
MapReducing a Genomic Sequencing Workflow

Luca Pireddu
CRS4

Pula, CA, Italy
luca.pireddu@crs4.it

Simone Leo
CRS4

Pula, CA, Italy
simone.leo@crs4.it

Gianluigi Zanetti
CRS4

Pula, CA, Italy
gianluigi.zanetti@crs4.it

ABSTRACT

Modern DNA sequencing machines have opened the flood
gates of whole genome data; and the current processing tech-
niques are being washed away. Medium-sized sequencing
laboratories can produce 4-5 TB of data per week that need
to be post-processed. Unfortunately, they are often still us-
ing ad hoc scripts and shared storage volumes to handle the
data, resulting in low scalability and reliability problems.
We present a MapReduce workflow that harnesses Hadoop
to post-process the data produced by deep sequencing ma-
chines. The workflow takes the output of the sequencing
machines, performs short read mapping with a novel parallel
version of the popular BWA aligner, and removes duplicate
reads—two thirds of the entire processing workflow. Our
experiments show that it provides a scalable solution with
a significantly improved throughput over its predecessor. It
also greatly reduces the amount of operator attention neces-
sary to run the analyses thanks to the robust platform that
Hadoop provides. The workflow is going into production use
at the CRS4 Sequencing and Genotyping Platform.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed Programming

General Terms

Algorithms, Performance, Reliability

Keywords

Next-generation Sequencing, Sequence Alignment, MapRe-
duce

1. INTRODUCTION
Advancements in DNA sequencing methods [22] have made

reading human and other DNA faster, simpler and cheaper
opening the doors to very large scale DNA sequencing projects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MapReduce’11, June 8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0700-0/11/06 ...$10.00.

[4], and bringing systematic whole genome sequencing to the
capabilities of medium size laboratories. As an example, the
CRS4 Sequencing and Genotyping Platform (CSGP) is in-
volved in the deep sequencing of hundreds of individuals in
the context of two large scale studies on auto-immune dis-
eases [25] and longevity [24]. With regards to the former,
the genetics of type 1 diabetes (T1D) and multiple sclero-
sis (MS) is studied by comparing the genomes of more than
4,000 affected individuals and 2,000 healthy volunteers from
Sardinia, an area with one of the highest incidences of these
diseases world-wide and representing one of the main reser-
voirs of ancient genetic variation in Europe. The latter is
characterized by studies at the population level for evidence
of genetic influences on a group of traits expected to be
linked to longevity ranging from arterial stiffness to positive
emotions. This is one of the largest family-based studies
and one of the most characterized samples, clinically and
genetically, worldwide.

The CSGP, equipped with three Illumina HiSeq 2000 se-
quencing machines and two Illumina GAIIx, can achieve se-
quencing rates of close to 200 Gbases per day, for a total
of 4-5 TB of data each week. The raw data produced con-
sists of pairs of short fragments of DNA called reads, each—
with current technology and biochemistry—about 100 bases
long. Before being useful for analysis, these fragments need
to be post-processed and, with such high data flow rates, the
computational load on the post-processing pipeline is suffi-
cient to overwhelm traditional analysis workflows that rely
on serial designs or simplistic parallelization efforts based on
the coordination of job submissions to batch queue systems.
Work has been done to provide scaling solutions (for ex-
ample, see Schatz [26], Langmead et al [12], or Matsunaga
et al [20]), but it is currently limited to only short read
lengths (order of 30 bases) and it does not integrate mul-
tiple post-processing steps to provide a single, scalable and
robust solution.

The goal of this article is to present how one can replace
“traditional” deep sequencing processing workflows with
MapReduce applications thus dramatically improving the
pipeline’s scalability and robustness. Specifically, we dis-
cuss the original workflow used at CSGP and then present
a new MapReduce [3] workflow that replaces its first half,
with a plan to substitute it entirely in the near future. The
MapReduce workflow performs read alignment and dupli-
cate read removal—typically the first steps in a DNA se-
quencing workflow. It directly processes the output of the
Illumina sequencing machines without any conversion, and
provides good scaling characteristics. The core component

of the pipeline is a novel version of the read alignment BWA
tool [16] which, to the best of our knowledge, is the first
distributed implementation. This new workflow is currently
going into production use at the CSGP.
The rest of this article is structured as follows. Section 2

provides the background information regarding DNA sequenc-
ing and computational post-processing steps. It then de-
scribes the original workflow used at CRS4, and the prob-
lems that affect it. Section 3 describes the MapReduce solu-
tion presented by this paper, and leads into its evaluation in
Section 4. The related work in this area is then delineated
in Section 5.

