
Eurographics Italian Chapter Conference (2010)

E. Puppo, A. Brogni, and L. De Floriani (Editors)

An Application of Multiresolution Massive Surface

Representations to the Simulation of Asteroid Missions

Giovanni Pintore1, Roberto Combet1, Enrico Gobbetti1, Fabio Marton1, and Russell Turner2

1 Visual Computing Group, CRS4, Pula, Italy
2 Johns Hopkins University Applied Physics Laboratory, Space Department, Laurel, Maryland, USA

Abstract

We report on a real-time application supporting fast, realistic real-time rendering of asteroid datasets, as well

as collision detection and response between the asteroid and prototype robotic surface exploration vehicles. The

system organizes the asteroid surface into a two-level multiresolution structure, which embeds a fine-grained per-

patch spatial index within a coarse-grained patch-based structure. The coarse-grained structure, maintained out-

of-core, is used for fast batched I/O and GPU accelerated rendering, while the per-patch fine-grained structure is

used to accelerate raycasting and collision queries. The resulting system has been tested with a simple robot lander

and surface exploration simulator. The system models gravity using mass particles uniformly distributed within the

asteroid bodies. Real-time performance is achieved on a commodity platform with giga triangle representations

of asteroids 25143 Itokawa and 433 Eros.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Methodology and

Techniques—Computer Graphics [I.3.7]: Three-dimensional graphics and realism—Computer Graphics [I.3.8]:

Applications—

1. Introduction

Figure 1: View-dependent rendering of 1.5Gtriangles Eros

model. The blended right side of the picture shows the adap-

tive mesh structure with a different color for each patch. Each

patch corresponds to about 16K triangles.

While the majority of asteroids orbit the sun in a region

between Mars and Jupiter, a small number known as Near-

Earth asteroids (NEAs) have orbits that are close to Earth’s.

Because of the potential hazard they pose to Earth as well as

their accesibility, NEAs are compelling targets for robotic,

and eventually human, exploration. However, only two of

them have been landed on by a spacecraft: 433 Eros, by

NASA/JHUAPL’s Near Earth Asteroid Rendezvous (NEAR)

probe and 25143 Itokawa, by the JAXA Hayabusa mission.

Due to their extremely low-gravity environment (Itokawa’s

equatorial surface gravity is about 0.0001 m
s2) and their com-

plex shape topology, the technical problems of landing on as-

teroids can in many ways be more challenging than that of

landing on planets or moons. It is therefore important to con-

duct realistic physics-based computer simulations during the

spacecraft design process in order to study its likely perfor-

mance in proximity to and on the surface of an asteroid. The

ability to view and interact with such a simulation in real-

time is particularly useful, as it can allow spacecraft designers

to gain insight and an intuitive feel for such an exotic envi-

ronment. In this context, supporting fast, realistic real-time

c© The Eurographics Association 2010.

Pintore, Combet, Gobbetti, Marton, Turner / Simulation of Asteroid Missions

rendering of asteroid datasets, as well as collision detection

between the asteroid and prototype surface vehicles, is an in-

teresting challenge for computer graphics.

Because of the low and irregular gravity field of an as-

teroid which limits traction, hopping robots are preferred to

wheeled rovers for surface exploration, since they can move

themselves by making short jumps from point to point across

the surface. Depending of the particular asteroid and the par-

ticular motor forces employed, a single robot hop could result

in a short or a long jump, or in an orbit around the asteroid it-

self. Visualizing this type of behavior requires a terrain model

that works over a wide range of scales as the spacecraft model

interacts closely with a succession of disparate small regions

of the surface. Such a terrain model is well-represented by a

rapidly adaptive multiresolution data structure.

