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The diffusion process in a multicomponent system can be formulated in a general form by the generalized
Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems,
such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials
(membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in
special cases) or by numerical approaches. Different numerical strategies have been previously presented,
but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion
and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered.
In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements
of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions
n × n (n being the number of independent components). This step, which can be easily performed for n )
2 and remains reasonable for n ) 3, becomes rapidly very complex in problems with a large number of
components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations
in the transient regime for a one-dimensional system with a generic number of components, avoiding the
definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two
approaches have been implemented in a computational code; the first is the simple finite difference second-
order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant
final equations are reported. The second is based on the more accurate backward differentiation formulas,
BDF, or Gear’s method (Shampine, L. F.; Gear, C. W. SIAM ReV. 1979, 21, 1.), as implemented in the
Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran SolVers for
ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html
(2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone
and methanol through stagnant air, uptake of two components on a microporous material in a model system,
and permeation across a microporous membrane in model systems, both with the aim to validate the
method and to add new information to the comprehension of the peculiar behavior of these systems.
The approach is validated by comparison with different published results and with analytic expressions for
the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number
of components (the limitation being essentially the computational power) is also tested, and results are reported
on the permeation of a five component mixture through a membrane in a model system. It is worth noticing
that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with
concentration-dependent diffusion coefficients.

Introduction

The description, interpretation, modeling, and simulation of
the multicomponent diffusion process is a crucial aspect in many
research and industrial activities. For this reason, it is the subject
of a large number of books and reviews, as well as an active
research field. An overview of the different theoretical ap-
proaches to diffusion is beyond the scope of this paper. We
restrict ourselves to remind that multicomponent diffusion can
be described essentially within three strategies. In the following,
a short summary of these approaches is reported; the reader is
referred to recent reviews for more details.3-6 Moreover, the
attention is focused on one-dimensional systems (z being the

considered coordinate), given that this is the subject of the
present work.

The first approach is known as the Fick law of diffusion; the
molar flux of component i, Ni, is written as a linear combination
of the concentration gradients, dcj/dz, of all components

This formulation is phenomenological; the diffusion coefficients,
Dij, are obtained from experiments and can show a marked
dependence on the concentrations. An example can be found
in a work of Krishna and Wesselingh,3 where an analysis of an
experimental study reported by Duncan and Toor7 in 1962 on
an ideal ternary gas mixture indicates a curious behavior for
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one component. Here (and in the following), “concentration”
has a general meaning and indicates different quantities fol-
lowing the problem under study (for instance, it can be a partial
pressure in the case of a gas mixture or a fractional occupancy
for surface diffusion in microporous materials).

The second approach is based on irreversible thermodynamics.
In this case, Ni is a linear combination of the chemical potential
gradients, dµj/dz, which are the driving forces for diffusion:

The elements Lij are called Onsager phenomenological coefficients
and satisfy the reciprocal relation, Lij ) Lji.

Finally, the third approach is due to Maxwell8 and Stefan9

(MS) and is based on a microscopic hypothesis on the physical
effects controlling the diffusion process. In this formulation, as
clearly reported by Krishna and Wasselingh,3 two forces are
exerted on the i molecules, and these two forces cancel out each
other. The first force is the chemical potential gradient, -dµi/
dz, and it is the driving force for diffusion. This force is
counterbalanced by the friction with all of the other moving
species j; this friction is proportional to the differences between
the velocities of the two species and to the concentration of j.
The proportionality coefficient is written as 1/Ðij, where the Ðij

are called MS diffusivities and represent the inverse of a drag
coefficient. After some algebraic manipulation, the MS equations
can be cast in the form

where xi ) ci/ct are the molar fractions (ct being the total molar
concentration).

One can show that the three formulations are actually fully
equivalent (as reported by different authors; see Wang and
LeVan10 for a recent and complete analysis) and that simple
equations relate the three key quantities, the Fick diffusivities,
the phenomenological Onsager coefficients, and the MS diffu-
sivities. These three approaches can be further connected to other
theories (see, for instance, Mitrovic11 for a derivation of the
MS equations from the classical Lagrange equations).

Among the different approaches, the MS formulation has gained
in the last decades a central position, in particular for the description
of the multicomponent diffusion process in microporous systems.
Many technologically relevant processes fall into this category; to
report only a few examples, let us cite diffusion in microporous
membranes,6 pressure swing adsorption,12 diffusion in carbon
nanotubes,13 capillary diffusion,14 remediation of contaminated
groundwater,15,16 membrane electrolysis process,17 gas transport in
porous fuel cell anodes,18,19 enantiomer separation in chromatog-
raphy,20 and membrane distillation.21

Moreover, the MS equations are used to describe the
diffusion, besides in “standard” gas and liquid phases, in more
extreme situations, such as, for instance, in high-temperature
gas nuclear reactors22 and in plasma mixtures.23,24

The MS equations can be solved analytically (only in special
cases25-27) or by numerical approaches. The theoretical descrip-
tion of the physical systems reported above requires a general
and stable numerical method able to solve the MS equations in
the transient regime for a generic number of components without
introducing approximations (apart, obviously, from those of the

numerical procedure). Moreover, a remarkable strong point
would be the possibility to manage the various choice for what
concerns, for instance, the MS diffusivities (constant or de-
pendent on the concentrations), the adsorption isotherm (for
microporous material), and other physical parameters, allowing
one to treat all of these systems, described with different physical
models, within a unique computational tool.

The aim of this paper is to present such a tool, from the definition
of the numerical algorithm, to its implementation in a computational
code, and finally, to its application on actual problems.

The remainder of the paper is organized as follows; in the next
sections the MS equations are discussed for the diffusion in different
physical systems, the numerical algorithm is presented, the method
is validated by comparison with previously published results, and
new applications are reported. Finally, the Conclusions section
presents some conclusive remarks.

The Generalized Maxwell-Stefan Equations

The generalized MS equations8,9 (for a general review, the
reader is referred to Krishna and Wesselingh3) describe the mass
transfer process in a multicomponent system by relating the
molar fluxes, Ni, with the chemical potential gradients, dµi/dz.
These equations can be cast in different forms, following the
nature of the system under consideration. Hereafter, three cases
are reported in details.

Diffusion within a Bulk Fluid Phase. For the diffusion
within a bulk fluid phase,3 one has

It is worth noticing that only n - 1 of these equations are
independent due to the Gibbs-Duhem equation

By using the relation

the left-hand side of eq 4 can be written as

where the (n - 1) × (n - 1) matrix of thermodynamic factors,
Γ, has been introduced. It has elements

where γi are the activity coefficients. Let us note that for an
ideal gas mixture, Γij ) δij.

