
FINAL WORKSHOP OF GRID PROJECTS, ”PON RICERCA 2000-2006, AVVISO 1575” 1

HaDeS: a Scalable Service Oriented
Deployment System for Large Scale

Installations
Massimo Gaggero1, Gianluigi Zanetti2

1CRS4, Edificio 1 - Pula (CA), Italy, massimo.gaggero@crs4.it
2CRS4, Edificio 1 - Pula (CA), Italy, gianluigi.zanetti@crs4.it

Abstract—Building large computational facil-
ities requires scalable and flexible deployment
tools that can cope with massive loads. Classical
installation methods are not very flexible, since
they are usually limited in the number of OS
supported, rely on transfer solutions that impose
constraints on network topology, and do not scale
very well. Here we describe HaDeS (Hardware
Deployment System), a new deployment system
for large scale installation designed to be agnostic
with respect to the network topology and the OS
deployed and to scale with the number of nodes
being deployed.

Index Terms—Deployment, scalability, operat-
ing system, hades, cybersar, metalink.

I. I NTRODUCTION

CYbersar [1] is a cyber–infrastructure that
connects and supports all the research

organizations in Sardinia that heavily employ
computational facilities to support their research
activities. Together with the “classical” use of
HPC facilities, Cybersar supports research fo-
cused on the study and development of new
computational paradigms, e.g., infrastructure as
a service for scientific applications, that require
continuous development of the entire software
stack, from the OS, to libraries, middle-ware
and applications. Cybersar infrastructure thus
needs to support, in a scalable manner, heavy
customization of Operating Systems and fre-
quent cluster reconfiguration in a spirit similar
to what is done in the project GRID5000 [2].

Building large computational facilities re-
quire scalable and flexible deployment tools

that can cope with massive loads. Classical
installation methods are usually limited in the
number of OS supported and, typically, not very
flexible. Moreover, they usually rely on broad-
cast transfers or remote OS mounting solutions
that are not very robust, are network topology
dependent, and do not scale very well with the
number of nodes to be installed. On the other
hand, to support cybersar research we needed
a hardware deployment system that satisties the
following requirements: it should be

• independent from both the OS to be in-
stalled and the packaging system;

• fast and scalable with respect to the num-
ber of nodes;

• support a fully automatized and unattended
deployment process;

• able to support incremental changes in
large scale installation;

• integrable in complex system, e.g., so that
it can be used as service component in
SOA based work-flow applications,

Since the deploy system is supposed to be
orchestrated by higher order entities [3], [4], it
does not need to be a complete cluster manage-
ment system, but just an intelligent and flexible
deployment tool.

To satisfy these requirements we devel-
oped HaDeS. HaDeS image distribution mech-
anism is based on standard transfer protocols
used in common p2p file-sharing applications.
HaDeS can, therefore, work across LAN bound-
aries and it is compatible with multi-site geo-



GAGGEROet al.: HADES - A SCALABLE SERVICE ORIENTED DEPLOYMENT SYSTEM

graphical installations. HaDeS development has
been kept strictly independent from the OS de-
ployed and no assumptions were made about the
images transferred. The system is built follow-
ing SOA principles and the controlling interface
is developed as Web Service. This approach
allows for an easy integration of HaDeS as a
module in complex management infrastructures
while keeping it also usable as a standalone
application. HaDeS is used within Cybersar as
a component of the VIDA [4] infrastructure to
manage fast whole cluster redeployment, e.g., to
reconfigure clusters as hadoop (an open source
implementation of map reduce [5]) machines,
and to deploy test installations of cloud com-
puting middleware such as OpenNebula [6].

A. Flexibility: OS Image Deployment Vs Pack-
age Installation

The automatic and unattended tools com-
monly used for cluster setup and configuration
are packaging-system oriented and often strictly
related to the OS installed [7] [8] and to the
packaging system [9] used; albeit few, [10],
are more flexible and can handle different OS
and packaging system. While this approach is
appropriate for the usual handling of computa-
tional facilities where the setup is done basically
only once and the update is incremental, it is
not particularly efficient in a quickly varying
research environment focusing on the computa-
tional infrastructure itself.