In this work we describe the integration of a suitably

modified version of the Batched-Multi-triangulation frame-

work [CGG∗04, CGG∗05] into a real-time simulator. The

new structure embeds a fine-grained per-patch spatial index

within a coarse-grained patch-based structure . The coarse-

grained structure is used for fast batched I/O and rendering,

while the per-patch fine-grained structure is used to acceler-

ate raycasting and collision queries. To perform a dynamic

simulation over an asteroid also requires a gravity compu-

tation, since, unlike spherically-shaped bodies, an asteroid’s

surface gravity varies greatly from point to point. To simulate

this behavior, the gravity strength experienced by the robot

is estimated at run-time according to its position with respect

to the asteroid body, using a homogeneous distribution of in-

ner points generated from the root of the multiresolution data

structure. The entire system has been tested using a simple

spacecraft hopper landing and exploration simulator, achiev-

ing over 130 fps in giga-triangle sized datasets of both the

25143 Itokawa and 433 Eros asteroids.

2. Related work

Given the potentially massive size of high-resolution asteroid

datasets and the wide range of scales at which a simulator

has to operate, it is essential for the system to be based on

an adaptive level-of-detail (LOD) structure maintained out-

of-core.

A general framework for managing continuous LOD mod-

els is the multi-triangulation technique [DMP98], which is

based on the idea of encoding the partial order describing

mutual dependencies between updates as a directed acyclic

graph (DAG). In the DAG, nodes represent mesh updates (re-

movals and/or insertions of triangles that change the repre-

sentation of a mesh region), and arcs represent dependency

relations among updates. Most of the continuous LOD mod-

els can be expressed in this framework, and many varia-

tions have been proposed. Until recently, however, the vast

majority of view-dependent level-of-detail methods were all

based on multi-resolution structures where LOD decisions

are taken at the triangle/vertex primitive level. This kind of

approach makes detail selection the performance bottleneck

in the entire rendering process, resulting in a CPU-bound ren-

dering pipeline to the GPU (Graphics Processing Unit). This

problem is further exacerbated in rasterization approaches,

because of the increasing CPU/GPU performance gap. To

overcome the detail selection bottleneck, and to fully ex-

ploit the capabilities of current hardware, it is necessary to

select and send batches of geometric primitives to be ren-

dered using only a few CPU instructions. To this end, vari-

ous GPU-oriented multi-resolution structures have been re-

cently proposed. The methods are based on the idea of shift-

ing the granularity of the representation from triangles to tri-

angle patches [CGG∗04, YSGM04]. Thus, instead of work-

ing directly at the triangle level, the models are first parti-

tioned into blocks containing many triangles from which a

multi-resolution structure is then constructed among parti-

tions. By carefully choosing appropriate subdivision struc-

tures and managing boundary constraints, crack-free adaptive

models can be constructed.

The benefit of these approaches is that the needed per-

triangle workload to extract a multi-resolution model is re-

duced by orders of magnitude. The small patches can be

preprocessed and optimized off line for a more efficient

rendering, and highly efficient retained-mode graphics calls

can be exploited for caching the current adaptive model in

video memory. Recent work has shown that the resulting vast

performance increase in CPU/GPU communication yields

greatly improved frame rates [CGG∗04,YSGM04,CGG∗05].

The success of these coarse level approaches indicates the in-

creasing importance of memory/bandwidth management is-

sues in real-time rendering applications. Even though coars-

ening multiresolution granularity reduces the model flexibil-

ity and requires more triangles to achieve a given accuracy,

the overall rendering efficiency of the system is dramatically

increased rather than reduced, since rendering time does not

depend linearly on triangle count anymore. Instead, rendering

time is strongly influenced by how the triangles are organized

in memory and sent to the graphics card.

While the coarse-grained approach improves performance

for rendering, a fine grained structure is still necessary for

point queries, which are used by the simulator for raycast-

ing and collision detection. To provide this, we augment

the coarse-grained structure, which organizes the rendering

nodes, with a fine-grained space partitioning structure within

each node, which spatially indexes each of the contained tri-

angles. The coarse multiresolution structure is based on a di-

amond hierarchy, similar to the one used in Batched Adaptive

Meshes [CGG∗05] and constructed with an Adaptive Tetra-

puzzles approach [CGG∗05]. For more information on dia-

mond multiresolution data structures, we refer the reader to a

recent survey [WDF10]. The fine spatial index structure, by

contrast, is based on an axis-aligned bounding box hierarchy.