In the case of equimolar diffusion (no net transfer flux out
or into the system), one has
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j)1

n
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dz
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that is

Substituting this expression into eq 4, the right-hand side of it
can be put in the matrix form ct

-1BN, where the vector N collects
the first n - 1 fluxes and the (n - 1) × (n - 1) B matrix has
elements

and

With these definitions, eq 4 becomes

where the vector (∂x/∂z) collects the first n - 1 molar fraction
gradients ∂xi/∂z.

Finally, the fluxes are obtained by the relation

with

A special type of bulk diffusion is the case where one of the
components is stagnant. An example of this process is the
experimental study of Carty and Schrodt,25 considered in detail
in this work.

For such a process, eq 9 is replaced by the condition Nn ) 0
(for simplicity, the stagnant component is considered to be the
last one). The only modification with respect to equimolar
diffusion concerns the B matrix, which assumes the form

and

Diffusion within Macropores: The Dusty Gas Model. In
the diffusion of a mixture within macropores, two transport

mechanisms are dominant,28 the free molecular (bulk) diffusion,
when intermolecular collisions dominate over molecule-wall
collisions, and the Knudsen diffusion, when molecule-wall
collisions dominates over intermolecular collisions. The first
mechanism is more important for large pore sizes and high system
pressure, while for small pore sizes and low system pressure, the
second dominates. However, both processes must be normally taken
into account because in many systems, both occur.

In this case, the MS equations are

where Ði,Kn is the Knudsen diffusivity of species i.28

For an ideal gas mixture (Γ ) 1), these equations can be
cast in the form

where N is a vector collecting the fluxes of the n components
and the (n × n) B matrix has elements

and

Diffusion within Micropores. In the case of diffusion within
micropores, the diffusing molecules always feel the force field
of the pore surfaces; therefore, the process is assimilated to a
surface diffusion. In this situation, the MS equations are written
as29

where Ni
s are the surface fluxes, qi is the loading of component

i (in molecules per unit cell or mol kg-1), qi
sat is the saturation

loading of component i, θi ) qi/qi
sat are the fractional occupancies

of the surface sites (also called coverages), and F is the density
(in number of unit cell per m3 or kg m-3).

The final relevant equations, in this case, are

where qsat is a diagonal matrix with the qi
sat as diagonal elements

and the matrix B is defined by

Nt ) ∑
i

n
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and

The expression of the Γ matrix elements depends on the adsorption isotherm of the microporous system. In the simplest case, the
Langmuir isotherm with equal saturation loadings, one has

where θV ) 1 - ∑i)1
n θi is the fraction of unoccupied sites.

Numerical Resolution of the Maxwell-Stefan Equations

It is worth noticing that in all cases discussed in the last section, the MS equations can be reformulated in a Fick-like expression,
where the vector of the fluxes is equal (apart from a constant) to the product of a matrix D and the vector collecting the concentration
gradients.

The continuity equation for component i, in the case of the diffusion within a bulk fluid phase in one dimension system, is

Using eq 14 for the flux, eq 28 can written as

These equations are coupled and form a system of nonlinear second-order parabolic partial differential equations (PDEs).
While in the Fick formulation of diffusion the matrix D is often considered constant, thus simplifying the resolution of the system

of PDEs (eq 29), in the MS approach, this is a drastic approximation. The dependence of the elements of the D matrix (through the
B-1 and Γ matrices) on the unknown concentration is complex; it can be easily derived in an analytic form for the case of two
independent components, as reported in various papers,29,30 and it remains an affordable task for three31 and perhaps four independent
components. As an example, in the case of the membrane permeation of a two-component mixture, from eqs 23-25, one can
eventually obtain the analytic expression of the fluxes29

For a number of independent components beyond four, the derivation of the analytic expression of the D matrix elements becomes
rapidly too complex.

Even if the analytic expression of D is known, one has to deal with the problem of the dependence of D on the unknown
concentration (and therefore on the position), a relevant aspect for the numerical resolution of the system of PDEs (29). This
point can be faced by using very efficient computer packages implementing numerical schemes of different quality; in the
finite difference scheme, the problem can be solved with the method of lines32 using the semi-implicit Runge-Kutta methods
(such as, for instance, the Crank-Nicolson33,34 approach) or the more refined multistep methods (as, for instance, the backward
differentiation formulas, BDF, or Gear’s method1). One can also cite other approaches as, for instance, the orthogonal collocation
on the finite element35 algorithm coupled with ODE solvers (e.g., LSODA36 solvers). These computational programs have
been largely used in the past.30,37,38

Bij ) -
θi

Ðij
s
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When mixtures with more than two/three independent com-
ponents have been studied, simplifications have been normally
introduced in the equations in order to keep the problem
tractable. The most used of these approximations, the single
file diffusion model, consists of supposing Ðij ) ∞, thus making
the B1- matrix diagonal, with Ði as diagonal elements. The effect
of this approximation is discussed in the next sections.

In this paper, the numerical resolution of the system of PDEs
reported in eq 29 is faced following a different approach; the
aim is to have a method for the direct numerical resolution of
the system of PDEs avoiding the symbolic inversion of the B
matrix, thus allowing for the possibility to treat a generic number
of components without introducing approximations in the
equations. The price to pay for avoiding the symbolic inversion
of the B matrix is a large number of numerical inversions of
the same matrix. Both numerical and efficiency problems can
originate from this choice, and this aspect is discussed at the
end of this section. Obviously, the same problem is met in the
Fick formulation if D is not supposed constant, and the algorithm
presented hereafter can be applied also in this case. In this
section, the numerical resolution of the MS equations is
presented for the case where the unknown quantities are the
molar fractions, but its extension to other cases (for instance,
the coverage) is trivial.

In eq 29, D has a nonlinear dependence on all xj, and this
makes the numerical resolution of the equations problematic.
First of all, D depends on z; second, and most important, it
depends on the solutions of the set of differential equations.
This problem is faced in this paper following two numerical
approaches. The first is a finite difference approach already used
by our group for the study of the salt diffusion in a solar
pond39-41 (SP) system, where the Fick diffusion coefficient D
was position-dependent, given that it was a function of the salt
concentration and of the temperature. Here, the derivation is
more complex than that in the SP case due to the dependence
of the flux of one chemical species on the concentration of all
components. As in the SP case, the simple Crank-Nicolson33,34

approach, with a discretization of both the space and the time
variables, has been considered. The second approach is based
on the accurate BDF also known as Gear’s method,1 as
implemented in the ODEPACK2 package.

