
High Quality Interactive Rendering of Massive Point Models using Multi-way
kd-Trees

Prashant Goswami
University of Zurich

Switzerland
goswami@ifi.uzh.ch

Yanci Zhang
Sichuan University

China
yczhang7@gmail.com

Renato Pajarola
University of Zurich

Switzerland
pajarola@acm.org

Enrico Gobbetti
CRS4
Italy

gobbetti@crs4.it

Abstract—We present a simple and efficient technique for
out-of-core multiresolution construction and high quality visu-
alization of large point datasets. The method introduces a novel
hierarchical LOD data organization based on multi-way kd-trees
that simplifies memory management and allows controlling the
LOD tree’s height. The technique is incorporated in a full end-
to-end system, which is evaluated on complex models made of
hundreds of millions of points.

Keywords-point based rendering; gpu-based; multi-way kd-
tree;

I. INTRODUCTION

Modern 3D scanning systems can generate massive data
sets with hundreds of millions of points. Despite the ad-
vances in point-based modeling and rendering, these models
can still be a challenge to be processed and in particular
rendered with high quality at interactive frame rates. Massive
models are tackled with level-of-detail (LOD) and out-
of-core techniques. However, since modern GPUs sustain
very high primitive rendering rates, a slow CPU based
adaptive data selection process can easily lead to starvation
of the graphics pipeline. Hence the CPU-GPU bottleneck
becomes the prominent challenge to be addressed as a whole,
from the choice of data structures used for preprocessing
and rendering the models, to the design of the display
algorithm. In recent years, this consideration has lead to the
emergence of a number of coarse-grained multiresolution
approaches based on a hierarchical partitioning of the model
into clouds consisting of thousands of points. These methods
successfully amortize data structure traversal overhead over
rendering time of large numbers of primitives, and effec-
tively exploit on-board caching and object based rendering
APIs.

In this paper, we further improve the state-of-the-art in
the domain with a novel end-to-end system for out-of-core
multiresolution construction and high quality visualization
of large point datasets. We exploit the properties of multi-
way kd-trees to make high quality rendering more GPU
oriented. The level-of-detail (LOD) tree, constructed bottom
up using a fast high-quality simplification method, is fully
balanced, has controllable depth, and contains uniformly

sized nodes. Since all blocks are equal sized, on-board
memory management is particularly simple and effective.

The presented approach results in fast pre-processing and
high quality rendering of massive point clouds at hundreds
of millions of splats/second on modern GPUs, improving
the quality vs. performance ratio compared to previous large
point data rendering methods.

II. RELATED WORK

While the use of points as rendering primitives has been
introduced as early as in [1], [2], only over the last decade
they have reached the significance of fully established ge-
ometry and graphics primitives, see also [3]–[5]. Several
techniques have since been proposed for improving upon
the display quality, LOD rendering, as well as for efficient
out-of-core rendering of large point models. We concentrate
here on discussing only the approaches most closely related
to ours. For more details, we refer the reader to the survey
literature [5]–[7].

QSplat [8] has for long been the reference system in
massive point rendering. It is based on a hierarchy of
bounding spheres maintained out-of-core, that is traversed
at runtime to generate points. This algorithm is CPU bound,
because all the computations are made per point, and CPU-
GPU communication requires a direct rendering interface,
thus the graphics board is never exploited at its maximum
performance. A number of authors have also proposed
various ways to push the rendering performance limits,
mostly through coarse grained structures and efficient usage
of retained mode rendering interfaces.

Sequential Point Trees [9] introduced a sequential adap-
tive high performance GPU oriented structure for points lim-
ited to models that can fit on the graphics board. XSplat [10]
and Instant points [11] extend this approach for out-of-core
rendering. XSplat is limited in LOD adaptivity due to its
sequential block building constraints, while Instant points
mostly focuses on rapid but moderate quality rendering of
raw point clouds. Both systems suffer from a non-trivial im-
plementation complexity. Layered point clouds (LPC) [12]
and Wand et al.’s out-of core renderer [13] are prominent
examples of high performance GPU rendering systems based

