
Group recommendation with automatic identification of users communities

Ludovico Boratto, Salvatore Carta
Dipartimento di Matematica e Informatica

Università di Cagliari
Italy

boratto@sc.unica.it, salvatore@unica.it

Alessandro Chessa
Dipartimento di Fisica
Università di Cagliari

Italy
alessandro.chessa@dsf.unica.it

Maurizio Agelli, M. Laura Clemente
CRS4
Italy

agelli@crs4.it, clem@crs4.it

Abstract—Recommender systems usually propose items to
single users. However, in some domains like Mobile IPTV or
Satellite Systems it might be impossible to generate a program
schedule for each user, because of bandwidth limitations.

A few approaches were proposed to generate group recom-
mendations. However, these approaches take into account that
groups of users already exist and no recommender system is
able to detect intrinsic users communities.

This paper describes an algorithm that detects groups of
users whose preferences are similar and predicts recommen-
dations for such groups. Groups of different granularities are
generated through a modularity-based Community Detection
algorithm, making it possible for a content provider to explore
the trade off between the level of personalization of the recom-
mendations and the number of channels. Experimental results
show that the quality of group recommendations increases
linearly with the number of groups created.

Keywords-recommender systems, collaborative filtering, com-
munity detection

I. INTRODUCTION

Recommender systems aim to provide information items
(web pages, books, movies, music, etc.) that are likely of
interest to a user [10]. Collaborative Filtering (CF) [10]
is by far the most successful recommendation technique.
The main idea of CF systems is to use the opinions of
a community, in order to provide item recommendations.
Usually CF systems use these opinions to recommend items
to single users.

There are contexts and domains where, however, classic
CF systems cannot be used. For example, in multiple access
systems with limited transmission capacity like Mobile IPTV
or Satellite Systems, it might not be possible to create
personalized program schedules for each user. Group rec-
ommendations have already been studied from several per-
spectives. Issues that arise with group modeling have been
studied by [7], [5] and in [5] the state-of-the-art in group
recommendation is also presented, by doing an overview of
the existing techniques, developed for different domains like
web/news pages, tourist attractions, music tracks, television
programs and movies. These approaches take all for granted
the presence of groups of users with similar opinions. How-
ever, usually there’s no a priori knowledge about the users
partition in groups and, in such cases, the problem relies in

identifying groups of related users. Automatic detection of
communities in group recommenders is not a trivial issue,
since communities have to be found just considering users
opinions. Moreover, meaningful informations about groups
preferences have to be retrieved and exploited, in order to
provide good recommendations.

In this paper we propose an algorithm to generate group
recommendations, able to detect intrinsic communities of
users whose preferences are similar. The algorithm takes
as input a matrix that associates a set of users to a set of
items through a rating. We’ll call this matrix the ratings
matrix. Based on ratings expressed by each user in the
ratings matrix, our algorithm evaluates the level of simi-
larity between users and generates a network that contains
the similarities. A modularity-based Community Detection
algorithm proposed by [1] will be run on the network, in
order to find partitions of users in communities. For each
community, ratings for all the items will be calculated.

Since the Community Detection algorithm is able to
produce a dendrogram, i.e. a tree that contains hierarchical
partitions of the users in communities of increasing granu-
larity, experiments were conducted in order to evaluate the
quality of the recommendation for the different partitions.
Results show that the quality of group recommendations
increases linearly with the number of communities created.

The scientific contribution of the recommendation al-
gorithm proposed is the capability to automatically detect
intrinsic communities of users who share similar prefer-
ences, making it possible for a content provider to explore
the trade off between the level of personalization of the
recommendation and the number of channels.

The rest of the paper is organized in the following way:
section II contains a detailed description of the steps we
followed to build our algorithm; section III describes the
experiments we conducted and outlines main results; section
IV contains comments and future developments.

