
Eurographics Conference on Visualization (EuroVis) 2012
S. Bruckner, S. Miksch, and H. Pfister
(Guest Editors)

Volume 31 (2012), Number 3

COVRA

A compression-domain output-sensitive volume rendering

architecture based on a sparse representation of voxel blocks

Enrico Gobbetti, José Antonio Iglesias Guitián, and Fabio Marton

Visual Computing Group, CRS4, Pula, Italy – http://www.crs4.it/vic/

Abstract

We present a novel multiresolution compression-domain GPU volume rendering architecture designed for inter-

active local and networked exploration of rectilinear scalar volumes on commodity platforms. In our approach,

the volume is decomposed into a multiresolution hierarchy of bricks. Each brick is further subdivided into smaller

blocks, which are compactly described by sparse linear combinations of prototype blocks stored in an overcomplete

dictionary. The dictionary is learned, using limited computational and memory resources, by applying the K-SVD

algorithm to a re-weighted non-uniformly sampled subset of the input volume, harnessing the recently introduced

method of coresets. The result is a scalable high quality coding scheme, which allows very large volumes to be

compressed off-line and then decompressed on-demand during real-time GPU-accelerated rendering. Volumetric

information can be maintained in compressed format through all the rendering pipeline. In order to efficiently

support high quality filtering and shading, a specialized real-time renderer closely coordinates decompression

with rendering, combining at each frame images produced by raycasting selectively decompressed portions of

the current view- and transfer-function-dependent working set. The quality and performance of our approach is

demonstrated on massive static and time-varying datasets.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image
Generation—Computer Graphics [I.3.7]: Three-dimensional graphics and realism—Coding and Information The-
ory [E.4]: Data compaction and compression—Compression (Coding) [I.4.2]: Approximate methods—

1. Introduction

GPU accelerated direct volume rendering on consumer plat-
forms is nowadays the standard approach for interactively
exploring rectilinear scalar volumes. Even though the past
several years witnessed great advancements in commodity
graphics hardware, long data transfer times and GPU mem-
ory size limitations are often the main limiting factor, espe-
cially for massive, time-varying, or multi-volume visualiza-
tion in both local and networked settings. To address this
issue, a variety of level-of-detail data representations and
compression techniques have been introduced. In order to
improve capabilities and performance over the entire stor-
age, distribution, and rendering pipeline, the encoding/de-
coding process must be highly asymmetric [FM07]. Com-
pression and level-of-detail precomputation does not have
real-time constraints and can be performed off-line for high
quality results. In contrast, adaptive real-time rendering from

compressed representations requires the incorporation of
low-delay and spatially independent decompression within
a multiresolution out-of-core renderer. Such a compression-
domain adaptive rendering solution, however, imposes se-
vere constraints on the compression method, as well as on
the adaptive rendering architecture. Current solutions, often
combining data transformations with fixed-rate block cod-
ing or vector quantization, exhibit a number of limitations in
terms of achievable compression rate, quality, or capability
to support interpolation and shading (see Sec. 2).

In this work, we present a novel multiresolution
compression-domain GPU volume rendering architecture,
which improves the state-of-the-art in terms of scalabil-
ity and flexibility. In our approach – dubbed Compression-

domain Output-sensitive Volume Rendering Architecture

(COVRA) – the volume is decomposed into a multiresolu-
tion hierarchy of bricks. Each brick is further subdivided into

c© 2012 The Author(s)
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



E. Gobbetti et al. / COVRA: Compression-domain output-sensitive volume rendering architecture

smaller blocks, which are compactly described by sparse
linear combinations of prototype blocks stored in an over-
complete dictionary. The dictionary is learned, using limited
computational and memory resources, by applying the K-
SVD algorithm [AEB06] to a smartly non-uniformly sam-
pled and re-weighted subset of the input volume, using the
recently introduced method of coresets [AHPV05, CS07].
The result is a scalable high-quality coding scheme, which
allows huge volumes to be compressed off-line and then
adaptively streamed and decompressed on-demand by a real-
time GPU-accelerated renderer. Our contributions are mani-
fold:

• we introduce a flexible compression-domain rendering
architecture supporting high-quality multi-sample ren-
dering from general block-compressed data formats us-
ing a specialized decompress-and-render approach;

• we introduce sparse representations to the GPU vol-
ume rendering field as an effective asymmetric compres-
sion/decompression framework with fast GPU decoding,
increasing quality and scalability of current vector quan-
tization solutions;

• we introduce a coreset technique based on importance
sampling for effectively learning a good quality sparse
representation of a massive input volume using the K-
SVD algorithm;

• we describe and evaluate an optimized CUDA imple-
mentation of our architecture, capable of preprocessing,
streaming, and real-time rendering multi-gigabyte static
and dynamic datasets using a limited memory footprint.

2. Related Work

Our system extends and combines state-of-the-art results in
a number of technological areas. In the following, we only
discuss the approaches most closely related to ours.