Package installation is usually performed as
a sequence of steps of widely varying duration:
a target disk is selected, partitioned and format-
ted; software is transferred from the network to
the target host and installed; the post-inst phase
performs specific customizations and the instal-
lation of software that cannot be automatized.
Since it is dependent on the amount of con-
figuration and customization done, post-install
can take longer than the installation phase and
require manual intervention.

A more flexible approach is the deployment
of a pre-built and pre-configured image of the
operating system as a single file. As shown in
fig 1 the mandatory steps for image deployment

Fig. 1. Deployment and installation phases

are reduced to one. As the image comes with
the whole file-system structure on it, partition
formatting is no more required. Packages down-
load and installation are replaced by the only
operation of image file transfer from network to
disk. A quick post-inst phase is possible, if re-
quired, but an accurate customization can avoid
it. With current network and disk technology,
the downloading of the disk images is bound
by the transfer to disk bandwidth. Thus, with
standard hardware, the time needed for a single
image transfer is in the few minutes range.

B. Scalability: P2P and multi-protocol file
transfer

Scalability is an issue related to the transfer
protocol. Some tools deal with scalability us-
ing different file transfer protocols. SystemIm-
ager [11], for example, offers three different
protocols with three different modules: rysnc
transfer, multicast transfer and BitTorrent. Each
one has advantages and disadvantages: Rsync
is able to transfer only file deltas but it does
not scale, multicast is more scalable but it re-
quires specific network topology, BitTorrent can
take advantage of multi-servers and downloaded
chunk sharing but forces the images to be pro-
vided as torrent file. Moreover, since many ISPs
and firewalls drop p2p protocols, geographical
deployment cannot be done.

A flexible solution that overcomes these lim-
itations is the Metalink File Format [12]. With
Metalink it is possible to indicate different

2



FINAL WORKSHOP OF GRID PROJECTS, ”PON RICERCA 2000-2006, AVVISO 1575”

sources and different transfer protocols pointing
to the same file. Compatible clients can select
between protocols and source to maximize the
incoming bandwidth. Mixing together HTTP
sources and P2P sharing for example, over-
comes strict network policies while allowing for
local chunks sharing.

C. Full Automation: controlling the hardware

Installation or deployment typically requires
two reboots:

• machine power-on/reset;
• boot of the installation system;
• installation/deployment process;
• machine reboot.

In order to be really automatic and unattended,
deployment has to manage also the hardware
power switching. A standard embedded meth-
ods often available as standard is the IPMI
protocol. As an alternative, many main-board
manufacturer provide proprietary solution like
HP Onboard Manager and iLO and Sun Ilom.
One tool able to deal with hardware and issue
power switching command is xCAT [13]: it uses
IPMI standard to control power and boot device.
However, it does not handle other Platform
Control (PFC) methods and it does not provide
full support for image deployment.

D. Integration

The usual tools for cluster management and
provisioning tend to have an autocratic ap-
proach, i.e., the assume to be the only system
controlling the computational infrastructure, do
not usually adhere to interfacing standards and
are very difficult to integrate in more complex
systems. A more modern approach is to think to
the deployment system as a component, that can
work standalone, but it can also be readily in-
tegrated in a larger control-plane infrastructure,
e.g., orchestrated as a SOA [3], [4].

II. D ISCUSSION

HaDeS is mainly a flexible tools for research:
its development has been kept strictly indepen-
dent from the OS deployed and no assump-
tions were made about the images transferred.

Fig. 2. HaDeS components

HaDeS system is composed by 5 different soft-
ware components:

• the HaDeS Scout Image;
• the HaDeS Client;
• the HaDeS Web Service along with the

HaDeS Database;
• the SQL-TFTP Server;
• the PFC Web Service.