2. SEQUENCING WORKFLOW
Several steps are required to read an organism’s DNA, be-

ginning with a biological sample in the wet laboratory, and
finishing with in silico post-processing. While the biochem-
ical sequencing procedure may vary substantially between
different sequencing technologies [29], the analysis varies
much less. In short, the sequencing procedure consists of
the following steps:

1. Read DNA fragments;

2. Map fragments to reference genome;

3. Detect and remove duplicate reads;

4. Recalibrate base quality scores.

We briefly summarize the biochemical procedure in the first
step, and then focus on the computational aspects of the
workflow.

2.1 Read DNA fragments
To begin, a sample of DNA is acquired from living tissue,

such as peripheral blood. The sampled cells are then broken
apart, first mechanically and then chemically, so that the
DNA material can be extracted and isolated from other cell
material. Once the DNA is isolated, the biochemical proce-
dure may vary for different sequencing technologies. Here we
treat briefly how to sequence with the Illumina technology,
but we suggest Shendure and Li [29] for a more thorough
introduction.
In these platforms adapter sequences, ligated to both ends

of the DNA molecule, are bound to a glass surface (flow cell)
coated with complementary oligonucleotides. This is fol-
lowed by solid-phase DNA amplification, where several mil-
lion double-stranded DNA fragments, typically 300 to 500
bases long, are generated in each of the eight channels (or
lanes) of the flow cell. Finally, sequencing-by-synthesis [2]
is performed: each cycle of the sequencing reaction occurs
simultaneously for all clusters in the presence of all four nu-
cleotides, each labeled with a different fluorescent dye. Bases
are identified one at a time by capturing the emitted fluores-
cence from each DNA cluster in subsequent sub-regions, or
tiles, of the flow channel. The actual reads are obtained by
first processing the images to extract spot location, intensity
and background noise, and then by analysing, tile by tile, the
pertaining stacks of images obtained during the single base
sequencing reaction cycles to extract the actual sequences.
The latest Illumina sequencers perform image analysis in-
ternally and output location-intensity files that are subse-
quently converted to sequence files in the qseq format [9].

ACCTCTTGATCAGCAGTGATCTTACCCTACCTTGAAGTC

read 1

read 2

Figure 1: The relationship between paired reads and
the whole DNA fragment. The gray section in the
middle is the unread section between the two reads.

Each fragment is first read from one end and then from the
other, producing a total of two reads. With the HiSeq 2000
the read length is typically about 100 bases, meaning that
for each DNA fragment of 300–500 nucleotides we have read
the first and the last 100 or so, leaving an unread section in
between.

From a single run the sequencing machine can produce
800 GB of data, consisting of billions of records—two for
each fragment—each containing four pieces of data: a key
identifying a DNA fragment; the read number (one or two);
the DNA sequence read; the quality score for each base in the
DNA sequence, which estimates the probability of a reading
error at each base.

From this point the work shifts to the computational do-
main. The data need to be processed before it can be used
in bioinformatic analysis. The type of post-processing per-
formed depends on the intent of the sequencing study. Our
target case is the resequencing of the genomes by read pair
alignment on a reference sequence, so that it may then be
used for Genome Wide Association Studies (GWAS) and
SNP analysis, among others [32].

2.2 Map fragments to reference genome
The work in the wet laboratory results in reading a genome

that has been cut into random pieces. However, for our tar-
get analyses the genomic sequence must be reconstructed by
determining the original locations of the fragments. For this
purpose, a reference genome is chosen—i.e., a previously se-
quenced genome of the same species. Then, each fragment is
aligned to the reference, generally by finding the substring of
the reference with the shortest edit distance from the frag-
ment. When aligning read pairs, the fact that the distance
between the two fragments can be estimated is used to di-
rect the alignment process to choose a position where both
reads can be aligned within a statistically reasonable dis-
tance from each other. This alignment process is known as
Short Read Alignment. Several software tools are available
to perform this step, such as BWA [16] and Bowtie [13].