A similar approach, based on BSP trees, has been proposed

by Lauterbach et al. [LYM07] for Interactive Ray Tracing ap-

plications.

c© The Eurographics Association 2010.

Pintore, Combet, Gobbetti, Marton, Turner / Simulation of Asteroid Missions

3. Methods and tools

3.1. Multiresolution model

Management of high-fidelity representations of asteroid ter-

rain data poses significant challenges to the design of ren-

dering and simulation environments. In particular, since their

shape is highly non-spherical, many of the simplifying as-

sumptions used in standard planetary-scale renderers, based

on digital elevation models (DEMs), do not hold. While

DEMs are sufficient to represent large near-spherical terrains

such as planets, they are not capable of accurately represent-

ing highly irregular surfaces such as asteroids.

In this work we propose a more general-purpose al-

gorithm and data structure, based on the Batched-Multi-

triangulation framework [CGG∗04, CGG∗05], allowing a

high-performance model of an asteroid to be rendered at in-

teractive rates down do a spatial resolution of a few cen-

timeters. Extending this same model is also the basis for a

collision-detection algorithm used to drive the physics-based

simulation of a small-body surface robotic spacecraft. The

underlying idea of the method is to depart from current point

or triangle-based multiresolution models and adopt a patch-

based data structure, from which view-dependent conforming

mesh representations can be efficiently extracted by combin-

ing precomputed patches. Since each patch is itself a mesh

composed of a few thousand triangles, the multiresolution

extraction cost is amortized over many graphics primitives,

and CPU/GPU communication can be optimized to fully ex-

ploit the complex memory hierarchy of modern graphics plat-

forms. In order to also accelerate raycasting and collision

queries, we augment this coarse grained structure with a per-

patch spatial index that organizes individual triangles in the

patch triangle strip.

Figure 2: Diamond subdivision structure. Diamonds repre-

sent tetrahedrons that must be atomically split.

For construction, we follow the Adaptive Tetrapuzzles ap-

proach [CGG∗04]. The method uses a conforming hierarchy

of tetrahedrons generated by recursive longest edge bisec-

tion to spatially partition the model, where each tetrahedral

cell contains a precomputed simplified version of the origi-

nal model. The representation is constructed off-line during

a fine-to-coarse parallel out-of-core simplification of the sur-

face contained in diamonds (sets of tetrahedral cells sharing

their longest edge, see Fig. 2). Appropriate boundary con-

straints are introduced in the simplification process to en-

sure that all conforming selective subdivisions of the tetra-

hedron hierarchy lead to correctly matching surface patches.

At run-time, selective refinement queries based on projected

or world space error estimation and regions of interest are

performed on the external memory tetrahedron hierarchy to

rapidly produce view-dependent continuous mesh represen-

tations by combining precomputed patches. These queries are

implemented using a dual-queue algorithm applied to a dia-

mond graph (see Fig. 3 for the graph structure).

Figure 3: Diamond graph structure. Each node represents a

group of patches that must be atomically split. Dependencies

among nodes are encoded in a DAG.

The resulting technique has the following properties: it is

fully adaptive and is able to retain all the original topologi-

cal and geometrical detail, even for massive datasets; it is not

limited to meshes of a particular topological genus or with a

particular subdivision connectivity and it preserves geomet-

ric continuity of variable resolution representations at no run-

time cost; it is strongly GPU-bound and is over one order of

magnitude faster than existing adaptive tessellation solutions

on current PC platforms, since its patch-based structure suc-

cessfully exploits on-board caching, cache coherent stripifi-

cation, compressed out of core representation and speculative

prefetching for efficient rendering on commodity graphics

platforms with limited main memory; it enables high quality

simplified representations to be constructed with a distributed

out of core simplification algorithm. At run-time, adaptive

cuts of the diamond graph lead to variable resolution surface

models, which can be exploited both for rendering and for

collision/ray intersection queries.