In both approaches, the molar fractions xi(z,t) are computed
on a regular grid of points in z ({z1, z2, ..., znz

}, zi+1 - zi ) ∆z)
and in t ({t1, t2, ..., tnt

}, ti+1 - ti ) ∆t), tnt
being the total

simulation time. Indicating the length of the simulated spatial
interval with δ, we assume z1 ) 0 and znz

) δ. In order to solve
eq 29, one has to define the initial conditions, that is, all xi(zj,t1),
the molar fractions of all components at all grid points at the
first time step. Moreover xi(z1,tk) and xi(znz

,tk) for all i and k are
defined by the boundary conditions.

The central aspect for the resolution of eq 29 is to have the
numerical values of the Dii′(zj,tk) matrix elements. To this aim,
the first problem is that they are actually unknown, depending
on the molar fractions at time tk, that is, the solutions of the
equations that one wants to solve. In order to circumvent this
difficulty, two strategies can be followed:42

• The Dii′(zj,tk) are substituted by their values at time tk-1.
These values are known, given that they depend on the xi(zj,tk-1).
The use of the molar fractions of the previous time step is
expected to be a good approximation, given that they normally
show modest variation from one time step to the next one
(actually, the time step must be chosen to satisfy this requirement
in order to have good quality results).

• One can consider the first strategy as the first step in a
procedure in which Dii′(zj,tk) is approached iteratively. Once the
xi(zj,tk) are computed in the first iterative step, they are used to
compute Dii′(zj,tk), and the solution of eq 29 gives the second
approximation of the xi(zj,tk). The convergence is reached when
xi(zj,tk) do not show variations between two iterative steps.

In the following, we drop the variable tk for the D matrix
elements, with the assumption that one of the two strategies
reported above is used. In the actual applications reported in
this paper, the first strategy has been considered. However, in
both cases, the numerical expression of the B and Γ matrices
can be easily obtained for a given grid point in z at the time tk,
and the B-1 matrix is computed on the same grid points by the
numerical inversion of the B matrix, thus allowing for the
computation of the D matrix. The inversion of the B matrix
must be performed ∼nz × nt times, and this can be supposed to
be quite a demanding task. The use of the very efficient Lapack
library43 has however kept the CPU time within an acceptable
range for all of the practical applications described in this paper
(see the General Considerations subsection). Moreover, one can
reasonably expect the numerical inversion of the B matrix to
be rather prone to numerical problems in some cases; again, in
the practical applications reported in this paper, the approach
here described has been found to be stable and robust.

Equation 29 presents a further difficulty due to the dependence
of the D matrix elements on z. This problem is faced here within
a classical strategy using a finite difference numerical approach
(accurate to the second order in space) with an appropriate
centering, obtaining

where

By noticing that the xi(zj,t) are a set of functions of a single
variable (t), eq 32 is a system of ordinary differential equations
(ODE), which can be solved using very effective numerical
methods. The transformation of the original system of PDEs,
eq 29 in a system of ODEs through the discretization in the z
dimension, is known as the method of lines.32

For the resolution of the system of ODEs (eq 32), two
different numerical approaches have been considered. The first
is the Crank-Nicolson33,34 method, which has been implemented
from scratch in our code and is described in detail hereafter.
The second approach, the Gear’s method, is more complex and
effective; in this case, use has been made of the ODEPACK2

collection of Fortran solvers by interfacing our code to the
LSODE solver. The details of this solver are not reported here
and can be found in the literature.2 The availability of two
different numerical approaches has been exploited for a coher-
ence test of our code.

For the sake of conciseness, in the following, xj,k
i indicates

xi(zj,tk), the molar fraction of component i at the jth grid point

∂xi(zj, t)

∂t
) 1

(∆z)2 ∑
i')1

n-1

{Dj+1/2
ii' [xi'(zj+1, t) - xi'(zj, t)] +

Dj-1/2
ii' [xi'(zj-1, t) - xi'(zj, t)]} (32)

Dj+1/2
ii' )

Dii'(zj+1) + Dii'(zj)

2
(33)

Dj-1/2
ii' )

Dii'(zj-1) + Dii'(zj)

2
(34)
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in z and at the time tk. Using this notation, in the semi-implicit
Crank-Nicolson33,34 scheme (accurate to the second order in
time), eq 32 becomes

It is worth noticing that this computational scheme, being a finite
difference semi-implicit model, is stable for any choice of the
time step ∆t and of the grid interval ∆z.

Moving all terms depending on tk to the left part of the
equation and those depending on tk-1 to the right part, one has

where

For each time step, eq 36 is a system of linear equations of the
type

where X is a vector collecting all of the unknown xj,k
i (from 1

to nz - 2, the xj,k
1 with 2 e j e nz - 1, from nz - 1 to 2(nz -

2), the xj,k
2 with 2 e j e nz - 1, etc.). Introducing the superindex

�, which depends on the two indices i and j according to the
relation

one can write

The C vector has the form

The A matrix has a more complex structure. In a compact form,
one can write

In more detail, A has a block structure ((n - 1) × (n - 1)
blocks) where each block is a tridiagonal (nz - 2) × (nz - 2)
square matrix.

Some elements of the A and C matrices are then modified
according to the chosen boundary conditions. Two possibilities
are considered here, that is, constant concentrations or vanishing
fluxes. In the first case, one has to add to the C elements with
� defined by j ) 2 or j ) nz - 1 the terms Kxi(0)∑i′)1

n-1 Dj-1/2
ii′ for

j ) 2 or Kxi(δ)∑i′)1
n-1 Dj+1/2

ii′ for j ) nz - 1, where xi(0) and xi(δ)
are the imposed concentrations of the ith component at z ) 0
and δ, respectively. In the case of vanishing fluxes, the diagonal
elements of the A matrix with � defined by j ) 2 or nz - 1 are
modified by subtracting the term K∑i′)1

n-1 Dj-1/2
ii′ for j ) 2 or

K∑i′)1
n-1 Dj+1/2

ii′ for j ) nz - 1.
The system of linear equations can be solved very effectively

using a mathematical library such as, considering, for instance,
a FORTRAN implementation, the DGESV routine of the Lapack
library.43

Finally, once the xj,k
i are obtained with one of the two

numerical approaches (Crank-Nicolson or Gear), the flux of
component i, Nj,k

i , can be computed using a finite difference
approach

Summarizing, for each time step, the scheme to be followed
is as follows:

• For each grid point in z, compute the B matrix (defined by
the specific problem considered), its inverse B-1, and the product
B-1Γ, thus obtaining the D matrix.

• Compute all of the values xj,k
i by using one of the two

options, build the A matrix (eq 42) and the C vector (eq 41)
and solve the system of linear eq 38 (Crank-Nicolson) or call
the LSODE solver (Gear).

• Compute the fluxes.
This method is applied in the next sections in actual

calculations on various problems.