2.3 Detect and remove duplicate reads
Identical fragments may be read by the sequencing pro-

cess. Some duplicates derive from preparation of the sample,
while others are optical duplicates where the sequencing ma-
chine erroneously reads one point as two. These duplicate
reads must be eliminated to avoid introducing statistical bi-
ases into the data. Although the duplicate reads may not
be exactly identical because of reading errors, they are gen-
erally very similar and thus tend to align to the same loca-
tion. Therefore, the elimination strategy is to assume that
two fragments or pairs that align to the exact same position
on the reference are duplicate reads, and the one with the
worse read quality is eliminated.

2.4 Recalibrate base quality scores
The final step in the DNA sequencing workflow is to adjust

the quality scores of the detected bases to take into account
several factors in addition to the optical quality measures
used by the sequencing machine. In particular, the proba-
bility of error for a base is affected by several factors, such
as: the position within the read (errors are more likely to-
wards the end of a fragment); the preceding and current
nucleotide observed (some combinations are more prone to
errors); the probability of mismatching the reference genome
(some locations are unlikely to vary, while others are—i.e.
Single Nucleotide Polimorphims (SNPs)). After this step the
data are ready to be distributed and used in bioinformatics
analysis.

2.5 Complete workflow
The computational workflow described in Algorithm 1 is

a prototypical pipeline and implements the three compu-
tational steps previously described. Its implementation at
CSGP leverages several open source tools to perform the
various computations at each step (see Algorithm 1 and Ta-
ble 1 for details). Where off-the-shelf tools are not already
available, custom programs or scripts are written. For in-
stance, this is the case for the two steps Qseq2Fastq (file
format conversion) and IlluminaQual2SangerQual (quality
score conversion). Each step reads one or more input files
and writes one or more output files. Generally data are
shared through a centralized file system exported via NFS.

Algorithm 1: Summary of serial computational work-
flow at CSGP.
Data: qseq output from sequencer
Result: Recalibrated BAM file containing the aligned

read
foreach lane ∈ flowcell do

foreach read ∈ 1, 2 do
Qseq2Fastq(lane, read);
IlluminaQual2SangerQual(lane, read);
BWA align(lane, read);

end
BWA pair align(lane);
SamTools sort(lane);

end
SamTools merge(flowcell);
Picard rmdup(flowcell);
table← GATK recalibration table(flowcell);
GATK recalibrate(flowcell, table);

Where easily done (e.g. the foreach loops), the compu-
tation can be parallelized by submitting concurrent jobs to
the cluster queue system. Nevertheless, this approach has

Step Program
Qseq2Fastq custom script
IlluminaQual2SangerQual custom script
Read alignment BWA [16]
Sorting SamTools [17]
Duplicates removal Picard [23],
Recalibration GATK [21]

Table 1: Programs used to implement Algorithm 1.

difficulty scaling to a large numbers of nodes for a number of
reasons. First of all, the shared file system becomes a bot-
tleneck as the number of nodes writing to it increase. Per-
sonal experience showed that even state-of-the-art parallel
file systems such as Lustre [28] have problems withstanding
this type of workload on more than 16 nodes concurrently.
Secondly, by parallelizing the work to be done only on the
lane and read dimensions, the number of possible concur-
rent processes is limited. Specifically, to process the out-
put of a run on the Illumina HiSeq 2000, which uses 8-lane
flow cells, a maximum of 16 concurrent processes can be
launched, and this only in the early phases of the workflow.
Moreover, later in the pipeline the work is constrained to a
single data flow per sample. Admittedly, more elaborate
parallelization strategies could be implemented, but such
strategies would translate to implementing a new distributed
computing framework when a production-level, open source
option such as Hadoop [7] is already available. Finally, even
if the workflow was designed to scale up to a large number
of nodes, the increased probability of job failure would make
the process too difficult to manage.

The result is a high-maintenance workflow that requires
constant attention by its operators, and an expensive high-
performance storage system to operate; and notwithstand-
ing the investment and effort, it still only achieves modest
performance levels.

3. MAPREDUCE WORKFLOW
The MapReduce workflow has been developed as a solu-

tion to the problems affecting the serial pipeline described
in Section 2. It leverages the Hadoop implementation of
MapReduce to: distribute the I/O load eliminating the bot-
tleneck that was the shared filesystem; provide high scala-
bility through improved parallelism; improve reliability by
resisting node failures and transient events such as peaks in
cluster load. The current version of the new workflow runs
the read mapping and the duplicate removal steps in two
MapReduce iterations.