The patch-size granularity of the method is efficient

enough to ensure interactive and high quality rendering but

too coarse for collision detection and dynamics simulation.

For this reason a fine grained BSP structure is maintained

within each node in order to spatially index individual tri-

angles, helping and speeding up the raycasting and reach a

triangle-size granularity (see Fig. 4). This BSP structure is

constructed on-the-fly at patch loading time using a fast re-

cursive split procedure. Given N triangles in a patch, these

are organized in a single generalized cache coherent trian-

gle strip of M ≥ N + 2 vertices. We recursively split each

c© The Eurographics Association 2010.

Pintore, Combet, Gobbetti, Marton, Turner / Simulation of Asteroid Missions

strip at the median edge in order to define a balanced tree on

the strip. At each step, we record the left and right bounding

boxes. This defines a balanced spatial bounding box tree on

the patch mesh, such that only the two bounding boxes must

be stored. At run-time, the tree can be used for ray-casting or

collision queries implemented with top-down descents.

Figure 4: Patch structure. Each patch is coarse grained, but

also contains a fine grained spatial index.

Implementation of the algorithm to work with third-party

rendering engines is accomplished using a visitor software

pattern, which permits the application of callbacks to each of

the nodes in the current graph cut.

3.2. Application integration

Figure 5: Frogbot ready to jump over Itokawa surface.

Screenshot taken during a simulation using the asteroid

Itokawa 5cm res dataset (about 220 Mtriangles).

The application architecture is divided in two standalone

executable components: an out-of-core parallel database con-

struction tool and real-time data viewing and simulation

tool. The out-of-core component constructs a multiresolu-

tion database starting from a high resolution mesh. The first

phase of this building is a mesh partition using a hierarchical

space partitioning scheme, generating a binary forest of tetra-

hedrons. The forest is built in a top-down fashion, through

recursive insertion of mesh triangles, starting from an initial

subdivision of the mesh bounding box into six tetrahedrons

around a major box diagonal. The second and final phase is

carried out by constructing non-leaf cells through bottom-up

recombination and simplification of lower level cells and as-

signing model space errors and bounding volumes to them.

Once the multi-resolution database has been constructed

by the out-of-core component, the viewing and simulating

tool can perform real-time multiresolution queries against it,

using a variety of different strategies and data visitors. Since

our target simulation software environment uses the open

source Delta3D engine, the simulation application includes

several customized data access methods for generating run-

time Delta3D objects from the multiresolution dataset.

In general, there are two alternative ways for the simula-

tion application to access the multiresolution database, the

first one being for the view-dependent rendering and the sec-

ond one being for the collision detection. This behavior has

been implemented in each case by defining a custom visi-

tor and a custom refinement strategy in order to generate the

appropriate Delta3D objects. The first of these data access

visitors used by the simulator is responsible for the surface

visualization. By using a view-dependent/pixel tolerance re-

finement strategy, with a typical target accuracy of one tri-

angle per pixel, it updates the Delta3D scene graph with the

terrain patches at the currently appropriate LOD. The sec-

ond data access visitor is used for detecting collisions, and

is driven by the position and velocity of the surface robot as

it interacts with the terrain. This visitor updates the Delta3D

collidible objects by using a world space refinement strategy.

This strategy selects triangles with a centimetric edge length

within a bounding box centered at the current simulated ob-

ject position. The selection of the current graph cut is realized

using a dual queue algorithm [DWS∗97] applied to the out-

of-core graph. The newly requested portions of the graph are

asynchronously loaded by a separate thread. Pre-fetching is

applied to avoid stalling the renderer/simulator.