Testing Examples and Applications

General Considerations. In the simulation of the diffusion
process governed by the MS equations, it is useful to introduce
a new set of units, as described for instance in a paper by Loos
et al.44

In these units, the length of the studied system, δ, is the length
unit and the lower single species MS diffusivity, Ði

min is the
diffusivity unit. Within this unit system, time is expressed in
units of δ2/Ði

min.
All calculations have been performed on a Toshiba Laptop

with an Intel Pentium 2.0 GHz CPU running the Linux operating
system. The program has been compiled with the g95 compiler.
The running time for a simulation calculation ranges from a

xj,k
i - xj,k-1

i

∆t
) 1

2(∆z)2 ∑
i')1

n-1

Dj+1/2
ii' [(xj+1,k

i' - xj,k
i' ) +

(xj+1,k-1
i' - xj,k-1

i' )] + Dj-1/2
ii' [(xj-1,k

i' - xj,k
i' ) +

(xj-1,k-1
i' - xj,k-1

i' )] (35)
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i - K ∑
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n-1
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ii' + K ∑
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ii' ) -

K ∑
i')1

n-1

xj+1,k
i' Dj+1/2

ii' ) xj,k-1
i +

K ∑
i')1

n-1

[Dj+1/2
ii' (xj+1,k-1

i' - xj,k-1
i' ) + Dj-1/2

ii' (xj-1,k-1
i' - xj,k-1

i' )]

(36)

K ) ∆t

2(∆z)2
(37)

AX ) C (38)

� ) (i - 1) / (nz - 2) + j - 1 (39)

X� ) xj,k
i (40)

C� ) xj,k-1
i + K ∑

i')1

n-1

[Dj+1/2
ii' (xj+1,k-1

i' - xj,k-1
i' ) +

Dj-1/2
ii' (xj-1,k-1

i' - xj,k-1
i' )] (41)

A�,�′ ) {1 + K(Dj+1/2
ii' + Dj-1/2

ii' ) if i ) i',j ) j'

K(Dj+1/2
ii' + Dj-1/2

ii' ) if i * i',j ) j'

-KDj-1/2
ii' if j ) j' - 1

-KDj+1/2
ii' if j ) j' + 1

0 otherwise
(42)

Nj,k
i ) -ct

1
∆z ∑

i')1

n

[Dj-1/2
ii' (xj,k

i' - xj-1,k
i' ) +

Dj+1/2
ii' (xj+1,k

i' - xj,k
i' )] (43)
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few seconds to a few hours, following the number of compo-
nents, grid points, time steps, and the numerical approach used.

The results are always reported for the Crank-Nicolson
method; the Gear one gives values which are practically identical
(indistinguishable on the scale used in the figures).

Diffusion in the Bulk Fluid Phase: Acetone and Methanol
Diffusing through Stagnant Air. In 1975, Carty and Schrodt25

(CS) presented an experimental study in which a gas mixture
of acetone and methanol was diffusing in a Stefan tube through
stagnant air. This study has been already used for the validation
of methods for the numerical resolution of the MS equations.45,46

Here, besides its use as a first test for the numerical approaches
presented in the previous section, some new considerations on
this system are reported. In the following, the subscripts 1, 2,
and 3 indicate acetone, methanol, and air, respectively. In the
study of CS,25 air was considered as a pure component since
the diffusivities of acetone and methanol in oxygen and nitrogen
are very similar. In the experimental setup, at the bottom of the
tube, a film of a liquid mixture of acetone and methanol
continuously flowed, so that the gas-phase concentrations close
to the liquid-gas interface were considered constant. From the
vapor-liquid equilibrium data of Freshwater and Pike,47 the gas
molar fractions were estimated to be x1 ) 0.3173, x2 ) 0.5601,
and x3 ) 0.1227. At the top of the tube, a stream of dried air
swept away the vapors of acetone and methanol, so that x1 )
0, x2 ) 0, and x3 ) 1.0. The temperature was 328.5 K and the
pressure 745.2 mm of Hg, and along the tube (0.2425 m long),
air was stagnant. At the steady state, the measured fluxes were
1.779 × 10-3 mol m-2 s-1 for acetone and 3.121 × 10-3 mol
m-2 s-1 for methanol. The experimental value of the diffusivities
at constant temperature (328 K) and pressure (1 atm) of acetone
(13.72 × 10-6 m2 s-1) and of methanol (19.91 × 10-6 m2 s-1)
in air were taken from the literature.48,49 The diffusivity of
acetone in methanol was not experimentally available and was
estimated to be 8.48 × 10-6 m2 s-1. The values of these
parameters are reported in Table 1. The concentration of the
various species was measured at seven points along the tube
and are reported in Figure 1.

For this system the MS equations can be integrated at the
steady state, obtaining the concentration profiles (see eqs 2 and
3 of CS25) as functions of the (constant) fluxes, of the
diffusivities, and of the experimental concentrations at a chosen
height of the tube. Carty and Schrodt noted that if the
concentrations of the vapor-liquid interface are chosen as the
known values, the concentration profiles show quite a large
dependence on the used values. By using for all quantities the

values reported above, a marked disagreement of the computed
concentrations with respect to the experimental ones was
observed.

The agreement between theory and experiment was im-
proved25 by modifying, in the computational input, the concen-
trations at the vapor-liquid interface (x1 ) 0.319, x2 ) 0.528,
and x3 ) 0.153), the tube length (l ) 0.238 m), and the fluxes
(N1 ) 1.781 × 10-3 and 3.186 × 10-3 mol m-2 s-1), while the
diffusivities and the concentrations at the top of the tube were
kept unchanged. The analytic molar fractions profiles with these
parameters are also reported in Figure 1.

In both of the numerical approaches reported in this work,
only the diffusivities and the concentrations at the top and the
bottom of the tube must be defined. The time evolution of the
concentration profiles is computed, and the steady state is
reached when fluxes are constant along the tube. Our numerical
approaches have been tested using the modified parameters used
in CS25 (also reported in Table 1) with nz ) 101 and nt ) 10001
and for a total simulation time of 5000 s (which ensures that
the steady state is reached). The concentration profiles, and the
fluxes (the output of our code) are practically indistinguishable
from the analytic solution.