Algorithm 2: Map and reduce functions for the pair
reads step

map(id, read, seq, qual)→ (id : read, (seq, qual))

reduce(id, [(seq1, qual1), (seq2, qual2)])→
cat(id, seq1, qual1, seq2, qual2)

3.1 MR Step 1: pair reads
As previously mentioned, the input records produced by

the sequencing process identify the DNA fragment from which
they were read. However, the first and second reads of the
fragment are in two different records, which are not output
together. Therefore, the first step of the workflow processes
the original data to group both reads of the same fragment
into the same record. The map step produces a compos-
ite key containing the fragment id, and the read number.
As customary, the complete key is used for sorting, but,
the map output is grouped only by fragment id, ignoring
the read number by using custom partitioning and group-
ing functions. As a result, each invocation of the reduce
step receives exactly two values, already ordered. Thus the
reducer only has to form and emit the appropriate output

record containing the fragment id, and the sequences and
base qualities of both DNA fragments.

3.2 MR Step 2: read alignment and duplicate
removal

Given the paired sequences output by the first phase, the
second MapReduce iteration in the workflow performs steps
3 and 4 outlined in Sections 2.2 and 2.3: paired read align-
ment to the reference genome, and duplicate read removal.

3.2.1 Map: read alignment

The map step of the algorithm performs the read align-
ment. Rather than implementing a read aligner from scratch,
we integrate BWA [16] into our tool. BWA is a command-
line tool that, in its original form, does not lend itself eas-
ily to alternative workflows. We refactored its functionality
into a new library, libbwa, which is described in Section 3.3.
Libbwa is mainly written in C, and it provides a high-level
CPython interface—i.e., the standard C implementation of
Python. To take advantage of this feature, and avoid work-
ing with the Java Native Interface (JNI), the mapper is writ-
ten in Python, and integrates into the Hadoop framework
using Pydoop [15] (see Section 3.4).
For each pair of reads, the aligner produces a pair of read

alignment records. Sometimes a suitable alignment position
cannot be found for a read; the aligner flags these records
as “unmapped”. On the other hand, if a probable alignment
position is found the alignment record indicates the read’s
most probable position in the genome (chromosome, coordi-
nate within the chromosome, and whether the read is on the
forward or reverse DNA strand). The alignment also pro-
vides a quality score that estimates its probability of error,
as well as other details such as edit distance and edit oper-
ations (match/delete/insert/substitute) required to match
the read fragment to the relevant section in the reference
sequence.
Unmapped reads are eliminated, as are reads whose align-

ment quality is below a user-defined threshold. This filter-
ing process leaves some aligned reads unpaired. Conversely,
good alignments are serialized into a Protobuf [6] message
and emitted to the MapReduce framework using as a key
the precise location to which they are aligned. Aligned pairs
therefore result in two keys—one for each read—while lone
reads only result in one.
The mapping tasks are very memory intensive, principally

because the current BWA implementation needs to load the
entire reference and reference index into memory, at a cost
of about 4 GB of RAM per task. With the addition of the
memory required for the computations and the MapReduce
framework, each mapping task currently requires about 6
GB of RAM. This requirement limits the number of concur-
rent mapping tasks that can be run on each node to only
two at this time. We configured Hadoop’s Capacity Sched-
uler to enforce this limit. To alleviate this impediment, we
have made some of the alignment phases multi-threaded.
Furthermore, we are taking steps to resolve this problem al-
together by having all mappers on the same node share a
single reference structure in memory.

3.2.2 Reduce: duplicate removal

The Picard rmdup program to be replaced defines two
pairs as duplicates if their alignment positions on the ref-
erence genome are identical, both for their first and second
reads. Likewise, lone reads are considered duplicates if they
are aligned to the same position. When a set of duplicate
pairs is found, only the one with the highest average base
quality is kept; the rest are discarded as duplicates. More-
over, when a lone read is aligned to the same position as a
paired read, the lone one is discarded. If on the other hand
only lone reads are found at a specific position then, as for
pairs, only the one with the highest average base quality is
kept.

The reducer in this MapReduce workflow implements these
same rules, following the logic presented in Algorithm 3.
In it rmdup implements the duplicate criteria as described
above.