II. GROUP RECOMMENDATION WITH AUTOMATIC
IDENTIFICATION OF USERS COMMUNITIES

A. Top level view of the algorithm

The proposed group recommendation algorithm works in
four steps:

2009 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.346

543

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.346

543

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.346

547

2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.346

547

1) Users similarity evaluation: In order to create commu-
nities of users, the algorithm takes as input a ratings matrix
and evaluates through a standard metric (cosine similarity)
how similar the preferences of two users are. The result is
a weighted network where nodes represent users and each
weighted edge represents the similarity value of the users it
connects. A post-processing technique is then introduced to
remove noise from the network and reduce its complexity.

2) Communities detection: To identify intrinsic commu-
nities of users, a Community Detection algorithm proposed
by [1] is applied to the users similarity network and
partitions of different granularities are generated.

3) Ratings prediction for items rated by enough users of
a group: A group’s ratings are evaluated by calculating, for
each item, the mean of the ratings expressed by the users
of the group. In order to predict meaningful ratings, our
algorithm calculates a rating only if an item was evaluated by
a minimum percentage of users in the group. With this step
it is not possible to predict a rating for each item, so another
step has been created to predict the remaining ratings.

4) Ratings prediction for the remaining items: For some
of the items, ratings could not be calculated by the previous
step. In order to estimate such ratings, similarity between
items is evaluated, and the rating of an item is predicted
considering the items most similar to it.

The next sections will describe in detail the four steps that
constitute the algorithm.

B. Step 1. Users similarity evaluation

Here we describe how a ratings matrix can be used to
evaluate the strength of the similarity between users.

Let vi be the vector of the ratings expressed by a user i
for the items and vj be the vector of the ratings expressed
by a user j for the items. The similarity sij between user i
and user j can be measured by the cosine similarity between
the vectors:

sij = cos(vi, vj) =
vi · vj

‖vi‖ × ‖vj‖
The similarities can be represented in a network, the users

similarity network, that links each couple of associated users
with a weighted edge.

As highlighted by [4], in networks like the one we built,
edges have intrinsic weights and no information is given
about the real associations between the nodes. Edges are
usually affected by noise, which leads to ambiguities in the
communities detection. Moreover, the weights of the edges
in our network are calculated considering the ratings and it
is well known that people have different rating tendencies:
some users tend to express their opinion using just the end
of the scales, expressing if they loved or hated an item.
In order to eliminate noise from the network and reduce
its complexity by removing weak edges, a parameter called
noise was set in our algorithm. The parameter will indicate
the weight that will be subtracted by every edge.

C. Step 2. Communities Detection

This step of our algorithm has the goal to find intrinsic
communities of users, accepting as input the weighted
users similarity network that was built in the previous
step. Another requirement is to produce the intrinsic users
communities in a hierarchical structure, in order to deeper
understand and exploit its inner partition. Out of all the
existing classes of clustering algorithms, we identified the
class the of complex network analysis [3] as the only class
of algorithms fulfilling our requirements. In 2004 a new
optimization function has been introduced, the modularity
[8], that measures for a generic partition of the set of nodes
in the network, the number of internal (in each partition)
edges respect to the random case. The optimization of
this function gives, without a previous assessment of the
number and size of the partitions [3], the natural community
structure of the network. Moreover it is not necessary to
embed the network in a metric space like in the k-means
algorithm. A notion of distance or link weight can be
introduced but in a pure topological fashion [9].

Recently a very efficient algorithm has been proposed,
based on the optimization of the weighted modularity, that
is able to easily handle networks with millions of nodes,
generating also a dendrogram; a community structure at
various network resolutions [1]. Since the algorithm had
all the characteristics we were looking for, it was chosen to
create the groups of users used by our group recommenda-
tion algorithm.

D. Step 3. Ratings prediction for items rated by enough
users of a group

In order to express a group’s preference for an item,
our algorithm calculates its rating, considering the ratings
expressed by the users of the community for that item.

An average is a single value that is meant to typify a list
of values. The most common method to calculate such a
value is the arithmetic mean, which also seems an effective
way to put together all the ratings expressed by the users in
a group. So, for each item i, its rating ri is expressed as:

ri =
1
n

n∑
u=0

ru

where n is the number of users of the group who
expressed a rating for item i and ru is the rating expressed
by each user for that item. In order to calculate meaningful
ratings for a group, a rating ri is considered only if a
consistent part of the group has rated the item. This is done
through a parameter, called co-ratings which expresses the
minimum percentage of users who have to rate an item in
order to calculate the rating for the group.