Because of the extremely low and highly irregular grav-

ity field of a small body such as an asteroid (see Fig. 6),

it is very difficult to move over its surface using a wheeled

rover. Therefore, in order to create a simulation application,

we have constructed a simple notional robotic hopper model

based on a published Jet Propulsion Laboratory prototype

concept [HSBF00]. The model, which we call the frogbot,

consists of eleven movable parts: 1 head, 3 flaps, 2 legs (2

parts for each leg), 1 bearing, 1 leg base and 1 foot. The

frogbot has the capability to store energy in a geared 6-bar

spring/linkage system and to jump like a frog by releasing its

legs (see Fig. 11). Additional motors drive the foot bearing

and flaps for self-righting the robot if it lands on its side.

c© The Eurographics Association 2010.

Pintore, Combet, Gobbetti, Marton, Turner / Simulation of Asteroid Missions

Figure 6: Eros gravity vector direction. The image shows

the gravity vector direction on Eros’s surface. The estimated

gravitational force at this point during the simulation is

0.0061 m
s2 .

Depending on the particular small body surface gravity and

the motor forces employed, the jump could result in a short

jump to a nearby location, a long jump to a distant location,

or departure from the small body completely by achieving

escape velocity. Rendering the surface through such a vari-

ety of possible motions necessitates a rapidly adaptive mul-

tiresolution structure, as is provided by the multiresolution

database. On the other hand, simulation behavior calculations

such as landing and interacting with the surface of an aster-

oid require collision detection or raycasting operations at a

finer granularity level than that provided by patch-size data

structures. Usually this task requires high computational re-

sources, especially for large geometries. To reduce the gran-

ular size of the structure, an independent BSP structure of tri-

angles is generated for each patch run-time during the graph

cut extraction in order to speed up the raycasting and reach a

triangle-size granularity.

Another important calculation necessary to simulate orbit-

ing, as well surface reaction forces, is gravity computation.

Unlike spherically-shaped bodies, whose gravitational force

can be accurately modeled as a uniform central force, a small

body’s gravitational field is highly irregular, and its surface

gravity can vary considerably from point to point. The grav-

itational force experienced by the robot is estimated at run-

time according to its position with respect to the asteroid

body. This is done by discretizing the total asteroid mass ma

into N discrete points inside the volume, calculating New-

ton’s law of gravity for each point and summing up the results

to determine the net gravitational force:

F(P) =
N

∑
i=0

G
ma

N

(P−Pi)

‖P−Pi‖
(1)

where G is the universal gravitational constant and the

mass particles Pi are generated by uniformly distributing ran-

dom points in the inside of the body (see Fig. 7). Each point

Figure 7: Mass particles. The gravitational force experi-

enced by the robot is estimated at run-time according to its

position with respect to the asteroid body. This is done by

distributing the total mass of the asteroid among uniformly

distribute particles within its volume and summing the indi-

vidual force contributions.

contribution is a function of the robot position and is com-

puted on the fly. The sum can be accelerated using a hier-

archical method [BH86] by constructing a BSP tree on top

of the mass particle list. Mass particles are generated by tak-

ing uniformly distributed random points within the bounding

box of the asteroid, and testing them for inclusion within the

asteroid body using a fast point in polyhedron test. Pseudo-

random points with low discrepancy are generated using a

Halton sequence [KN05], while the point-in-polyhedron test

uses a ray-casting algorithm, which counts, how many trian-

gles are intersected by a ray starting from the tested point.

Since the ray-casting process uses the acceleration structures

embedded in our graph, point generation is fast.

Figure 8: Simulation example: Animation of the NEAR

probe approaching Eros. Image is a screen shot taken from

a real-time simulation.

The simulation application supports two simulation

c© The Eurographics Association 2010.