Algorithm 3: Remove duplicates reducer algorithm

Input: key ← (chromosome, position, strand)
values ← list(pairs, reads)

position ← key;
pairs ← [p | p ∈ values, paired(p)] ;
if pairs 6= ∅ then

paired reads ← true;
end
left pairs ← [p | p ∈ pairs, position = left coord(p)] ;
foreach p ∈ rmdup(left pairs) do

emit(p)
end
if paired reads 6= true then

unpaired ← [u | u ∈ values, paired(u) = false] ;
foreach u ∈ rmdup(unpaired) do

emit(u)
end

end

3.3 libbwa
BWA is an open source short read alignment tool, released

under the GPLv3. It is the tool selected for the original
sequencing pipeline at the CSGP because it supports gapped
alignments, which is essential for aligning long reads (order
of 100 bases). BWA is designed as a command-line program
where each step of the alignment algorithm is implemented
by a sub-command. A full alignment run would include
several steps:

• index: create an index over the reference sequence(s);

• aln: find the suffix array (SA) coordinates of the input
reads (see Li and Durbin [16] for details);

• samse/sampe: convert SA coordinates to chromoso-
mal coordinates and generate alignment records in the
SAM format [17].

Each stage reads its input from and writes its output to the
local file system. Unfortunately, in the original source code
the logic for these I/O activities is mixed with the alignment-
related logic, which makes it impossible to reuse the same
functions to perform alignments outside of the data flow
scheme originally envisioned by the BWA authors.

align = BwaAligner()

align.nthreads = 8

align.hit_visitor = SamEmitter()

align.reference = sys.argv[1]

del sys.argv[1]

for line in fileinput.input():

align.load_pair_record(

line.rstrip("\r\n").split("\t"))

align.run_alignment()

Figure 2: Align read pairs with libbwa in Python

To adapt BWA to the new requirement of working within a
MapReduce framework, we refactored the BWA logic to sep-
arate different responsibilities, in fact changing the key entry
routines to take pre-loaded data structures as parameters—
as opposed to file pointers, for instance. We added functions
to facilitate the creation of these library-specific data struc-
tures from generic arrays of character strings, which can be
read from any source in batches or one by one. The C li-
brary is built into a shared object which can be linked into
any application.
Finally, the low level C library is wrapped in a higher

level, object oriented Python interface that allows reads to
be aligned in just a few lines of Python code (see Figure 2
for an example).

3.4 Pydoop
Pydoop is a Python API for Hadoop MapReduce and the

Hadoop Distributed File System (HDFS) that allows object-
oriented MapReduce programming and full access to HDFS.
It has several advantages over the other main solutions for
Python Hadoop programming: with respect to Jython, Py-
doop has the advantage of being a CPython package, which
means that users have access to all Python libraries, either
built-in or third-party, including any C/C++ extensions;
with respect to Hadoop Streaming, the main advantages are
its object-oriented API, access to a wider range of compo-
nents (e.g., the RecordReader) and better performance [15].
Given the existence of the Python bindings for libbwa,

Pydoop provided a natural means to integrate libbwa and
Hadoop, thus enabling the MapReduce version of the ge-
nomic sequencing workflow with a reduced programming ef-
fort when compared to the implementation of new JNI bind-
ings for libbwa. Pydoop works through Hadoop pipes, and
thus incurs an extra overhead when compared to a JNI so-
lution that integrates directly into the framework. However,
since the run times of the map tasks are largely dominated
by the computation of the alignments we consider the over-
head relatively negligible.

4. EVALUATION
We evaluate the performance of the MapReduce workflow

as compared to the performance of a baseline serial work-
flow, and to the actual workflow implementation that was
used at the CSGP. In addition, the scalability characteris-
tics of the MapReduce workflow with respect to input size
and number of compute nodes are evaluated. All experi-
ments are performed on a homogeneous computation clus-
ter. Each node runs CentOS release 5.2 and is equipped

Dataset No. tiles No. pairs Size (GB)

Dataset B1 1 3255065 (3.3 · 106) 1.4
Dataset B2 5 17397564 (1.7 · 107) 7.7
Dataset B3 10 35679581 (3.6 · 107) 15.7

Table 2: Baseline input dataset sizes

Dataset No. lanes No. pairs Size (GB)

Dataset MR1 1 1.2 · 108 51
Dataset MR2 2 2.3 · 108 102
Dataset MR3 3 3.3 · 108 147

Table 3: MapReduce workflow evaluation: input
data sizes

with: two IntelR© XeonR© CPUs @ 2.83GHz with four cores
and 6MB of cache each (8 cores total); 16GB of RAM; two
250GB SATA hard disks, one of which has been used for
HDFS storage (the other one is reserved for the OS); Gi-
gabit Ethernet NIC. These machines are part of the same
computing cluster used for production sequence analyses.

