precised, the simulations have been performed with the

following parameters:

• g(c) = N(3)[c1/3 − (1 − c)1/3] ( that is n = 3 in equation 28)

• The width is defined by δ = 2
g′(c̄)|∇c̄| and is limited by the asymptotic

length

• H(δ) = L
δ that is 1

σ = g′(c̄)G(c̄) in equation 27

• a = 0 in equation 37, that is Cf = Slδg
′(c̄)G(c̄) and the contracting term

is effective

• α = 2 in equation 50, that is UfLR = (U2
f + S2

l )1/2.

• B = 2 in equation 54 and ǫeff is effectively used.
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• A = 0.6, in equation 6, that is Uf = 0.6δ1/3ǫ
1/3
l ǫ1/3

• In the end, the source term is: S = ρu(
S2

l
+0.72δ2/3ǫ

2/3

l
ǫ2/3

1+( ǫ
60ǫl

)2 )
1

2 |∇c̃|.

4.1 Turbulent premixed V-shaped flame

The SSTF model is compared with experimental data on an experimental test

case performed by F. Dinkelacker and S. Holzler and described in [6]. This

setup is neither really axial-symmetrical nor cartesian 2-dimensional. Differ-

ences in the simulations resulted to be quite marginal in former simulations

and we present only cartesian 2-D simulations. Note that the constants A anf

α of the SSTF model have been tuned precisely on this model. The model

gives very good results compared with the experimental results. It gives the

same global shape and the same tendency.

The mixture inlet is 2.5m/s in vertical at ambiant room temperature. The

laminar veocities used in the simulations are respectively 0.19, 0.10 and 0.04

m/s and are not expected to be very accurate. The diffusion coefficient is

taken equal to the air cinematic viscosity (Hypothesis of unit Lewis number),

that is 1.57E − 5m2/s.There is also a vertical co-flow at 0.5 m/s to avoid

strong lateral boundary effects.

The experimental results are showed in figure 1. It is not totally clear

what is the meaning of the figure, in terms of the calculated variable. Never-

theless, we will suppose that the apparent flame position is a good indicator

of the progress variable. When dealing with visual observation, the weight

averaging in the Favre-averaged progress is probably not taken into account.

The Reynolds averaged progress variable seems therefore more adapted for

confront, as is also considered in [6]. To evaluate the flame position, both

variables are essentially shifted one another of a not so small fraction of the

local brush width. In figure 2 and 3 we present the simulated profile respec-

tively of the the Reynolds and Favre progress variable. In figure 2, we show

the effect of the critical stress limitation which is almost non effective when

B=2 (RHS), but moves the flame anchoring from under the flameholder to

the lateral part of the flameholder when B=1 (LHS).

4.2 Volvo burner

This test case has been inspired from [7]. Parameters of the problem are: in-

let velocity 18m/s, turbulent intensity 3%, and length scale 8mm. Molecular

diffusivity 2.E−5m2/s, A = 0.7 laminar flame speed 0.743m/s. Inlet temper-

ature 600 K and burned temperature 1850 K. The flame holder is 4cm high

in a rectangular channel 12 cm high and 24 cm wide. The problem can be
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Figure 1: Experimental results: Soika, 1996; Dinkelacker, Holzler, Leipertz, 1999

Figure 2: V-shaped flame. From left to right, the mean Reynolds averaged progress
variable c̄ for φ = 0.7, φ = 0.58 and φ = 0.5. Parameters are: A=0.6 and B=2.
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Figure 3: V-shaped flame. From left to right, the mean Favre averaged progress
variable c̃ for φ = 0.7, φ = 0.58 and φ = 0.5. Parameters are: A=0.6 and B=2.

Figure 4: V-shaped flame. Mean Reynolds averaged progress variable c̄ for φ = 0.7
and A=0.6. On the LHS B=1 and on the RHS B=2.
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reasonably rappresented 2-dimensional. The simulated domain extends up to

60 cm from the flame holder. In figure5, we show the Favre averaged progress

variable in the given configuration (top) and with the parameter B changed

from 2 to 4 (bottom). The difference can be seen near the walls close to the

outlet. For the standard configuration, there is almost no flash-back effect,

while the flash-back effect can be clearly seen when the stretch effect has been

lowered.

Figure 5: Favre Progress Variable for the Volvo burner Simulation. Upper, standard
configuration, lower, parameter B controlling the stretch effect has been moved from
2 to 4.

The former parameters resulted, after control, unfit. The results should

be interpreted only as a technical demonstration of feasibility. In[7], the inlet

velocity is in fact about 34.1m/s and after control the diffusion coefficient

is taken as χ = 5.27E−5. But the simulation resulted unstable with large

oscillations and it was not possible to get a converged stationnary solution.

This is illustrated in figure 6. Note that the presence of large Von Karman like

vortices was noticed during the experiment as reported in [7]. So, it is normal

not to have any stationary solution in the RANS framework. A stationary

solution, obtained by simulating only one half of the domain wold be therefore

strongly misleading.

4.3 Moreau burner

The simulation of the Moreau burner is taken from [9] and [8]. The inlet

conditions are given in table 3. We used a laminar flame velocity of 1.15 m/s

and a molecular diffusivity of 5.27E − 5m2.s−1. The computational domain

is 100 mm high for 1300 mm long, with 12500 cells.
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Figure 6: Favre Progress Variable for the Volvo burner Simulation. Inlet velocity
34.1 m/s, turbulence intensity 10%, A = 0.6. Transient, non converged simulation.

phase T(K) ρ, kg.m−3 u (m/s) u’ (m/s) κ(m2.s−2) ǫ(m2.s−3) φ
burned 2240 0.1538 120 23 793 2.8E6 0.87

unburned 600 0.562 60 8 100 3.7E4 0.87

Table 3: Moreau burner test case. Inlet flow conditions for burned and unburned
mixture

In figure 7, we show the progress variable in the computational domain.