Pintore, Combet, Gobbetti, Marton, Turner / Simulation of Asteroid Missions

modes: in the first mode, the user can explore the entire as-

teroid surface by flying and orbiting the spacecraft around

it (see Fig. 8) at high interactive frame rates. In the second

mode, after having chosen a place to land, the robot’s surface

exploration can be controlled by interactively commanding it

to jump from site to site on the surface. Numerical result and

frame rates for both the orbit and ground exploration modes

are detailed in the following section.

4. Results

A terrain database builder and a software library support-

ing an OpenGL viewer and a Delta3D application have been

implemented using C++, on both Linux and Windows plat-

forms. A simple Delta3D simulation application demonstrat-

ing the library’s capabilities has also been created, the ca-

pabilities of which include interactive navigation around the

asteroid and dynamics simulation of the robot moving on the

ground.

We have tested the system with the two

asteroid shape models present in the freely

available NASA planetary Data System

(http://sbn.psi.edu/pds/archive/neos.html).

The shape model of 25143 Itokawa is derived by Robert

Gaskell from Hayabusa AMICA (Asteroid Multi-band

Imaging CAmera) images [Gas08] and the shape model of

433 Eros is derived by Robert Gaskell too from NEAR MSI

images [GSI∗08]. The original models are provided in the

implicitly connected quadrilateral (ICQ) format with four

levels of resolution and converted in a triangulated version of

3145728 triangles. For hopper simulations, higher resolution

versions have been created by a supersampling process

with introduced procedural detail: Eros is supersampled at

1.5 meter/sample (ratio 470) with 1.5 billion triangles (see

Fig. 10) and Itokawa is supersampled at 5cm/sample (ratio

70) with 220 million triangles (see Fig. 9).

4.1. Preprocessing

Triangles Patch Size CPU Tetrahedra Time Output Size

Itokawa 5cm 220M 8000 i7 sequential 438162 6h 35m 6.8 GB

Itokawa 5cm 220M 8000 cluster mpi 1+1 438162 8h 20m 6.8 GB

Itokawa 5cm 220M 8000 cluster mpi 1+4 438162 4h 52m 6.8 GB

Itokawa 5cm 220M 8000 cluster mpi 1+8 438162 2h 31m 6.8 GB

Itokawa 5cm 220M 8000 cluster mpi 1+28 438162 2h 16m 6.8 GB

Eros 1.5m 1.5G 16000 cluster mpi 1+28 1152210 11h 18m 21.1 GB

Table 1: Numerical results for asteroid preprocessing.

Statistics acquired on a sequential build on an Intel i7 960

machine with 24GB memory and several parallel builds on a

PC cluster with 1 master and 28 nodes, where each machine

has an Intel Core2 Quad Q9550 2.83 GHz with 4GB memory.

The Eros dataset presented is larger than the Itokawa dataset

(1.5G triangles vs. 220M) and the build has been performed

for practical reasons only on the cluster. The Itokawa data

structure takes 6.8GB of disk space with a tetrahedron/patch

size of 8000 triangles, while Eros dataset takes 21.1GB with

patches of 16000 triangles.

Table 1 lists numerical results for several out-of-core pre-

processing runs on the datasets. The tests were executed on an

Intel i7 960 3.20 GHz multicore based machine with 24GB

memory and on a PC cluster with 1 master and 28 nodes,

where each machine has an Intel Core2 Quad Q9550 2.83

GHz with 4GB memory. The Itokawa dataset was built us-

ing 8000 triangles for each patch, whereas the Eros dataset

was built with 16000 triangles per patch. Table 1 shows the

scalability of the Itokawa build increasing the workers count

(1,4,8,28), which confirms the efficiency of the distributed

approach. The speed-up is linear until about 8 processors, and

decreases later when disk I/O becomes dominant.