on a hierarchical model decomposition into large sized
blocks maintained out-of-core. LPC is based on adaptive
BSP subdivision, and subsamples the point distribution at
each level. In order to refine a LOD, it adds points from the
next level at runtime. This composition model and the pure
subsampling approach limits the applicability to uniformly
sampled models and produces moderate quality simplifica-
tion at coarse LODs. In [14] these limitations are removed by
making all BSP nodes self-contained and using an iterative
edge collapse simplification to produce node representations.
We propose here a faster high quality simplification method
based on adaptive clustering that provides more control over
the LOD tree height through the use of N-ary trees. Wand et
al.’s approach [13] is based on an out-of-core octree of grids,
and deals primarily with grid based hierarchy generation and
editing of the point cloud. This method’s limitation is in the
quality of lower resolutions created by the grid no matter
how fine it is.

All the mentioned pipe-lines for massive model rendering
create coarser LOD nodes through a simplification process.
Some systems, e.g. [12], [13], are inherently forced to use
fast but low-quality methods based on pure subsampling or
grid-based clustering. Others, e.g. [10], [14], can use higher
quality simplification methods, see also [15]. In this context,
we propose a fast high quality technique which combines
clustering, greedy selection, and delayed point combination.
The method produces high quality simplifications on large
non-uniform point clouds.

III. MULTIRESOLUTION DATA STRUCTURE

A. Multi-way kd-Tree

Our goal is to produce a system which is at the same time
efficient, both in rendering and pre-processing, and simple to
implement. We follow the approach of organizing the system
around a hierarchical coarse grained structure maintained
out-of-core. Most LOD point rendering approaches use
either a kd-tree or a regular octree for basic hierarchical
data organization.

The main benefits of octrees are that they subdivide the
3D data uniformly in space and are simple to implement.
However, octrees also have a number of drawbacks, espe-
cially when considering GPU rendering constraints. First of
all, octrees are inflexible, because of their fixed fanout factor
and space partitioning. Due to this, no direct control over
the number of internal nodes is possible. Octrees can thus
be highly imbalanced and therefore, deeper than necessary.
Moreover, due to the strict spatial subdivision strategy, the
number of points in a (leaf) node and hence the number
of nodes itself cannot be controlled directly. This leads to
suboptimal distribution of points per octree node given a
target VBO size, which in turn leads to increased number of
context switches at runtime. Most on-board caching schemes
make use of similar sized cache blocks and thus a non-

uniform data distribution also implies wasted cache memory
due to irregular sizes of nodes.

Although kd-trees can be constructed so as to be balanced
and symmetric, they too have their limitations. Since the
fanout factor is two, leaf nodes of the hierarchy cannot be
made to all contain the desired number of points. Using
a fixed split strategy at the middle of the bounding box
produces wildly different VBO sizes, leading to the same
problems encountered with octrees. By adaptively moving
the split plane so as to always produce equal sized children
can make the situation more controlled (e.g., see [12]).
However, even in this case, VBO sizes can vary by as much
as 50%.

The challenge, thus, is how a simple to implement hierar-
chical multiresolution data structure can be designed so as
to have an even and constant point distribution among all
its nodes, while being fully balanced, spatially selective and
parametrized by a desired target VBO size. In our work, we
propose to reach this goal by exploiting the properties of
multi-way kd-tree, i.e., kd-trees with a fanout factor of N at
each level (see also Figure 1).

In order to maintain symmetry, at each level a node is
divided along its longest axis into N children containing
equal number of points each. If the original model has n
points, s is the target VBO size and m the number of
leaf nodes in the tree then m = n/s. For a given N ,
l = dlogm/ logNe is the maximum level or depth of the
multi-way kd-tree.

r2

r1

r5r4r3

B DA C F HE G J LI K N PM O

r2 r3 r4 r5

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

r1

Figure 1. Multi-way kd-tree example for N = 4. Each of the leaf regions
contains almost the same number of points.

With the proper choice of parameters s and N (see next
section) one can construct an efficient multi-way kd-tree
such that each node contains approximately s points. The
value of N decides the trade-off between LOD adaptivity
and traversal efficiency. For larger N , the tree height will be

lower and hence traversal will be faster. At the same time, an
extremely shallow tree will have fewer internal nodes which
represents the number of LODs that can be constructed. A
multi-way kd-tree has thus the advantages that it is flexible in
its fanout factor, giving more control over LOD adaptivity, it
is symmetric and balanced, which allows it to be maintained
easily in an array, and that it has an almost uniform point
distribution close to a desired target VBO size.