E. Step 4. Ratings prediction for the remaining items

For some of the items, ratings could not be calculated
by the previous step. In order to estimate such ratings, we

544544548548

built a network that contains similarities between items. Like
the users similarity network presented in II-B, the network
is built through the ratings matrix, considering the ratings
expressed for each item. Let wi be the vector of the ratings
expressed by all the users for item i and wj be the vector
of the ratings expressed by all the users for item j. The
similarity tij between item i and item j is measured with
the cosine similarity and the similarities are represented in
a network called items similarity network, from which noise
was removed through the noise parameter presented in II-B.

For each item not rated by the group, a list is produced
with its nearest neighbors, i.e. the most similar items already
rated by the group, considering the similarities available in
the items similarity network. Out of this list, the top items
are selected. Parameter top indicates how many similarities
the algorithm considers to predict the ratings.

An example of how the top similar items are selected is
shown in Figure 1. The algorithm needs to predict a rating
for Item 1. The most similar items are shown in the list. For
each similar item j, the table indicates the similarity with
Item 1 (column t1j) and the rating expressed by the group
(column rj). In the example, the top parameter is set to 3
and items with similarity 0.95, 0.88 and 0.71 are selected.

Item j t1j rj

Item 2 0.95 3.5
Item 3 0.95 4.2
Item 4 0.88 2.8
Item 5 0.71 2.6
Item 6 0.71 3.9
Item 7 0.71 4.3
Item 8 0.63 1.2
Item 9 0.55 3.2

Figure 1. Top similar items of an unrated item

We can now predict the rating of an unrated item by
considering both the rating and the similarity of its top
similar items:

r̄i =

∑n
j=0 rj · tij∑n

j=0 tij

where n is the number of items selected in the list. Given
the example in Figure 1, r̄1 = 3.55.

To make meaningful predictions, we need evaluate how
“reliable” our predictions are. This is done by calculating the
mean of the top similarities and by setting a trust parameter.
The parameter indicates the minimum value the mean of the
similarities has to get, in order to be considered reliable and
consider the predicted rating. The mean of the similarities
in the previous example is 0.85 so, to consider r̄1, the trust
parameter has to be lower than 0.85.

III. ALGORITHM EXPERIMENTATION

In order to evaluate the quality of the recommendations,
our algorithm was tested using MovieLens1, a dataset widely

1http://www.grouplens.org/

used to evaluate CF algorithms. We built a framework
that extracts a subset of ratings from the dataset, predicts
group recommendations through the proposed algorithm and
measures the quality of the predictions in terms of RMSE.
The rest of this section will describe the details of the
algorithm experimentation.

A. Experimental methodology and setup

The experimentation was made through the MovieLens
dataset, which is composed of 1 million ratings, expressed
by 6040 users for 3900 movies. To evaluate the quality of
the ratings predicted by our algorithm, around 10% of the
ratings was extracted as a probe test set and the rest of the
dataset was used as a training set for the algorithm.

The group recommendation algorithm was run with the
training set and, for each partition of the users in commu-
nities, ratings were predicted. The quality of the predicted
ratings was measured through the Root Mean Squared Error
(RMSE). The metric compares the probe test set with the
ratings predicted: each rating ri expressed by a user u for an
item i is compared with the rating r̄i predicted for the item
i for the group in which user u is. The formula is shown
below:

RMSE =

√∑n
i=0(ri − r̄i)2

n

where n is the number of ratings available in the test set.
To evaluate the performances of the proposed algorithm,
we compared them with the results obtained considering a
single group with all the users (predictions are calculated
considering all the preferences expressed for an item), and
the results obtained using a classic CF algorithm proposed
in [2], where recommendations are produced for each user.

B. Experimental results

To evaluate our algorithm’s performances we studied the
quality of the recommendations, considering different values
of each parameter. The only value that could not be changed
was noise, because if we subtracted more than 0.1 to the
edges of the users similarities network, the network would
become disconnected.