In order to verify if the parameter modification25 gives the
best agreement with the experimental data, a full optimization
of a selected number of input parameters is here presented. The
optimization is performed minimizing a function f(η1, η2, ...,
ηm), where η1, η2, ..., ηm are the m parameters to be optimized.
The function f can be defined in different ways; here, we use
the form

where zjj are the positions (in number nexp ) 7) along the tube
at which the ith concentration, xji(zjj), has been measured and
x̃i(zjj) are the steady-state computed concentrations at the same
positions. Analogously, Ñi and Nj i are the steady-state computed
and measured fluxes, respectively. The different weight on the
fluxes with respect to the concentrations (7 versus 1) has been
introduced in order to account for the larger number of measured

TABLE 1: Acetone and Methanol Diffusing through
Stagnant Air in a Stefan Tube: Experimental and Optimized
Input Parameters and Experimental and Computed Acetone
and Methanol Fluxesa

parameter experimentalb modifiedb optimizedc,d optimizedc,e

Ð12 8.48 × 10-6f 3.891 × 10-6

l 0.2425 0.2380 0.23131 0.23131
x1 0.3173g 0.319 0.30273 0.30235
x2 0.5601g 0.528 0.53718 0.53757
Ñ1 1.779 × 10-3 1.781 × 10-3 1.719 × 10-3 1.755 × 10-3

Ñ2 3.121 × 10-3 3.186 × 10-3 3.281 × 10-3 3.189 × 10-3

a x1 and x2 are the molar fractions of acetone and methanol at the
vapor-liquid interface. Ð13 and Ð23 are kept constant at the
experimental value. The length is in m, fluxes are in mol m-2 s-1,
and diffusivities are in m2 s-1. b Carty and Schrodt.25 c This work.
d First set of optimized parameters. e Second set of optimized
parameters. f Calculated using the method of Bae and Reed50 (see
Carty and Schrodt25). g Vapor-liquid equilibrium data.47

Figure 1. Acetone and methanol diffusing through stagnant air in a
Stefan tube: experimental and optimized molar fraction profiles; +, /,
and × symbols represent experimental points for acetone, methanol,
and air, respectively. Full line: analytic solution with a set of modified
parameters.25 Dashed line: computed values with the second set of
optimized parameters (this work; see Table 1).

f(η1, η2, ..., ηm) ) ∑
i)1

n-1

∑
j)1

nexp ( x̃i(zjj) - xji(zjj)

xji(zjj)
)2

+

7 ∑
i)1

n-1 (Ñi - Nj i

Nj i
)2

(44)
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concentrations with respect to the number of measured fluxes.
The minimization of f(η1, η2, ..., ηm) has been conducted using
the MINUIT51,52 library developed at CERN.

Two sets of optimization parameters have been considered;
the first contains the parameters modified in CS,25 that is, the
acetone and methanol concentrations at the vapor-liquid
interface and the tube length l. The second set contains, besides
the parameters of the first set, the acetone-methanol diffusivity,
Ð12, whose value in the original work25 was theoretically
estimated.

The optimized parameters for both sets are reported in Table
1. For the first set, they closely resemble the modified parameters
defined in CS25 (l being slightly lower, while the acetone and
methanol concentrations are slightly lower and higher, respec-
tively). The agreement with the experimental concentration is
improved at the price of a slight worsening of the agreement of
the computed fluxes with the experimental one. For the second
set of parameters, one notes an almost negligible variation of
the optimal parameters in common with the first set and a
marked variation of the new parameter, Ð12, which is less than
one-half of the value estimated in the original work.25 This
modification brings about an improvement of the computed
results, both for the concentrations and for the fluxes (in
particular, for the methanol flux). The computed concentrations
with the second set of parameters are shown in Figure 1, those
corresponding to the first set of parameters being very close to
them (they are not shown for the sake of clarity). With these
parameters, the description of the experimental system can be
considered very satisfactory.

Diffusion in Micropores: Transient Uptake of Mixture
Components in Microporous Sorbents. The uptake process
of two-component gas mixtures in microporous sorbents has a
practical importance in particular in the field of separation
science and for conversion processes. A transient numerical
study of such a process was published in 1992 by Loos et al.,44

with a numerical method different from the one reported in this
paper. This method was developed for the study of a two-
component system, and it is not straightforwardly generalizable
to a generic number of components. In order to validate our
numerical approach, the simulations presented by Loos et al.44

are reproduced in this subsection. It is worth noticing that in
the original work,44 use has been made of the equations derived
inapreviouspaper,53 inwhich theBmatrix in theMaxwell-Stefan
formulation has an expression different from the one reported
here (compare eqs 21 and 22 of the paper of Krishna53 with
eqs 25 and 26 of this paper). In order to make the comparison
meaningful, the following simulations are performed with the
definition of the B matrix reported by Krishna.53

The transient uptake of a binary mixture has been reported
in Figure 2 of Loos et al.44 for the case of three different
diffusivity ratios Ð1

s/Ð2
s (2, 10, and 100). The initial condition

is vanishing concentrations in the microporous sorbent, while
the boundary conditions are, at all time steps, constant fractional
occupancy at one surface (θ1,k

1 ) 0.10 and θ1,k
2 ) 0.85) and

vanishing fractional occupancy derivatives, that is, vanishing
fluxes, at the other surface.

The uptake values as a function of time are reported in Figure
2, and the comparison with Figure 2 of Loos et al.44 shows an
excellent agreement of the two numerical methods.

Figure 3 reports a detailed analysis of the fractional occupancy
profiles at various times (0.001, 0.01, 0.2, 0.4, 0.6, 0.8, 1.0,
and 1.2 reduced units) for Ð1

s/Ð2
s ) 100, allowing for a direct

comparison with Figure 5 of Loos et al.;44 the agreement is,
also in this case, good.

Diffusion in Micropores: Transient Permeation of a
Binary Mixture through Zeolite Membranes. As a final test
example, the transient permeation of a binary mixture through
zeolite membranes has been considered. All simulated cases
have been taken from Martinek et al.54 (MGNF), with which
the present results are compared. In MGNF,54 as normally done
in the literature, the numerical approach starts by the derivation
of the analytic expression of the elements of the B-1 matrix.
As previously commented, despite the efficiency of such an
approach for a binary mixture, its implementation is difficult
for a three-component system, and it is almost impossible for a
generic number of components.

In the first simulation, the results reported in Figure 1 of
MGNF54 have been reproduced and are shown (on the same
scale) in Figure 4, where the feed and permeate fluxes are
reported for component 1 (faster-diffusing, upper part) and
component 2 (slower-diffusing, lower part) as a function of time.
The simulation parameters are here reported for the sake of
completeness, Ð1

s ) 5 × 10-9 m2 s-1, Ð2
s ) 1 × 10-10 m2 s-1,

q1
sat ) q2

sat ) 2 mol kg-1, δ ) 100 µm, F ) 1800 kg m-3, θ1,k
1

) θ1,k
2 ) 0.33, and θnz,k

1 ) θnz,k
2 ) 0. The cross diffusion

coefficient Ð12
s has been computed from the single-component

MS diffusivities using the logarithmic average

The parameters for the numerical simulation are 101 grid points
in z and 50000 time steps.

Figure 2. Uptake of a binary mixture on a microporous material as a
function of time with the same conditions used for Figure 2 of Loos et
al.44 Number of grid points in z, nz ) 21; number of time steps, nt )
10000. The numbers close to the curve represent the Ð1

s/Ð2
s ratio used

in the simulation (2, 10, 100).