A. HaDeS Scout Image and HaDeS Client

HaDeS works on the target host atop of
a minimal disk-less operating system, the
HaDeS Scout Image; as the target machine is
booted, the OS is loaded via PXE. We are using
for the Scout Image a Gentoo [14] LiveCD
image, since it is small and contains a wide
selecton of the disk and file system management
tools needed by the HaDeS client. Moreover, the
Gentoo LiveCD is able to detect a large quantity
of different hardware devices and it can be very
easily upgraded and customized using Gentoo
tools such as Genkernel and Catalyst. The Scout
Image is mounted from a NFS server by the tar-
get system and the root file-systems contained is
loaded in memory, to reduce the network impact
of NFS accesses. The NFS mounting of the
Scout Image does not affect scalability, since
only small and infrequent NFS data transfers
are required during the boot and deployment
processes. Moreover, the performance impact of
NFS could be reduced, if needed, with server
redundancy.

Once loaded, the Scout Image starts all the
services of a common Linux system such as net-
work configuration, SSH and Syslog daemons;
the last service started is the HaDeS client. The
latter collects information about the target host

3



GAGGEROet al.: HADES - A SCALABLE SERVICE ORIENTED DEPLOYMENT SYSTEM

and use them to query the HaDeS Web Service
on the actions to be performed.

Then deployment starts following configura-
tion information provided by the Web Service:
the related schema is calledhost setupand it
indicates the target partitions, the type of file-
system to be created/deployed and the remote
and local location of the image to be deployed.
The host is then rebooted from a boot device at
the end of deployment as per setup instructions.

During the process, HaDeS client talks to the
HaDeS Web Service, reporting process status
and errors occurred.

In order to adhere to well known standards,
the setup is a XML file and communication
between client and Web Service is implemented
as SOAP messages. The client is written in
Python 2.5 [15] and run atop of an instance of
the Twisted networking engine [16].

B. HaDeS Web Service and Database

All the informations about host managed by
HaDeS are stored in the HaDeS Database. Hosts
are described by their name, the setup to use for
deployment, the next boot device, the collection
of the network interfaces with MAC and IP
address and all the Platform Control (PFC)
methods provided to the host and which one
is currently in use. The database is used by
the HaDeS Web Service to provide clients with
all the instructions needed to perform the de-
ployment. Details about PFC methods are used,
instead, by the PFC Web Service to control
deployment targets hardware.

The HaDeS Web Service provides two ports:

• Control Port: it is intended to be used by
the user, by means of the HaDeS tools,
to communicate with the database requests
such as list and details of hosts, setups,
boot types, PFC details etc...;

• Service Port: it is the port used by the
HaDeS clients to ask for instructions and
to report process status.

When a client sends data gathered about a host
that is not already in the database, and HaDeS is
setup for automatic node discovery, the Service

Fig. 3. SQL selectable PXE boot

Port issues to the Control Port an add command
for that host.

HaDeS Web Service is developed in Python
using the PyGridWare [17] library, a python
implementation of the WS-Resource framework
and part of the Globus [18] Toolkit. It is WSDL
1.1 [19] compliant and uses SOAP [20] mes-
sages. The database engine used is MySQL.

C. SQL-TFTP Server and PFC Web Service

Two important HaDeS software components
not strictly related to deployment are the SQL-
TFTP Server and the PFC Web Service. They
control the network boot process when PXE is
used by the nodes. They are crucial compo-
nents of HaDeS since the deployment process
requires hardware power control and automatic
boot selection. The PXE boot system relies
on a TFTP server to retrieve the boot loader
and related configuration files, being able to
programmatically select the boot file provided
by the TFTP server makes it possible to control
the nodes booting sequence.

We have developed a patch for the TFTP
server that interface it to the SQL Database
allowing boot selection just as a matter of
changing the relevant boot record in the
database when a deployment is issued to
HaDeS, the Database makes the node point to
the HaDeS scout image and, when finished,
restores it back to the default device. Figure 3
illustrates the role of the SQL-TFTP server in
selectable boot process.

The PFC Web Service instead is in charge of
handling the way the hardware is turned on or

4



FINAL WORKSHOP OF GRID PROJECTS, ”PON RICERCA 2000-2006, AVVISO 1575”

off or reset. The most reliable way is to issue
power command using IMPI messaged to the
node’s Board Management Controller (BMC)
or the equivalent for the board manufacturer
(HP iLO for example or Sun iLOM). PFC
Web Service acts as a proxy to these proto-
cols: depending of the data provided by the
HaDeS Database, it issues to the hardware the
appropriate message when a reset is required
to start the deployment. It is developed as a
modular system allowing new protocols and
new platform control methodologies to be added
later.