The first experiment conducted was to evaluate the quality
of the recommendations for different values of the co-ratings
parameter, i.e. the minimum percentage of users who have
to rate an item, in order to calculate the rating for the group.
Parameter top was set to 2 and parameter trust was set to
0.0. Figure 2 shows how RMSE varies with the number of
groups, for different values of co-ratings (10%, 20% and
25%). We can see that as the number of groups grows, the
quality of the recommendations improves, since groups get
smaller and our algorithm predicts more precise ratings. To
conduct the following experiments, the value of co-ratings
chosen was 20%. The next experiment we conducted was
to evaluate the quality of recommendations for different
values of the top parameter, i.e. the number of similarities

545545549549

Figure 2. Algorithm’s performances with different co-ratings values

considered to select the nearest neighbors of an item. We
won’t present the plot in this paper, since the results show
that the quality of recommendations doesn’t depend from
this parameter and RMSE doesn’t change. The initial value
of 2 was kept to conduct the next experiment.

The last parameter to evaluate is trust, i.e. the minimum
value the mean of the similarities has to get when the algo-
rithms predicts a rating considering the nearest neighbors
of an item. Figure 3 shows how RMSE varies with the
number of groups, for different values of the parameter (0.0,
0.1 and 0.2). In Figure 3 is shown that the quality of the

Figure 3. Algorithm’s performances with different trust values

performances improves for higher values of trust, i.e. when
the ratings predicted can be considered more “reliable”.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a group recommendation
algorithm that, based on users’ preferences, detects com-
munities of similar users and predicts groups preferences.
Experimental results show that the quality of the recom-
mendations generated by our algorithm improves linearly
with the number of communities created. The proposed
technique will be improved in several ways: new metrics

will be used to evaluate similarities between users and
similarities between items, the structure of communities will
be studied to improve the effectiveness of a group’s ratings
and we’ll test our algorithm on different datasets to evaluate
its performances.

ACKNOWLEDGMENT

The authors would like to thank Marco Gaviano, Giorgio
Porcu and Luca Urru for participating in the definition and
implementation of the proposed algorithm.

REFERENCES

[1] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of communities
in large networks. J. Stat. Mech., 2008(10):P10008+, October
2008.

[2] Maria Laura Clemente. Experimental results on item-based
algorithms for independent domain collaborative filtering.
In AXMEDIS ’08: Proceedings of the 2008 International
Conference on Automated solutions for Cross Media Content
and Multi-channel Distribution, pages 87–92, Washington,
DC, USA, 2008. IEEE Computer Society.

[3] Santo Fortunato and Claudio Castellano. Community struc-
ture in graphs. Springer’s Encyclopedia of Complexity and
System Science, Dec 2007.

[4] D. Gfeller, J. C. Chappelier, and De Los. Finding instabilities
in the community structure of complex networks. Physical
Review E, 72(5 Pt 2):056135+, November 2005.

[5] Anthony Jameson and Barry Smyth. Recommendation to
groups. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang
Nejdl, editors, The Adaptive Web: Methods and Strategies of
Web Personalization. Springer, 2007.

[6] H. Lieberman. Let’s browse: a collaborative browsing agent.
Knowledge-Based Systems, 12(8):427–431, December 1999.

[7] Judith Masthoff. Group modeling: Selecting a sequence of
television items to suit a group of viewers. User Modeling
and User-Adapted Interaction, 14(1):37–85, 2004.

[8] M. E. Newman and M. Girvan. Finding and evaluating
community structure in networks. Phys Rev E Stat Nonlin
Soft Matter Phys, 69(2 Pt 2), February 2004.

[9] M. E. J. Newman. Analysis of weighted networks. Phys. Rev.
E, 70(5):056131, Nov 2004.

[10] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl.
Grouplens: An open architecture for collaborative filtering of
netnews. In Proceedings of ACM 1994 Conference on Com-
puter Supported Cooperative Work, pages 175–186, Chapel
Hill, North Carolina, 1994. ACM.

[11] Upendra Shardanand and Patti Maes. Social information
filtering: Algorithms for automating “word of mouth”. In
Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems, volume 1, pages 210–217, 1995.

546546550550