4.2. Rendering and Simulation

Mode FPS Tri/sec Rendering Collision Rendered

patches Patches Triangles

Itokawa 5cm only rendering 331 56.3M 24 0 169.7k

Itokawa 5cm only rendering 110 190.5M 378 0 1.7M

Itokawa 5cm only rendering 128 180.0M 318 0 1.4M

Itokawa 5cm rendering and dynamics 140 113.5M 200 8 2.0M

Eros 1.5m only rendering 338 29.0M 6 0 85.8k

Eros 1.5m only rendering 93 192.1M 190 0 2.0M

Eros 1.5m only rendering 169 185.4M 100 0 1.1M

Eros 1.5m rendering and dynamics 130 166.5M 90 7 2.1M

Table 2: Numerical results for Rendering and Simulation.

Statistics acquired along a path from orbit to ground contact,

using a camera placed on the top of the probe for the far orbit

view and a panoramic third person camera after the landing.

Table 2 lists some rendering numerical results of the demo

simulator application. We evaluated the rendering and dy-

namics performance of the system using different versions

of the dataset, varying the model resolution and the trian-

gle patch size. The simulator has been tested on a PC with

an Intel Core2 Quad Q6600 2.40GHz machine with 4GB

memory and NVIDIA GeForce GTX 280, both with Linux

and Windows. Increasing the model resolution (from 20cm

to 5cm for Itokawa and from 5m to 1.5m for Eros) caused

no change in simulator performance, with an average render-

ing performance of 135Hz. The application speed is clearly

driven by the dynamics engine performance (Delta3D using

ODE - Open Dynamics Engine), depending on the collisions

detection state and the collision meshes involved.

The dynamics frogbot model representation consists of a

small collection of simple part shapes (e.g. boxes, spheres,

cylinders) in order to have contact only between simple

shapes and generic triangle meshes and therefore avoid ex-

pensive mesh to mesh contacts. Additionally, we tried out

different triangle patch sizes (from 24000 to 8000 trian-

gles/patch), and have experimentally determined that the

ODE dynamics engine works better with patches with less

than 16000 triangles. In both the Eros and Itokawa cases, the

frame rate has a minimum point of 60fps during the beginning

of a full contact and an average frame rate of 135fps when the

robot is stationary on the ground or flying. All the tests have

been performed using a screen window size of 1280x800 pix-

els, hardware full scene antialiasing (8x - 4xMS,4xCS) and

a screen tolerance of 2 pixels as rendering strategy settings.

c© The Eurographics Association 2010.

http://sbn.psi.edu/pds/archive/neos.html

Pintore, Combet, Gobbetti, Marton, Turner / Simulation of Asteroid Missions

Figure 9: Real-time rendering of Itokawa. Selected screenshots at various scales obtained during real-time navigation. The

total dataset size is 220M triangles. A coarse tolerance is used to make tessellation visible.

Figure 10: Real-time rendering of Eros. Selected snapshots at various scales obtained during real-time navigation. The total

dataset size is 1.5G triangles. A coarse tolerance is used to make tessellation visible.

For the dynamics simulation part, the world space refine-

ment strategy uses a tolerance in centimeters, smaller than

the model resolution.

5. Conclusions and Future Work

We have presented an enhancement of the Batched Multi-

Triangulation technology in order to integrate it into a high-

performance small-body surface robotics simulation software

environment. The resulting simulation software environment

and can allow a user to visualize and control a simulated robot

in real-time as it traverses an extremely high-resolution aster-

oid surface. Several features of the enhanced batched multi-

triangulation technology make it well-suited to the unusual

requirements of such a simulation. The batched multiresolu-

tion structure provides interactive and high quality rendering

of a terrain model with a resolution on the order of a centime-

ter as the robot hops randomly about, or smoothly orbits the

surface. At the same time the, internal patch BSP structure

extends the granularity of the batched system to support the

point-sampling necessary for the dynamics simulation.

c© The Eurographics Association 2010.

Pintore, Combet, Gobbetti, Marton, Turner / Simulation of Asteroid Missions

Figure 11: Demo frogbot jumping over Itokawa. Image sequence taken from a live simulation showing the frogbot charging

legs, releasing them and then flying.