Figure 3. Uptake of a binary mixture on a microporous material.
Occupancy profiles at various simulation times. Same conditions as
those used for Figure 5 of Loos et al.44 Number of grid points in z, nz

) 21; number of time steps, nt ) 60000. Full lines, component 1; dashed
lines, component 2.

Ðij
s ) (Ði

s)θi/(θi+θj)(Ðj
s)θj/(θi+θj) (45)
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The second simulation has been performed using the same
parameters but considering Ð12

s ) ∞. The results are shown in
Figure 5, where the feed and permeate fluxes for component 1
as a function of time (upper part) and the fractional occupancy
of component 1 as a function of z for different times (lower
part) are reported, allowing for a meaningful comparison with
Figure 4 of MGNF.54

The agreement of the results here obtained with those of
MGNF54 is excellent.

Single-File Diffusion Model: An Example of the Effect of
This Approximation. In some cases (as, for instance, with more
than two independent components), approximations have been
proposed in order to simplify the MS equations and to allow
for a handy resolution of them. An example can be found in
the paper of Krishna and van de Broeke55 (KvB), where two
approximations are considered, (1) the “single file diffusion
model” (SFDM) where Ðij

s ) ∞; the B-1 matrix is diagonal,
with the Ði

s as diagonal elements; and (2) the “constant Fick
model”; the Fick matrix, D, is supposed to be coverage-
independent. A special case of this approximation is that in
which D is diagonal, with Ði

s as diagonal elements. In this case,
beyond the approximations introduced in the SFDM, the Γ
matrix is supposed to be the identity matrix.

These approximations have been used in KvB55 for the
simulation of the permeation of different binary mixtures across
a microporous membrane. Here, we concentrate our attention
on two problems, both treated in the frame of the SFDM, the
permeation of a propene(1)/propane(2) binary mixture across a
silicalite membrane and the permeation of methane(1)/n-
butane(2) binary mixture across a silicalite-1 membrane. The

permeate fluxes for both components as a function of time are
reported in Figures 6 and 9 of KvB.55

In order to study the effect of the approximations introduced
in the SFDM, we first tried to reproduce the results of KvB,55

using the same simulation parameters, here summarized for the
sake of completeness. For Figure 6 of KvB,55 the boundary
conditions are θ1,k

1 ) 0.4183 and θ1,k
2 ) 0.5730 at the feed

interface and θnz,k
1 ) 0 and θnz,k

2 ) 0 at the permeate interface,
while the MS diffusivity ratio is Ð2

s/Ð1
s ) 1.15. For Figure 9 of

KvB,55 the boundary conditions are θ1,k
1 ) 0.2262 and θ1,k

2 )
0.4762 at the feed interface and θnz,k

1 ) 0 and θnz,k
2 ) 0 at the

permeate interface, while the MS diffusivity ratio is Ð2
s/Ð1

s )
10. The results of our simulations are reported in Figurse 6 and
7.

Figure 4. Feed (full line) and permeate (dashed line) fluxes of
component 1 (upper part) and component 2 (lower part) as a function
of time for the transient simulation of a permeation of a binary mixture
through a zeolite membrane. The simulation parameters are the same
as those used for Figure 1 of Martinek et al.54 (see text for details).

Figure 5. Feed (full line) and permeate (dashed line) fluxes of
component 1 as a function of time (upper part) and fractional occupation
of component 1 as a function of z at different times (lower part) for
the transient simulation of a permeation of a binary mixture through a
zeolite membrane. The simulation parameters are the same as those
used for Figure 4 of MGNF54 (see text for details).

Figure 6. Permeate fluxes (full line, component 2; dashed line,
component 1) of a propene(1)/propane(2) binary mixture across a
silicalite membrane, using the SFDM. The simulation parameters are
those of Figure 6 of KvB55 (see text for details), 101 grid points in z,
50000 time steps.
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The comparison with the results of KvB55 shows that the
present approach gives slightly different results for the first
simulated system (the fluxes of both components being slightly
higher in our calculation), while for the second system, the
difference is marked, with even a different qualitative behavior
(in KvB,55 the flux of component 1 is lower than the flux of
component 2, while the opposite happens in our calculations).

The results here obtained are confirmed by the analytic
expression for the steady-state fluxes presented by Krishna and
Baur26 (eq 37 in their paper), which holds in the “weak
confinement” regime (the MS diffusivities Ði

s are not dependent
on the factional occupancies), the one here considered. Using
the reduced units, this equation can be written in the simplified
form

where B-1 is diagonal with elements (B-1)11 ) 1.15 and (B-1)22

) 1.00. Moreover, ∆πi ) bi(pi(0) - pi(δ)), where bi, pi(0), and
pi(δ) are the parameter of the extended Langmuir isotherm, the
partial pressure of component i at the feed interface, and that at
the permeate interface, respectively (see KvB55). From eq 46,
one has for the first system (Figure 6) N1 ) 2.3015 and N2 )
2.7416, in excellent agreement with the steady-state values
obtained by our numerical simulation (2.3023 and 2.7419,
respectively).

The application of eq 46 to the second system (Figure 7)
gives N1 ) 3.9029 and N2 ) 0.8217, also in this case in excellent
agreement with those obtained by our numerical simulation
(3.9047 and 0.8196, respectively).

The difference between the present results and those in the
literature is probably due to a misprint of some of the input
parameters in the captions of Figures 6 and 9 of KvB.55 As
said, the aim of this subsection is to show an example of the
effect of the SFDM approximation and not to accurately describe
a particular system. The problem of the permeation of a
methane/n-butane mixture across a silicalite membrane has been
faced by Krishna and collaborators in three subsequent papers,56-58

where a more refined model of the adsorption isotherm has been
considered, obtaining good agreement with the experimental
results of Bakker.59 The implementation in our code of adsorp-

tion isotherms different from the extended Langmuir one is
under development.

The effect of the approximations introduced in the SFDM is
clear by comparing Figures 6 and 7 with the results obtained
for the case of finite Ðij

s (computed from eq 45) reported in
Figures 8 and 9.

One sees that in the first simulated case (propene/propane,
Figures 6 and 8), the use of the SFDM leads to modest variations
in the computed fluxes, slightly increasing the flux of the fast
component (1) and decreasing that of the slow component (2).
On the contrary, in the second simulated case (methane/n-butane,
Figures 7 and 9), the change is marked. While the flux of the
slower component (2) is only slightly reduced upon passing from
the full treatment to the SFDM, the flux of the faster component
is more than doubled.