B. Multi-way kd-Tree Construction

Our procedure to construct a multi-way kd-tree is based
on a top-down recursive subdivision pattern, followed by
bottom-up simplification.

At each subdivision step, if the number of points to be
assigned to the current node exceeds the threshold s, the
longest axis of the node is determined, the points are split,
and equally assigned to N child nodes. In a fully balanced
tree, n

s is a power of N and thus N can be chosen such that
log n

s / logN is as close as possible to an integral value.
In that case, the number of points in the leaf nodes will
consequently be as close as possible to the desired target
VBO size s.

During bottom-up simplification, fixed point-count inter-
nal nodes are constructed from their children representation
using a simplification procedure. A variety of methods
can be used for this goal. Our underlying simplification
approach is an extension of grid based clustering. The
standard approach, used, e.g., in [13], is to apply grid based
quantization to create multiresolution LOD points in each
inner node of an octree. For each cell in a K3 grid of an
inner node, a representative point is computed by averaging
all points belonging to the same grid cell. However, as shown
in Figure 2, this simple approach may fail to produce good
multiresolution representations for complex non-uniform
models. Grid sampling does not take into account the spatial
point density distribution and hence cannot ensure that all
the inner nodes have a uniform targeted VBO size. In case of
point surfaces, most of the grid cells are unoccupied, creating
significantly higher density in only a few cells. Moreover, all
points falling within the same cell are used to generate one
LOD representative including those which do not belong to
the same surface component, thereby generating poor LOD
quality. This is because the method cannot identify multiple
point clusters within a single grid cell.

Our approach removes the major limitations of simple
point clustering. The procedure Representatives in Figure 4
outlines the major steps followed to form a reduced mul-
tiresolution representation of a node as it is called during
tree construction by the parent in the algorithm in Figure 3.
To have s lower resolution LOD points in a parent node,
this basically means that s/N representative points should
be selected in a node to be passed up. Though the procedure
Representatives can yield as many representative points in a
node as desired (i.e. s/N), in practice a strict bound on the

(a) (b)

Figure 2. Comparison of LOD quality using (a) a simple grid based
sampling approach (e.g. similar to [13]) and (b) our adaptive clustering.
Same grid resolution (K = 45) and maximum leaf node size (VBO =
100’000 points) used for LOD construction.

node size might be replaced by a lower and upper range of
size limits.

The basic idea is to cluster points not only according
to distance but also normal deviation to avoid clustering
of points from different surfaces. To enable fast clustering,
points are first quantized to grid cells, and starting with
each point being a cluster, clusters are iteratively merged
within cells. Our criteria for clustering exploit the normal
deviation of points. Since points within a cell are already
spatially localized, we can group points differing in their
normals by less than a threshold θ into the same cluster.
A similar reasoning can be applied to colors. The list of
clusters identified in a grid cell is pushed onto a priority
queue Q which is ordered by an error metric. In order to
make sure that we reach a given target number (c ≈ s/N) of
clusters, the top list of Q is removed and clusters are merged
within. This process is repeated until convergence in terms
of the obtained size. The LOD representatives are obtained
by replacing all points in each cluster by a new aggregate
whose attributes are calculated by a size-weighted average
of the attributes of all point splats in the cluster and that has
a span, radius size that covers the original primitives. The
error metric used to prioritize Q can be the maximum normal
deviation of a point from its neighbors in l, or alternatively
simply the length of l works well in practice too.

NdTree(node) {
if (number of points in node ≤ s)

return;

determine the longest split axis of node;
split the node data into N child nodes Nci;
for all children i ≤ N

NdTree(Nci);
get reduced LOD points from child node by
calling Representatives(Nci);

}
Figure 3. Multi-way kd-tree construction algorithm.