4.1 Baseline
The baseline workflow implements the serial workflow pre-

sented in Section 2, up to and including the Picard rmdup
step. Its only parallelization is in the BWA align step, since
the aln subcommand of BWA is multi-threaded, and thus
would be easily exploitable by any scientist with a worksta-
tion. On the contrary, parallelizing the rest of the workflow
would require a more significant effort and some program-
ming expertise.

The baseline tests are run on a single computation node.
A General Parallel File System (GPFS) volume on an 8-disk
array is used to store all the input, intermediate, and output
data used by the baseline workflow. We tested the baseline
set-up with varying input sizes, as summarized in Table 2.
We measure runtime and compute throughput for each input
size. Each experiment is run three times. Average values are
reported.

4.2 MapReduce Workflow
The MapReduce workflow is tested with a varying input

size of 1, 2, and 3 HiSeq 2000 lanes (as detailed in Table 3),
where each lane contains 64 tiles. The MapReduce workflow
is also tested with a varying cluster size of 16, 32, 64, and
96 compute nodes.

The experimental procedure is as follows. A Hadoop clus-
ter, version 0.20.2, of the required size plus two nodes is allo-
cated. The two extra nodes are used for the job tracker and
the name node services, respectively; the remaining nodes
each run a task tracker and a data node service. The input
data and a tarball of the reference sequence and its index
are copied onto the HDFS volume. All experiments for the
selected cluster size are run.

Each combination of cluster size and input size is run 4
times. Usually the first run incurs a penalty due to a one-
time set cost of about 6-8 minutes to copy the reference
sequence to all the compute nodes; on that basis, the first
time is dropped. The runtime of each workflow phase, as
well as the entire workflow is measured, and the throughput
is computed. The average of the results in runs 2-4 are
reported.

Figure 3: Throughput per node for the various test
scenarios. The baseline has been run on a 10-tile
data set, while the production and the MapRe-
duce pipelines have been run on a 3-lane data
set. MapReduce results, represented by columns 3
through 6, are shown for increasing cluster sizes.

Scenario No. nodes Runtime (h)
Production 16 29.1
MapReduce 16 10.5
MapReduce 32 5.1
MapReduce 64 2.6
MapReduce 96 2.0

Table 4: Wall clock times for the different test sce-
narios using Dataset MR3.

4.3 Results and discussion
Figure 3 shows the throughput per node for the various

test scenarios, measured in read pairs per second per node.
The first column corresponds to the baseline, run on a 10-
tile data set. The baseline, run on a single node, serves as a
benchmark against which the distributed workflows are com-
pared. The second column refers to the production work-
flow, run on a 3-lane data set and using 16 cluster nodes, i.e.,
one per HiSeq 2000 output file (see section 2.5). As shown
in the diagram, the production workflow achieves a through-
put of less than one fifth that of the baseline: as discussed
previously, this is mostly due to the limited bandwidth of
the shared file system and to the fact that only the BWA
align step is multi-threaded. The MapReduce workflow—
columns 3 through 6, referring to the 3-lane data set—has
a throughput of about one half that of the baseline, which
starts to decay for cluster sizes above 64 nodes.
Figure 4 shows how throughput per node varies with clus-

ter size, for data set sizes of 1, 2 and 3 lanes. In the ideal
case of perfectly linear scalability, all curves would be flat;
in practice, as the number of nodes increases, infrastructural
overhead becomes more and more relevant, disrupting per-
formance. This effect is sharper in the case of smaller data
sets, where the overhead cost is more significant with respect
to the computation. In the 2-lane and 3-lane cases, normal-
ized throughput reaches a saturation point between 16 and
64 nodes: after that, it is subject to diminishing returns,
i.e., adding nodes yields increasingly lower throughput per

Figure 4: Throughput per node of the MapReduce
workflow with respect to cluster size. An ideal sys-
tem would produce a flat line. Note that in the 2-
and 3-lane cases the throughput per node reaches
a saturation point between 16 and 64 nodes. On
the other hand, the 1-lane curve is already beyond
saturation at 16 nodes.

node. The 1-lane curve, on the other hand, is already be-
yond saturation at 16 nodes.