The behavior found in the simulations based on SFDM can
be easily understood; in the MS formulation, each component
exerts a friction force on the other components,3 and this force
is proportional to the velocity difference of the components and
to (Ðij

s )-1. In the SFDM, the friction forces are set to zero (Ðij
s

) ∞). Such a friction force clearly reduces the velocity
difference with respect to the case where it is absent, slowing
down the faster species and speeding up the slowest species.
The modifications introduced by the SFDM are obviously larger
if the two components have very different MS diffusivities, Ði

s

(that is, in average, larger velocity differences).

Figure 7. Permeate fluxes (full line, component 2; dashed line,
component 1) of a methane(1)/n-butane(2) binary mixture across a
silicalite-1 membrane, using the SFDM. The simulation parameters are
those of Figure 9 of KvB55 (see text for details), 101 grid points in z,
50000 time steps.

N )
ln(θnz

V/θ1
V)

1/θ1
V - 1/θnz

V
B-1∆π (46)

Figure 8. Permeate fluxes (full line, component 2; dashed line,
component 1) of a propene(1)/propane(2) binary mixture across a
silicalite membrane, for the case of finite Ðij

s (computed from eq 45).
The simulation parameters are those of Figure 6 of KvB55 (see text for
details), 101 grid points in z, 50000 time steps.

Figure 9. Permeate fluxes (full line, component 2; dashed line,
component 1) of a methane(1)/n-butane(2) binary mixture across a
silicalite-1 membrane, for the case of finite Ðij

s (computed from eq 45).
The simulation parameters are those of Figure 9 of KvB56 (see text for
details), 101 grid points in z, 50000 time steps.
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Finally, let us treat the case in which the Fick matrix D is
considered diagonal and constant with Ði

s as diagonal elements
(the Γ matrix is the identity matrix). In the systems here studied,
this approximation corresponds to consider as the constant D
matrix that computed at the permeate interface (where the Γ
matrix is the identity matrix) in the SFDM. For the first system
here considered at the steady state, the fluxes are N1 ) 0.48
and N2 ) 0.57, to be compared with N1 ) 2.30 and N2 ) 2.74
computed with the SFDM (see Figure 6). For the second system,
the steady-state fluxes are N1 ) 2.26 and N2 ) 0.48 (N1 ) 3.90
and N2 ) 0.82 in the SFDM; see Figure 7). In both cases, one
observes a marked reduction of the fluxes.

Multicomponent Transient Permeation through a Mi-
croporous Membrane: Results for a Five-Component Mix-
ture. In order to show the capability of the numerical approaches
here reported to treat the one-dimensional diffusion problem
with the MS formulation for more than two independent
components (more than two components for surface diffusion;
more than three components in bulk diffusion), some results
are here presented for the transient permeation of a mixture of
five components through a microporous membrane in a model
system.

The model system can be seen as a multicomponent gener-
alization of the results presented in MGNF54 for a binary
mixture. The simulation starts with an empty microporous
membrane, and the boundary conditions are constant fractional
occupancies at both membrane interfaces. A feed gas mixture
with five components (with constant partial pressures) is in
contact with the microporous membrane, and the fractional
occupancies on the feed interface are equal for all components,

θ1,k
i ) 0.15. On the permeate interface, the fractional occupancies

are all vanishing, θnz,k
i ) 0. The MS diffusivities are chosen to

satisfy the ratio Ði+1
s /Ði

s ) 2. All simulations described in this
section have been performed with 101 grid points in z and 50000
time steps.

The fluxes as functions of time are reported in Figure 10 for
the case in which the MS diffusivities are independent of
loading, while the Ðij

s are defined by eq 45.
The feed fluxes do not show a particular behavior; the shape

is roughly the same for all components, the steady-state fluxes
being related to the MS diffusivities. On the contrary the
permeate fluxes have a different qualitative profile for the
various components. The permeate flux profiles for components
5 (the faster diffusion species) and 1 (the slower one) closely
resemble those reported in Figure 4 for the two components of
a binary mixture. The other three components show intermediate
profiles, with a gradual variation between the two limiting cases.
It is interesting to note that, as found for binary mixtures,54 the
flux for the slower component evolves as expected for a single-
component diffusion, while the flux of the faster component
has a qualitatively different shape, with a marked overshoot of
the steady-state flux in the initial part of the simulation and
then a monotonic decreasing of the flux toward the steady-state
flux.

In a second simulation, the SFDM (Ðij
s ) ∞) has been applied

while keeping the other physical and numerical parameters
unchanged. From the flux profiles reported in Figure 11, one
notes that the use of the SFDM does not strongly modify the
qualitative behavior of the system, while from the quantitative
point of view, the faster species (components 4 and 5) have
increased their fluxes and the slower species (components 1 and

Figure 10. Transient permeation through a microporous membrane
of a five-component mixture in the weak confinement scenario (see
text); feed (upper part) and permeate (lower part) fluxes of the five
components as a function of time. The MS diffusivities are defined by
Ði+1

s /Ði
s ) 2, with Ðij

s computed from eq 45. Boundary conditions: θ1,k
i

) 0.15 and θnz,k
i ) 0 at the feed and permeate interfaces, respectively.

Figure 11. Transient permeation through a microporous membrane
of a five-component mixture in the weak confinement scenario (see
text); feed (upper part) and permeate (lower part) fluxes of the five
components as a function of time. The MS diffusivities are defined by
Ði+1

s /Ði
s ) 2 and Ðij

s ) ∞ (SFDM). Boundary conditions: θ1,k
i ) 0.15

and θnz,k
i ) 0 at the feed and permeate interfaces, respectively.
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2) have reduced their fluxes. Component 3 has roughly the same
flux as that in Figure 10. The values of the steady-state fluxes
in the numerical simulation have been confirmed by the
agreement with the results of the analytic solution (eq 37 of
Krishna and Baur26) for the weak confinement scenario (Ði

s

independent of loading) for which the formula is exact (while
it is only approximate for Ðij

s defined by eq 45).
Previous studies have shown that the hypothesis that the Ði

s

are independent of loading is often wrong, in particular, with
high fractional occupancy. The dependence of Ði

s on the loading
can be complex.60-62 However, in many cases, a linear
dependence of Ði

s on the total fractional occupancy, θ ) ∑i
n θi

s,
has been observed (see Krishna and Baur26)

and this is called the “strong confinement scenario”. A simula-
tion based on this definition of the MS diffusivities (the other
parameters being those used for Figure 10) has been performed.
The permeate fluxes are reported in Figure 12 for the case in
which Ðij

s are computed from eq 45 (upper part) and for the
SFDM (lower part).