As stated above, the clusters within a grid cell are obtained
by grouping points through normal (and eventually color)
deviation. Using a fixed threshold angle θ could lead to

Representatives(node) {
initialize empty priority queue Q of list of clusters;
set cluster count c = 0;
setup an auxiliary K3 grid within node;
assign points to grid cells;
for each grid cell

initialize list l of clusters to be empty;
initialize point clusters Ci and add them to l;
increment c by |l|;
push l onto Q;

while (c > s/N)
pop list l from Q;
merge clusters in l;
push l back to Q;
if necessary relax threshold θ;

for each cluster in Q
calculate a representative LOD point;

return c representative LOD points;
}

Figure 4. Representative LOD points selection.

potentially non simplified areas with a number of points
higher than the target. In order to achieve a constant output
size, if the number of clusters c is more than the targeted
s/N , these clusters are merged using an increasingly relaxed
threshold θ. This approach guarantees that lower resolutions
are not too coarse or ill-formed. While other clustering and
merge metrics could be applied to further improve cluster
formation, the benefit of the outlined solution is that it is very
simple, efficient and provides excellent rendering quality. As
long as the grid size K is not extremely large or small, it
does not have much impact on the LOD quality, but it may
have an impact on the convergence to s/N representatives.
It can though speed up the preprocessing by reducing the
search space for neighbors.

C. Data Organization

After the multi-way kd-tree construction, all nodes in
the tree are rearranged and kept on disk. Vertex positions
and splat radii of all the points are contiguously aligned,
followed by normals and, if available, color data. Each of
these attributes is quantized and compressed using LZO
compression. The position values (x, y, z) of a point are
quantized with respect to the minimum and maximum co-
ordinates of the bounding box of the node using 16 bits.
Normals are quantized using 16 bits with a look up table
that corresponds to points on a 104 × 104 grid on each of
the 6 faces of a cube. The radius of a point is quantized
with respect to the minimum and maximum splat sizes in
its multi-way kd-tree node using 8 bits. In addition to this
data, we separately store a small indexing structure, which
saves for each node its ID, level in the multi-way kd-tree,
bounding box, splats with minimum and maximum radii and
size of the node file. Therefore, the multi-way kd-tree itself
is small and is loaded at runtime into main memory as an

array. With the help of indexing, any node in the multi-way
kd-tree array can be accessed in constant time.

IV. RENDERING

Our adaptive rendering subsystem loads in memory at run-
time the small kd-tree indexing structure, and dynamically
loads into memory and GPU the required node data.

In interactive rendering applications, it is often preferable
to maintain a constant high frame rate, rather than adhering
to a strict LOD requirement, especially during interactive
manipulations. To optimize interactivity and LOD quality,
rendering can be controlled by a rendering budget B which
indicates that no more than the best B LOD points are
displayed every frame. At the same time, the selection of
LOD is done such that the parts of the 3D scene closer to
the user are rendered at a higher resolution. This implicitly
captures view dependent refinement while selecting only B
points per frame for rendering.

In order to achieve the above, we maintain a priority queue
Q of LOD nodes at runtime which is ordered by the LOD
metric for refinement or coarsening. Several metrics such
as the projected size of LOD points in pixels on screen
could be used. With the goal of rendering on a budget, our
LOD selection is based on the difference of the LOD level
l of a node and the maximum leaf level lmax in the tree
and perspective division by the distance d to the viewer,
i.e., εl = c0(lmax−l+1)

c1d+c2d2 , with parametrization constants ci.
For rendering on a budget, this LOD selection metric works
similar to a projected screen-space LOD point size measure
but is more efficient to incrementally adjust the rendering
front.

The algorithm in Figure 5 outlines the basic steps to
compute the current rendering front given a budget B, the
fanout factor N and VBO size s. When a node on level l is
added to the priority queue Q, its LOD metric εl is computed
for prioritization. The priority queue Q holds the currently
selected nodes for display which are incrementally refined
in the while loop according to the budget availability.

LODSelection() {
initialize empty queue Q prioritized on εl;
push the root node r onto Q;
count = |r|;
while (count− |n|+Ns . B and Q is not empty)

pop node n from Q;
if (n is not a leaf)
count = count− |n|;
foreach child c of n

push c onto Q, prioritized on εl;
count = count+ |c|;

else
add n to rendering front;

if Q is not empty
add nodes from Q to rendering front;

}
Figure 5. LOD selection for rendering on a budget.