D. Scalability

Scalability has been reached in HaDeS with
the adoption of thearia2 [21] utility developed
by Tatsuhiro Tsujikawa. Aria2 is an application
for the parallel download of files from multiple
sources/protocols such as HTTP(S)/FTP and
BitTorrent. While the data is downloaded using
HTTP(S)/FTP, it is uploaded to the BitTorrent
swarm. Thus, In this way just a small number
of nodes directly downloads from the image
repository while the others refer to them and
one to each other using BitTorrent. This spreads
the transfer to the internal lan making it possible
to use all the available aggregate bandwidth of
the network infrastructures leaving a reasonable
high and constant transfer speed per client in-
stead of a 1

N
drop, whereN is the number of

nodes.

III. PRELIMINARY RESULTS

Several proofs of concept and functional tests
have been carried out on HaDeS, while inten-
sive efficiency and scalability tests are currently
being performed. Here we describe some of the
preliminary results thus far collected. Figure 5
illustrates results from a scalability test done
deploying an image of about 3 GBytes over
16 nodes. The image is hosted in a single
HTTP server with a 1Gbps link to the node’s
switch. Aria2 is used to download the image
and share available chunks with BitTorrent. The
”HTTP/BT” curve show the average transfer

Fig. 4. Combinated use of HTTP and Bittorrent protocols

speed per client as the number of nodes in-
creases, while the ”HTTP” represents the es-
timated per-client speed using just HTTP. The
use of the p2p sharing has led to an effective
per node transfer rate of about 20 MBytes/sec,
that is essentially constant with respect to the
number of nodes deployed. As a reference,
the effective disk bandwidth on the same node
hardware is of about 40 Mbytes/sec.

Fig. 5. Per-client transfer speed

The second test described is the deployment
over 72 nodes of a 4,5 GBytes image dur-
ing a Hadoop (an open source Map Reduce
implementation [5]) evaluation test. As above,
the image is downloaded by a single HTTP
server and available chunks are shared using
the BitTorrent protocol. Table I shows that the
deployment time with hades is 323 sec, about 5
minutes, while the transfer only takes about 4
minutes; the difference of 75 seconds is the time
spent to create the accessories partition required

5



GAGGEROet al.: HADES - A SCALABLE SERVICE ORIENTED DEPLOYMENT SYSTEM

by Hadoop to store data. The average transfer
speed is about 19 MByte/sec, definitely better
than the estimated 1,38 MByte/sec of a simple
HTTP download from 72 clients.

TABLE I
DEPLOYMENT OF A 4,5 GBYTES IMAGE OVER 72 NODES

HaDeS Time Aria2 Time Transfer Speed

323,49 secs 248,47 secs 19,12 MByte/sec

IV. CONCLUSION

HaDeS has been developed initially with the
aim to provide a flexible tool to allow the rapid
deployment of heavily customized Operating
System images and the fast switching of clusters
between production and development environ-
ments. Scalability results from the use of p2p
technologies such as BitTorrent protocol and
Metalink file format. The Web Service interface
allows HaDeS to be integrated as component in
complex system SOA based. From this point
of view, HaDeS has been successfully used in
the VIDA [4] system for virtual cluster de-
ployment. Other experiments and evaluations in
the Cybersar project has been carried out using
HaDeS as deployment tool and configuration
switcher for the Cybersar cluster (72 nodes)
hosted at CRS4. During Hadoop framework
evaluations, HaDeS has switched the whole
cluster from production to development and
back to its initial state. The whole evaluation
took less than two days, with just six min-
utes for the complete deployment of a pristine
Hadoop environment and a minute to revert
back the nodes into production. In a similar
manner, HaDeS has been used to deploy a test
installation of the OpenNebula cloud computing
middle-ware [6]. Feedback from these tests has
suggested a quantity of improvements and a
new 2.0 version is under development. Changes
include the development of new drivers for dif-
ferent OnBoard Control Systems, improvements
in system robustness and resilience, deployment
process monitoring and so on. At the same time,
new test are planned to investigate scalability
performance of HaDeS in different network

topologies and its behavior at the geographical
scale.