For future work, we would like to create a more realistic

simulation scenario by using a more sophisticated terrain su-

persampling algorithm and a more physically accurate robot

model based on a working mechanical prototype. We would

also like to improve the fidelity of the collision response al-

gorithm, ideally using physically accurate material proper-

ties based on empirical data. As a result of the high per-

formance rendering and collision detection delivered by the

multi-resolution technology, the simulation performance bot-

tleneck has become dominated by the dynamics engine per-

formance. Therefore, we would also like to explore future use

of a more sophisticated dynamics engine to improve the per-

formance and realism of the robot-surface interaction. One

such engine we are studying is the Bullet open source physics

engine (http://bulletphysics.org).

Acknowledgments. This work was partially sponsored by the Inter-

national Supplementary IR&D program of the Johns Hopkins Uni-

versity Applied Physics Laboratory under contract number 967735,

in support of research led by Stuart Hill of the JHU-APL Space De-

partment and sponsored by its Civilian Space Business Area.

References

[BH86] BARNES J., HUT. P.: A hierarchical O(N log N) force-
calculation algorithm. Nature 324, 4 (dec 1986).

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive tetrapuzzles: ef-
ficient out-of-core construction and visualization of gigantic mul-
tiresolution polygonal models. ACM Transactions on Graphics

23, 3 (Aug. 2004), 796–803.

[CGG∗05] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Batched multi triangu-
lation. In Proceedings IEEE Visualization (Conference held in
Minneapolis, MI, USA, October 2005), IEEE Computer Society
Press, pp. 207–214.

[DMP98] DE FLORIANI L., MAGILLO P., PUPPO E.: Efficient
Implementation of Multi-Triangulations. In Proc. IEEE Visual-

ization (1998), pp. 43–50.

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI D. E.,
MILLER M. C., ALDRICH C., MINEEV-WEINSTEIN M. B.:
ROAMing terrain: real-time optimally adapting meshes. In Proc.

IEEE Visualization (1997), pp. 81–88.

[Gas08] GASKELL R.: Gaskell Eros Shape Model V1.0. NEAR-

A-MSI-5-EROSSHAPE-V1.0. Tech. rep., NASA Planetary Data
System, February 2008.

[GSI∗08] GASKELL R., SAITO J., ISHIGURO M., KUBOTA T.,
HASHIMOTO T., HIRATA N., ABE S., BARNOUIN-JHA O.,
SCHEERES D.: Gaskell Itokawa Shape Model V1.0. HAY-A-

AMICA-5-ITOKAWASHAPE-V1.0. Tech. rep., NASA Planetary
Data System, February 2008.

[HSBF00] HALE E., SCHARA N., BURDICK J., FIORINI P.: A
minimally actuated hopping rover for exploration of celestial bod-
ies. In Proc. IEEE International Conference On Robotics and

Automation (2000), pp. 420–427.

[KN05] KUIPERS L., NIEDERREITER H.: Uniform distribution of

sequences. Dover Publications, 2005.

[LYM07] LAUTERBACH C., YOON S.-E., MANOCHA D.: Ray-
strips: A compact mesh representation for interactive ray trac-
ing. In IEEE/EG Symposium on Interactive Ray Tracing (2007),
pp. 19–26.

[WDF10] WEISS K., DE FLORIANI L.: Simplex and diamond
hierarchies: Models and applications. In Eurographics State of

the Art Reports (2010), Eurographics Association, pp. 113–136.

[YSGM04] YOON S.-E., SALOMON B., GAYLE R., MANOCHA

D.: Quick-VDR: Interactive View-Dependent Rendering of Mas-
sive Models. In Proceedings of IEEE Visualization 2004 (2004),
pp. 131–138.

c© The Eurographics Association 2010.

http:// bulletphysics.org