Note however, that our rendering system also supports
view-dependent LOD selection based on projected screen-
space LOD point pixel size. For that purpose, the LOD
nodes, e.g. of the past frame’s rendering front, are refined or
coarsened based on projected pixel size and no budget limit
is included.

LOD changes often occur gradually in interactive render-
ing. In case of unavailability of a new LOD node and to
avoid its synchronous fetching, which could lead to jitters,
most refinement and coarsening changes can be delayed
by one or a very few frames until the new LOD data has
been fetched from disk. This is accomplished by running
an asynchronous server thread concurrently to the main
rendering thread. To support this strategy, we perform incre-
mental frame-to-frame updates as follows, similar to [16].
All nodes currently selected by LODSelection constitute the
active rendering front for the current frame. These nodes
can be ordered on the front through the LOD hierarchy and
compared to the last one as shown in Figure 6. All node
transitions from the last to the current front can be grouped
into four types:

1) Old Node → No node (a → φ)
2) No node → New node (φ → l)
3) Ancestor → Children (i → j, k)
4) Children → Ancestor (e,f → d)

Out of these, Case 1 is trivial, 3 and 4 can be addressed
by asynchronous fetching if necessary, and only Case 2
needs a synchronous load operation. Cases 3 and 4 can
hence be treated by rendering the previous frame’s respective
LOD nodes while the asynchronous load from disk takes
place. Thus instead of fetching a new node synchronously,
its lower or higher resolution which has been used before
is rendered until the new desired LOD is available. The
number of forced synchronous fetches in Case 2 can further
be reduced by fetching parent nodes corresponding to every
group of new sibling nodes while pushing the actual nodes
to the asynchronous thread. In the worst case, this might
slow down the application by a few frames but guarantees
absence of any holes. Further pre-fetching at view-frustum
clip boundaries can further reduce synchronous loads.

The basic rendering engine described above is simple
to extend, in order to increase performance, with other
acceleration techniques. In particular, we have integrated
backface culling, using normal cone for each node in tree
and occlusion culling, similar to [12] to avoid rendering of
invisible points. Unused point budget reclaimed from the
occluded or backfacing LOD nodes can be reused to refine
some more nodes of a coarser LOD resolution to a finer
one. Higher quality rendering than simple one-pass point
splatting can also be obtained by smoothly interpolating
among points. In particular, our system can employ the
deferred blending approach as introduced in [17].

b

b

c

c

e,f

d

g

g

h

h

i

j,k

∅

l

a

∅

b c e,f g h i ∅∅

available nodes
asynchronous fetch requests

last front

current front

rendered front

a b c d

fe

i

kjhg

l

root of N-tree

Figure 6. LOD update and asynchronous fetching example for a multi-way
kd-tree with N = 2.

V. RESULTS

The proposed method has been implemented in C++ using
OpenGL and GLUT. Unless otherwise specified, the results
have been evaluated on a system with 2x2.66 GHz Dual-
Core Intel Xeon processors and NVIDIA GeForce 8800 GT
graphics and a display window of 1024× 1024 pixels.

A. Preprocessing

The input given to our preprocessing unit is the point
cloud containing point attributes like position, splat size,
color and normal. In Table I, we report preprocessing statis-
tics for a number of large scale datasets. Statistics include
the time required for building the multiresolution model and
compressing it, as well as the disk usage (uncompressed
and compressed) for the given value of N . Throughout all
experiments, the grid size used to support clustering was
K = 35. As we can see, the preprocessing time depends to
some extent on the fanout factor N , and hence number of
internal nodes, but in general our approach can preprocess
about 40K to 60K points/second.

B. Rendering

Figure 7 shows different views of our large test models,
demonstrating the LOD mechanism producing constant qual-
ity renderings at varying zoom-in levels by rendering on a
budget of B = 3M to 5M. Figure 8 shows the comparison
of sampling and rendering quality depending on the choice
of LOD tree data structure, i.e. using octrees, binary kd-
trees or multi-way kd-trees. Our multi-way kd-tree clearly

Model #Samples N Time (s) Disk Usage (MB)
In Out Comp.