5. RELATED WORK
Usage of MapReduce for bioinformatics applications started

in late 2008 [5, 20] and has since continued to increase [30].
Although the model has been successfully applied to a num-
ber of “classic” applications, such as BLAST and GSEA
[14, 20], the area of most advancement is deep sequencing
data analysis [10–12,21,26,27], where several useful Hadoop-
based tools have been developed, most notably Crossbow
[12] for SNP discovery, and Myrna [11] for RNA-Seq [31]
differential expression analysis.

Bowtie [13], like BWA, is a short read aligner. Both pro-
grams are based on a highly memory-efficient data struc-
ture [18]. However, currently only BWA supports gapped
alignments [16], which is a required feature for aligning long
reads such as the ones produced by the HiSeq 2000.

Crossbow uses Bowtie to align reads to a reference genome
in the map phase, groups alignments by genomic region and
identifies SNPs with SOAPsnp [19] in the reduce phase.
Myrna’s workflow consists of several separate MapReduce
steps, most of them map-only or reduce-only (i.e., where the
map function is the identity function), that lead from input
reads to a series of reports on differentially expressed genes.
Crossbow and Myrna use Hadoop Streaming [8], with map-
pers and reducers implemented as Perl scripts that, in most
cases, act as wrappers for binary executables (e.g., Bowtie)
or R/Bioconductor scripts. Both applications can also run
on a single node (without Hadoop) or on Amazon Elastic
MapReduce [1], which however may not be an attractive op-
tion for a genome sequencing application since data transfer
costs and time would be quite significant.

The Genome Analysis Toolkit (GATK) [21] is a MapReduce-
like programming framework that provides a set of data ac-
cess patterns commonly used by sequencing data analysis
programs. GATK defines a programming contract where

components are organized into data producers, or traversals,
and data consumers, or walkers (i.e., analysis modules).
There are also other deep sequencing data analysis tools

that make use of MapReduce. Quake [10] is a tool to detect
and correct sequencing errors, while Contrail [27] runs on
Hadoop to perform de novo assembly. The former employs
a modified version of the classic word count application to
count all k-mers (size k subsets) in a genome, while the lat-
ter uses Hadoop to build and transform very large graphs
(billions of nodes). In addition, the one reported here is a
MapReduce version of BWA, and to the best of our knowl-
edge it is the first.

6. CONCLUSIONS AND FUTURE WORK
The MapReduce workflow presented in this article pro-

vides a new way to perform reference alignment and du-
plicate removal of genomic sequencing data. The empirical
results show its ability to scale, handle large inputs, and
take advantage of computing resources. In addition, thanks
to the Hadoop framework, it provides a robust solution that
can withstand node failures and transient cluster problems,
in addition to eliminating the bottleneck and single point
of failure represented by centralized storage. Furthermore,
since it is based on Hadoop, a user could choose to run it on
a cloud service such as the one offered by Amazon, although
due to the sheer size of the input and output data for this
task we feel that at this point in time the cost and time
required to transfer the data would make it impractical.
This new workflow is going into production use at the

CSGP, where runs with 8 lanes of input (9 · 108 read pairs)
have been processed in less than 4 hours on 128 nodes. We
plan on further improving the performance of the tool, in
particular by implementing the genome reference in shared
memory. A preliminary implementation of this change has
resulted in throughputs of up to 1100 read pairs/s/node by
allowing us to run almost one mapper per core on our cluster.
Subsequently, we will implement the base quality recalibra-
tion step, thus moving the entire workflow into Hadoop and
HDFS.
Finally, in the near future, we plan on releasing under

an open source license the code to both the workflow and
libbwa (Pydoop has already been released).

7. ACKNOWLEDGMENTS
We would like to thank our colleagues Michele Muggiri

and Carlo Podda for helping us get access to the computing
resources needed to run our experiments, and helping resolve
any system-related problems we had. We would also like to
thank Frédéric Reinier and Riccardo Berutti for being so
helpful in getting the runtime data for the original workflow
implementation and providing much user feedback.

8. REFERENCES
[1] Amazon elastic MapReduce.

http://aws.amazon.com/elasticmapreduce.

[2] D. R. Bentley. Whole-genome re-sequencing. Current
opinion in genetics & development, 16(6):545–552,
2006.

[3] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In OSDI ’04: 6th
Symposium on Operating Systems Design and
Implementation, 2004.

[4] R. M. Durbin, D. L. Altshuler, G. R. Abecasis, et al. A
map of human genome variation from population-scale
sequencing. Nature, 467(7319):1061–1073, 2010.