The comparison with the permeate fluxes in the weak
confinement scenario (Figures 10 and 11, lower part) shows
that all fluxes are lower in the strong confinement scenario (as
expected from the reduction of the MS diffusivities in the latter
case). As in the preceding case, the use of the SFDM increases
the fluxes of the fast-moving components 4 and 5 and reduces
the fluxes of the tardy components 1 and 2, while the flux of

component 3 remains almost unchanged. It is worth noticing
that an analytic solution for the steady-state fluxes has been
presented also in the case of the strong confinement scenario,
and this solution is exact in the case of the SFDM (eq 44 in
Krishna and Baur26). The results presented in the lower part of
Figure 12 at long time agree with the values computed with
the analytic equation.

Finally, the effect of the variation of one of the fractional
occupancies (that of component 3, which has intermediate MS
diffusivity) at the feed surface has been considered. All of the
other parameters are those of the simulation reported in Figure
10. Figure 13 shows the permeate fluxes for the cases of θ1,k

3 )
0.25 (upper part) and θ1,k

3 ) 0.05 (lower part), for the weak
confinement scenario and with the logarithmic average definition
of Ðij

s (eq 45). One clearly sees that, with respect to the case
with θ1,k

3 ) 0.15, the increase (reduction) of θ1,k
3 leads to an

increase (reduction) of the flux of component 3 at all times.
This has a consequence, even if quite modest, also on the other
fluxes; in the first case, component 3 has a dragging effect,
slightly increasing all fluxes, while in the second case, it has a
slowing down effect, with a moderate reduction of all fluxes.
Moreover, one notes an intensification or a reduction of the
overshooting of the faster component flux with respect to the
steady-state flux related to the increase or decrease of
the fractional occupancies of component 3 on the feed surface.

For all cases considered in this section, the fluxes after 0.3
reduced units of time are reported in Table 2, together with the
steady-state values computed with the analytic equations. It is
worth noticing that in most cases, the steady state has not been
reached in the simulations (the weak confinement case with the

Figure 12. Transient permeation through a microporous membrane
of a five-component mixture in the strong confinement scenario (see
text). Feed fluxes of the five components as a function of time for the
case in which Ðij

s are computed from eq 45 (upper part) and that in
which Ðij

s ) ∞ (lower part) are shown. The MS diffusivities are defined
by Ði+1

s /Ði
s ) 2. Boundary conditions: θ1,k

i ) 0.15 and θnz,k
i ) 0 at the

feed and permeate interfaces, respectively.

Ði
s(θ) ) Ði

s(0)(1 - θ) (47)

Figure 13. Transient permeation through a microporous membrane
of a five-component mixture in the strong confinement scenario (see
text). Feed fluxes of the five components as a function of time for θ1,k

3

) 0.25 (upper part) and θ1,k
3 ) 0.05 (lower part) as boundary condition

on the feed membrane surface are shown. The other boundary conditions
are θ1,k

1 ) θ1,k
2 ) θ1,k

4 ) θ1,k
5 ) 0.15 for the feed surface and θn+z,k

i ) 0
for the permeate surface. The MS diffusivities are defined by Ði+1

s /Ði
s

) 2 and Ðij
s computed from eq 45.
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SFDM being the closest to the steady state). Moreover, let us
note that the analytic equations give exact values only for the
SFDM, while if eq 45 is used for Ðij

s , they are only approximate.
The results discussed in this section, besides their interest

for the comprehension of multicomponent diffusion, clearly
show that the algorithm described in this paper can be
successfully applied for the study of systems with more than
two independent components.

Conclusions

This paper describes a new algorithm for the one-dimensional
numerical resolution of the Maxwell-Stefan equations in the
transient regime. The key points of this approach are:

• The MS equations are rewritten in the Fick-like form N )
-ctD(∂x/∂z), where D ) B-1Γ and B-1 and Γ depend on the
specific problem under study.

• Both the spatial and the time variables are discretized on
regular grids of points.

• The symbolic inversion of the B matrix is substituted by
the numerical inversion of it on all grid points and at all time
steps.

• The derivatives are evaluated with a second-order accurate
in time Crank-Nicolson finite difference approach or using the
Gear method as implemented in the ODEPACK package.

• For the Crank-Nicolson approach, the problem (including
the definition of the boundary conditions) is reformulated in a
matrix form, leading to a system of linear equations, which is
solved using very efficient mathematical libraries.

The method has been applied to different systems, with the
aim of verifying its correctness (by the comparison with
previously published studies), and for new applications. The
MS equations have been solved with the same computational
code for the bulk diffusion, for the uptake process in a
microporous material, and then for the permeation through
microporous membranes, showing that the approach is general,
stable, and solid. One of the innovative aspects of the present
formulation is the possibility to treat a generic number of
components, the limits being in the computational hardware. A
second relevant aspect is related to possible future developments;
indeed, the formulation here described allows for an easy
modification of some assumptions for what concerns the key
quantities such as, for instance, the adsorption isotherm in
microporous surface diffusion, the dependence of the MS
diffusivities on the fractional occupancies, or the nature of the
Ðij

s coefficients. Such a possibility, which depends on the fact
that in the algorithm, the B-1 and Γ matrices are explicitly
computed on the various grid points in z, can allow the use of
various expressions for the relevant key quantities and even the

use of experimental (known on a grid of points) data. The
conjugation of these two innovative aspects makes this method
interesting, besides its use for the simulation of the diffusion
process in systems described by known models, also for testing
new hypotheses on the key quantities or new models for the
description of the diffusion processes at the molecular level in
technologically relevant materials.

This paper reports, as an example of the potentials of the
method, the study of the effect of some assumptions (weak/
strong confinement, logarithmic average for the Ðij

s or SFDM)
and parameters (fractional occupancy of a given component at
the feed surface) in the case of the transient permeation through
a microporous membrane of a five-component mixture.

Two different numerical schemes have been implemented in
our code, the simple Crank-Nicolson method and the more
refined BDF or Gear’s method. Even if the comparison of
different ODEs solvers is not the subject of this paper, a short
comment can be made. Both approaches have shown to be stable
and robust, and they give pretty much the same results (small
differences are due to the different integration schemes and are
expected). Keeping in mind that the Crank-Nicolson method
has been implemented from scratch (plausibly with only a partial
optimization of the code) while the Gear method has been
implemented by using the ODEPACK Fortran package (cer-
tainly written with a high level of optimization), our calculations
have shown that the Gear method is superior and faster, in
particular, for the system with a large number of components.
Nevertheless, we plan to keep both methods in our code, given
that they allow for a consistency check of the results.

Finally, it is worth noticing that the algorithm here described
can be obviously used also for the resolution of the diffusion
problem in the Fick formulation; actually, the MS equations
are first brought back to Fick’s formulation and then solved
with the hypothesis that the Fick diffusivities are position-
dependent. This possibility can be of interest in research fields
not discussed here, such as, for instance, the crystal growth in
protein solution63 or solid-solid metallic diffusion,64 where the
Fick description of the diffusion process is normally used.
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