David 2mm 4129614 3 71 158 229 37
Lucy 14027872 2 310 535 757 143

David 1mm 28184526 5 447 1127 1525 225
St. Matthew 186850683 3 4915 7473 10808 1652

Pisa Cathedral 368585469 4 9044 14743 20937 2973

Table I
PREPROCESS MEASUREMENTS.

outperforms the octree due to better sampling adaptivity
and is at least equally as good as a (binary) kd-tree. Speed
performance is discussed below.

We benchmarked our implementation for various chunk
sizes and thus fanout values N with the St. Matthews
model with simple OpenGL points as drawing primitives.
Table II shows the tree structure information for various
configurations indicating fanout factor N , number of points
in VBO, as well as number of levels and nodes in the multi-
way kd-Tree. Rendering rates for these configurations are
given in Figure 9. This is further verified by comparing
our multi-way kd-tree also with octree and kd-tree for
point throughput for similar maximal node sizes (see also
Table IV).

Fanout (N) VBO size Levels Nodes
6 4009 7 55987
6 24029 6 9331
3 77822 8 3280
7 85437 5 2801
8 364943 4 585

Table II
MULTI-WAY KD-TREE STRUCTURE FOR THE ST. MATTHEW MODEL

USING DIFFERENT VBO SIZES AND FANOUT FACTOR N .

As is clear from Table III, rendering efficiency in terms
of frames per second and points per second is quite similar
for all models despite them varying significantly in size.
We achieve overall rendering rates of nearly 290M points
per second with peaks exceeding 330M even for the larger
datasets. We benchmarked two other state-of-the-art chunk-
based systems [12], [14] on the same models and rendering
hardware, and obtained very similar results (within ±5%).
Our new framework offers more flexibility, as it adds the
ability to control tree depth, and thus, the number of refine-
ment steps required to achieve the required resolution.

Our compression scheme is conservative in terms of disk
space and could be improved by compressing refined point
splats relative to their coarser parent points. However, our
experiments have shown that performance (frame and point
throughput rates) and display quality are hardly affected
at all due to the current compression, even though de-
compression is performed on the CPU. Hence, the simple
compression technique used is a good trade-off for storage

space versus rendering efficiency.

Model #Samples N VBO Size (K) Fps Pps (M)
David 2mm 4129614 3 51 87 264

Lucy 14027872 2 55 85 262
David 1mm 28184526 5 45 86 265
St. Matthew 186850683 3 85 87 265

Pisa Cathedral 368585469 4 90 88 282

Table III
RENDERING PERFORMANCE STATISTICS FOR VARIOUS MODELS AND

VBO SIZES, GIVEN A RENDERING BUDGET OF B = 3M.

In Table IV, we summarize the rendering performance as a
function of different LOD tree construction approaches (see
also Figure 8). It shows that an optimum display quality and
rendering speed can be obtained with moderate VBO sizes,
while highest point throughput is achieved with large VBOs.

VBO Size Octree Kd-Tree MW Kd-Tree
Fps Pps Fps Pps Fps Pps

24029 115 118 125 203 139 229
77822 122 185 113 224 92 237
85437 119 210 113 224 84 251

Table IV
COMPARISON OF PERFORMANCE BETWEEN OCTREE, KD-TREE AND
MULTI-WAY KD-TREE USING THE ST. MATTHEW MODEL AND PIXEL

ERROR THRESHOLD OF 3.5.

VI. CONCLUSION AND FUTURE WORK

We have presented a simple and efficient framework for
hierarchical multiresolution preprocessing and rendering of
massive point cloud datasets. We have demonstrated that
our novel point hierarchy definition is flexible in that it can
adapt to a desired LOD granularity by adjusting its fanout
factor N , that we can target specific rendering-efficient
VBO sizes and that our algorithm supports adaptive out-
of-core rendering, featuring asynchronous prefetching and
loading from disk as well as rendering on a budget. Our
future work will concentrate on improving rendering quality
through geo-morphing, increasing the compression factor,
and implementing networked rendering.

ACKNOWLEDGMENT

We are grateful to the Stanford Graphics Group, The
Digital Michelangelo Project, and the ISTI-CNR Visual
Computing Group for making benchmark datasets available.

REFERENCES

[1] M. Levoy and T. Whitted, “The use of points as display
primitives,” Department of Computer Science, University of
North Carolina at Chapel Hill, Tech. Rep. TR 85-022, 1985.