REFERENCES

[1] P. Anedda, C. Guidi, G. Zanetti, A. Bosin, A. Masoni,
D. Mura, N. D’Amico, and I. Porceddu, “Cybersar:
a new computational infrastructure for research in
sardinia,” in3rd IEEE International Conference on e-
Science and Grid Computing, Bangalore, India, 10-13
Dec. 2007, December 2007.

[2] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jean-
not, Y. Jegou, S. Lanteri, J. Leduc, N. Melab,
G. Mornet, R. Namyst, P. Primet, and O. Richard,
“Grid’5000: a large scale, reconfigurable, controlable
and monitorable Grid platform,” inGrid’2005 Work-
shop. Seattle, USA: IEEE/ACM, November 13-14
2005.

[3] P. Anedda, S. Manca, M. Gaggero, and G. Zanetti,
“Soa based control plane for virtual clusters,” inEuro-
Par 2007 Workshops Parallel Processing - HPPC
2007, UNICORE Summit 2007, and VHPC 2007, vol.
4854, 2007, pp. 154–163.

[4] P. Anedda, C. Guidi, and G. Zanetti., “Vida: A new
virtual images deployment architecture,” inWorkshop
finale dei Progetti Grid del PON ”Ricerca” 2000-
2006 - Avviso 1575, 2009.

[5] A. Bialecki, M. Cafarella, D. Cutting, and
O. O’Malley, “Hadoop: a framework for
running applications on large clusters built
of commodity hardware, 2005,” Wiki at
http://lucene.apache.org/hadoop.

[6] B. Sotomayor, R. S. Montero, I. M. Llorente, and
I. Foster, “Capacity leasing in cloud systems using the
opennebula engine,” inCCA08: Cloud Computing and
its Applications, Chicago Oct. 22/23 2008, October
2008.

[7] C. Winter and D. Layfield, “Using solaris jumpstart
with the solaris 10 os for x86/x64 platforms,”
BigAdmin System Administration Portal, March 2007.
[Online]. Available: http://www.sun.com/bigadmin/
features/articles/jumpstartx86 x64.jsp

[8] A. Nashif and U. Gansert,AutoYaST - Automatic
Linux Installation and Configuration with YaST2,
SUSE Linux Products GmbH. [Online]. Available:
http://www.suse.com/∼ug/autoyastdoc/index.html

[9] “Anaconda/kickstart.” [Online]. Available: http:
//fedoraproject.org/wiki/Anaconda/Kickstart

[10] T. Lange, “Fai - fully automatic installation.” [Online].
Available: http://www.informatik.uni-koeln.de/fai/

[11] [Online]. Available: http://systemimager.org
[12] “Metalink - open standard/framework/file format.”

Wikipedia, the free encyclopedia. [Online]. Available:
http://en.wikipedia.org/wiki/Metalink

[13] “xcat - extreme cluster administration toolkit.”
[Online]. Available: http://xcat.sourceforge.net/

[14] “Gentoo linux.” [Online]. Available: http://www.
gentoo.org/

[15] “Python programming language,” Python Software
Foundation. [Online]. Available: http://www.python.
org/

[16] “Twisted matrix labs,” WWW. [Online]. Available:
http://twistedmatrix.com/trac

6



FINAL WORKSHOP OF GRID PROJECTS, ”PON RICERCA 2000-2006, AVVISO 1575”

[17] “Python/pygridware,” June 2007. [Online]. Available:
http://dev.globus.org/wiki/PyGridWare

[18] “Globus toolkit.” [Online]. Available: http://www.
globus.org/toolkit/

[19] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana, “Web services description language
(wsdl) 1.1,” W3C, March 2001. [Online]. Available:
http://www.w3.org/TR/wsdl

[20] “Simple object access protocol (soap) 1.2,” W3C. [On-
line]. Available: http://www.w3.org/TR/soap12-part1/

[21] T. Tsujikawa, aria2c - The ultra fast download
utility, 1st ed., 07 2009. [Online]. Available:
http://aria2.sourceforge.net/

7