[5] M. Gaggero, S. Leo, S. Manca, F. Santoni,
O. Schiaratura, and G. Zanetti. Parallelizing
bioinformatics applications with MapReduce. CCA-08:
Cloud Computing and its Applications, 2008.

[6] Google Protobuf: protocol buffers.
http://code.google.com/p/protobuf/.

[7] Hadoop. http://hadoop.apache.org.

[8] Hadoop streaming. http://hadoop.apache.org/
common/docs/r0.20.0/streaming.html.

[9] Illumina, Inc. Sequencing Analysis Software User
Guide For Pipeline Version 1.4 and CASAVA Version
1.0. 9885 Towne Centre Drive, San Diego, CA 92121
USA, 2009.

[10] D. R. Kelley, M. C. Schatz, and S. L. Salzberg. Quake:
quality-aware detection and correction of sequencing
errors. Genome Biology, 11(11):116, 2010.

[11] B. Langmead, K. D. Hansen, and J. T. Leek.
Cloud-scale RNA-sequencing differential expression
analysis with Myrna. Genome Biology, 11(8):83, 2010.

[12] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L.
Salzberg. Searching for SNPs with cloud computing.
Genome Biology, 10(11):134, 2009.

[13] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg.
Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome. Genome
Biology, 10(3):25, 2009.

[14] S. Leo, F. Santoni, and G. Zanetti. Biodoop:
bioinformatics on Hadoop. In The 38th International
Conference on Parallel Processing Workshops
(ICPPW 2009), pages 415–422, 2009.

[15] S. Leo and G. Zanetti. Pydoop: a Python MapReduce
and HDFS API for Hadoop. In Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing, pages 819–825, 2010.

[16] H. Li and R. Durbin. Fast and accurate short read
alignment with Burrows-Wheeler transform.
Bioinformatics, 25(14):1754–1760, 2009.

[17] H. Li, B. Handsaker, A. Wysoker, et al. The sequence
alignment/map (SAM) format and SAMtools.
Bioinformatics, 25:2078–2079, 2009.

[18] H. Li and N. Homer. A survey of sequence alignment
algorithms for next-generation sequencing. Briefings
in Bioinformatics, 11(5):473–483, 2010.

[19] R. Li, Y. Li, X. Fang, et al. SNP detection for
massively parallel whole-genome resequencing.
Genome Research, 19(6):1124–32, Jun 2009.

[20] A. Matsunaga, M. Tsugawa, and J. Fortes.
Cloudblast: combining MapReduce and virtualization
on distributed resources for bioinformatics
applications. In Fourth IEEE International Conference
on eScience, pages 222–229, 2008.

[21] A. McKenna, M. Hanna, E. Banks, et al. The genome
analysis toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data.
Genome Research, 20(9):1297–1303, 2010.

[22] M. L. Metzker. Sequencing technologies — the next
generation. Nat Rev Genet, 11(1):31–46, Jan 2010.

[23] Picard. http://picard.sourceforge.net.

[24] G. Pilia, W. Chen, A. Scuteri, et al. Heritability of
cardiovascular and personality traits in 6,148
sardinians. PLoS Genet., 2(8):25, 2006.

[25] S. Sanna, M. Pitzalis, M. Zoledziewska, et al. Variants
within the immunoregulatory CBLB gene are
associated with multiple sclerosis. Nat Genet.,
42(6):495–7, 2010.

[26] M. C. Schatz. CloudBurst: highly sensitive read
mapping with MapReduce. Bioinformatics,
25(11):1363–1369, 2009.

[27] M. C. Schatz, D. Sommer, D. R. Kelley, and M. Pop.
Contrail: Assembly of large genomes using cloud
computing. http://contrail-bio.sourceforge.net.

[28] P. Schwan. Lustre: building a file system for
1000-node clusters. In Proceedings of the 2003 Linux
Symposium, 2003.

[29] J. Shendure and H. Ji. Next-generation DNA
sequencing. Nature Biotechnology, 26(10):1135–1145,
2008.

[30] R. Taylor. An overview of the
Hadoop/MapReduce/HBase framework and its
current applications in bioinformatics. BMC
Bioinformatics, 11(Suppl 12):1, 2010.

[31] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a
revolutionary tool for transcriptomics. Nat Rev Genet,
10(1):57–63, Jan 2009.

[32] L. Y., W. C, S. S., and A. G.R. Genotype imputation.
Annu Rev Genomics Hum Genet., 10:387–406, 2009.