[2] J. Grossman and W. J. Dally, “Point sample rendering,” in
Proceedings Eurographics Workshop on Rendering. Euro-
graphics, 1998, pp. 181–192.

Figure 7. Varying zoom views of the David (28M samples), St. Matthews (187M samples) and Pisa Cathedral (368M samples) models.

[3] H. Pfister and M. Gross, “Point-based computer graphics,”
IEEE Computer Graphics and Applications, vol. 24, no. 4,
pp. 22–23, July/August 2004.

[4] M. H. Gross, “Getting to the point...?” IEEE Computer
Graphics and Applications, vol. 26, no. 5, pp. 96–99, Septem-
ber/October 2006.

[5] M. H. Gross and H. Pfister, Eds., Point-Based Graphics, ser.
Series in Computer Graphics. Morgan Kaufmann Publishers,
2007.

[6] M. Sainz and R. Pajarola, “Point-based rendering techniques,”
Computers & Graphics, vol. 28, no. 6, pp. 869–879, 2004.

[7] L. Kobbelt and M. Botsch, “A survey of point-based
techniques in computer graphics,” Computers & Graphics,
vol. 28, no. 6, pp. 801–814, 2004.

[8] S. Rusinkiewicz and M. Levoy, “QSplat: A multiresolution
point rendering system for large meshes,” in Proceedings
ACM SIGGRAPH. ACM SIGGRAPH, 2000, pp. 343–352.

[9] C. Dachsbacher, C. Vogelgsang, and M. Stamminger, “Se-

Figure 8. Comparison of LOD sampling quality depending on the choice of LOD tree data structure, i.e. octree, kd-tree or multi-way kd-tree (f.l.t.r.),
using similar maximal node sizes.

0

50

100

150

200

250

300

350

4009 24029 77822 85437 364943

VBO size

#
 o

f
u

n
it

s

Frames / sec

Million Points / sec

0

50

100

150

200

250

300

350

4009 24029 77822 85437 364943

VBO size

#
 o

f
u

n
it

s

Frames / sec

Million Points / sec

Figure 9. Rendering rates for rendering on a budget B of (a) 6 million and (b) 12 million points.

quential point trees,” ACM Transactions on Graphics, vol. 22,
no. 3, pp. 657–662, 2003.

[10] R. Pajarola, M. Sainz, and R. Lario, “XSplat: External
memory multiresolution point visualization,” in Proceedings
IASTED International Conference on Visualization, Imaging
and Image Processing (VIIP), 2005, pp. 628–633.

[11] M. Wimmer and C. Scheiblauer, “Instant points : Fast
rendering of unprocessed point clouds,” in In Proceedings
Symposium on Point-Based Graphics, July 2006, pp. 129–
136.

[12] E. Gobbetti and F. Marton, “Layered point clouds,” in Pro-
ceedings Eurographics/IEEE VGTC Symposium on Point-
Based Graphics, 2004, pp. 113–120.

[13] M. Wand, A. Berner, M. Bokeloh, A. Fleck, M. Hoffmann,
P. Jenke, B. Maier, D. Staneker, and A. Schilling, “Interactive
editing of large point clouds,” in Proceedings Eurograph-

ics/IEEE VGTC Symposium on Point-Based Graphics, 2007,
pp. 37–46.

[14] F. Bettio, E. Gobbetti, F. Marton, A. Tinti, E. Merella, and
R. Combet, “A point-based system for local and remote
exploration of dense 3D scanned models,” in Proceedings
Eurographics Symposium on Virtual Reality, Archaeology and
Cultural Heritage, 2009, pp. 25–32.

[15] M. Pauly, M. Gross, and L. P. Kobbelt, “Efficient simpli-
fication of point-sampled surfaces,” in Proceedings IEEE
Visualization. Computer Society Press, 2002, pp. 163–170.

[16] J. Boesch, P. Goswami, and R. Pajarola, “Raster : Simple
and efficient terrain rendering on gpu,” in Proceedings Euro-
graphics Area Paper, Scientific Visulization, 2009, pp. 35–42.

[17] Y. Zhang and R. Pajarola, “Deferred blending: Image com-
position for single-pass point rendering,” Computers and
Graphics, vol. 31, pp. 175–189, 2007.