The top image has B = 1 while the bottom one has B = 2. The difference

is very small and is concentrated close to the inlets junction. For B = 1, the

combustion is slightly more delayed.

Figure 7: Moreau burner. TFC and standard κ − ǫ model. Progress variable. The
flows enter from the left. Computational model is 100 mm high and 1300 mm long.
Top picture, B = 1. Bottom picture, B = 2.
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5 Discussion

In [3], we have proposed a turbulent flame brush model based on the Kol-

mogorov theory of turbulence and and the concept of self-similarity. By using

a priori the concept of self-similarity of the flame brush width, we can retrieve

locally a correct estimation of the brush width. Considering the reverse of

the usual Taylor hypothesis on the equivalence of time and space dependence,

we have in fact given access to the time dependence for modelling. As a side

product, the self-similarity together with the access to the width allows to con-

struct diffusion terms with non classical behaviour. First, the diffusion front

can be made at finite velocity. Second, the diffusion can be made dependent

on the width. This can be useful for exemple to model the initial part of the

brush for which the standard diffusion theory gives a time dependence. These

features can be introduced modifying the diffusion coefficient in the standard

diffusion term. A drawback of the velocity based diffusion term was that, in

the form proposed in [3], it was not neutral for the global consumption rate.

Here, we have modified the form of the diffusion term so as to ensure that it

is a pure diffusion one and put in the usual divergence form. By the way, in

this paper, the alteration of the order of the diffusion term is not numerically

investigated.

Another problem linked with the former version of the SSTF model was

the effective width retrieving function. This function can be analytically found

for very simple configurations in which there is no density change no shear and

constant turbulent quantities. In this case, it depends on the expression used

for the diffusion velocity term. Most problematic, was the density dependence

that was implemented into the width retrieving function. This aspect is now

largely clarified and the arbitrariness has been removed in the current model

version.

The SSTF model has been derived mainly on the basis of the most sim-

ple assumption. A basic assumption is that the chemistry affects the model

through only one parameter. This parameter is the “energy dissipation” for

the SSTF model. In its original form, the SSTF model was not compatible

with three asymptotic cases i) first, when the turbulent pulsation becomes the

same order or smaller than the laminar flame velocity, ii) second, when the

turbulence is so high than the flamelet structure completely disappears and

iii) third, for the description of the academic stationary mono-dimensional

behaviour.

The first asymptotic case is simply treated by adding the laminar flame

velocity to the burning velocity through their square values, summing in fact

their ”energetical strength”. This introduces the laminar flame speed as a
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new chemical inependent parameter, which is against the basic asumption of

only one chemical parameter. For now, we have to accept this ”renuncement”.

The second asympotic case is treated through the introduction of a damping

multiplicator of the source term, function only of the turbulent and ”lami-

nar” energy dissipation. So, we are still consistent with the assumption of

only one parameter. The damping factor demonstrates to be very effective in

controlling some flash-back phenomena in the Volvo-burner simulation, and

the kind of attachment to the flame holder for the V-shaped flame. It de-

serves therefore much more attention and may be the object of future model

development. The third asymptotic case is treated through the inclusion of

a turbulent flame contracting (or anti-diffusive) effect. This effect is imbed-

ded in the diffusion term in such a way that the diffusion vanishes when the

asymptotic width is reached. Its implementation also helps to avoid absurd

unbounded flame velocities near walls or some other potential pathological

situation, in which a non trivial extrema or saddle-point (or ”saddle-line in

3D) or the progress variable may appear. In the current implementation, the

limiting width is based on an assumption which involves the appearance of

the laminar flame speed as another ”chemical” parameter, as for the first case.

A greater care should be dedicated to this aspect and there are foreseenable

changes in future model development.

There is still margin improvements for modelling into at least two direc-

tions:

• The damping of the diffusion when the brush width is very small is not

yet tested. This has a direct effect on the local flame velocity because

the flame brush erroneously enlarges too fast in the vicinicity of the

flame holder or anchoring point. This aspect is of secondary importance

for the evaluation of a priori stable flames (with no risk of blow-off).

Nevertheless, it may become a critical point if we want to have some

evaluation of the blow-off behaviour when it is linked to the detachment

of the flame from the flame holder.

• The contracting effect of the turbulent flame must be generalized to per-

form even when it is greater than the turbulent diffusion. This is mainly

a technical problem linked to the fact that the diffusion term in the CFD

algorithm must absolutely be with a non-negative diffusion coefficient.

Having a both way controlling term; that is a term able to effectively re-

contract the brush width seems to be an essential prerequisite to design

a LES version of the model.

In [3], the fitting for the three cases considered lead to the parameter
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A ranging from 0.5 to 0.9. The rationals and the improvements given to

the model allow to perform again all the simulations with always the same

constant A = 0.6.

6 Conclusion

We have included some improvements in a turbulent flame brush model based

on self-similarity, simplechemistry coupling and Kolmogorov turbulent theory.

The improved model has been implemented in the Star-CD commercial soft-

ware and tested on three simulations where it gives very satisfying results.

In this model, we consider that the brush width is a fundamental parameter

which must be retreived. The density variation is now consistently taken into

account, both in the width retreiving function and in the dissipation term.

Several modifications have been included to be consistent with at least three

asymptotic behaviours. The fitting constant A controling the local brush

speed seems to be much less case dependent than in the former version of the

model.
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