Filtering out as efficiently as possible the data that is not
contributing to a particular image is paramount for massive
volume rendering applications. This can be achieved by com-
bining visibility and level-of-detail culling with out-of-core
data management techniques. In this context, the out-of-core
organization of massive volumetric data into a volume octree
is a classic one. Early systems used the CPU for view- and
transfer-function-based selection of blocks, and generated
images by frame-buffer compositing of individual blocks
rendered through slicing [LHJ99, BNS01,GS04] or raycast-
ing [HQK05,KWAH06]. Small blocks, required for adaptiv-
ity, lead, however, to high communication overhead and pres-
sure on compositing hardware. For this reason, researchers
have recently introduced out-of-core GPU methods, which
traverse adaptively maintained space-partitioning GPU struc-
tures covering the full working set [Lju06,GMI08,CNLE09].
In this paper, we introduce a hybrid approach, in which each
frame is subdivided in a small number of octrees of com-
pressed bricks. These octrees are decompressed and compos-
ited front-to-back. This allows us to co-ordinate the decom-

pression and rendering processes, extending to adaptive mul-
tiresolution methods the capabilities of current deferred fil-
tering solutions [FAM∗05]. We thus fully harness the power
of native texture filtering without requiring the storage of the
full working set, nor forcing single resolution slice-based ap-
proaches.

In this context, data compression associated to GPU de-
compression is of great importance to save storage space
and bandwidth at all stages of the processing and render-
ing pipelines. Few methods, however, support on-demand,
fast and spatially independent decompression on the GPU,
which is required for maximum benefits [FM07]. The sim-
plest hardware-supported fixed-rate block-coding methods
(e.g., OpenGL VTC [Cra, NIH08] or per-block scalar quan-
tization [YNV08, IGM10]) have limited flexibility in terms
of supported data formats and achievable compression. Vec-
tor quantization of volume blocks has often been used
for realizing fast GPU decoders, in conjunction with adap-
tive texture maps [KE02] Laplacian pyramid compression
schemes [SW03], or wavelet-based transform coders [FM07,
PK09]. However, dictionary size imposes a hard limit on
achievable quality and compression rate of vector quan-
tization solutions [Ela08]. Recently, tensor approximation
has been presented as an alternative in which compression
is achieved through rank reduction of a preferential basis
learned from data [SIM∗11]. However, GPU tensor recon-
struction costs are high, and real-time reconstruction is fea-
sible only for small blocks, limiting achievable compression.

We improve on current methods by employing a represen-
tation in which each block is represented as a sparse lin-
ear combination of few dictionary elements. Recent years
have witnessed a growing interest in such sparse represen-
tations (see the recent survey of Rubinstein et al. [RBE10]
for an overview of the state-of-the-art). Data-specific dictio-
naries learned from each training set tend to perform bet-
ter than dictionaries based on a mathematical model of the
data (e.g., wavelets) [Ela08]. In this work, we employ the K-
SVD algorithm [AEB06] for dictionary training, a state-of-
the-art method in the domain [Ela08]. Performing K-SVD
calculations directly on massive input volumes would, how-
ever, be prohibitively expensive. Even though memory prob-
lems could be circumvented with emerging online training
techniques [MBPS10, SE10], massive datasets still lead to
large computational time and possible numerical instabil-
ities. For Bidirectional Texture Functions (BTF) compres-
sion, Ruiters and Klein [RK09] attacked this problem by re-
ducing the dataset prior to K-SVD training through a trun-
cated SVD. Instead, we perform data reduction by smartly
subsampling and re-weighting the original training set, ap-
plying the concept of coreset [AHPV05, CS07]. A unified
theoretical framework for constructing coresets for data ap-
proximation and clustering applications has been recently
presented [FL11] and applied to image processing via K-
SVD [FFS11]. We use here a simpler approach based on
importance sampling.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



E. Gobbetti et al. / COVRA: Compression-domain output-sensitive volume rendering architecture

Figure 1: Architecture overview. The volume is decomposed off-line into an octree of compressed bricks. At run-time, an

adaptive loader moves data to GPU based on visibility feedback and transfer function criteria. A specialized renderer, then,

generates and combines at each frame images produced by raycasting selectively decompressed portions of the current working

set, exploiting a small decompressed brick cache.

3. Architecture overview

Our method, see Fig. 1, is based on the offline decompo-
sition of the original volumetric dataset into small cubical
bricks, which are compressed and organized into an octree
structure maintained out-of-core. The octree contains data
bricks at different resolutions, where each resolution of the
volume is represented as a collection of bricks in the subse-
quent octree hierarchy level. Each brick has a fixed width
B with an overlap of two voxels at each brick boundary for
efficiently supporting runtime operations requiring access to
neighboring voxels (trilinear interpolation and gradient com-
putation). Each brick is in turn decomposed into smaller non-
overlapping blocks of fixed width M, which are compressed
with an efficient sparse coding technique (see Sec. 4). These
blocks are compactly described by sparse linear combina-
tions of prototype blocks stored in an overcomplete dictio-
nary. In this work, time-varying datasets are handled by cre-
ating a separate octree per time-step, and temporal coher-
ence is exploited by sharing the same dictionary among time-
steps. In order to assist our run-time transfer-function aware
brick-culling strategy (see Sec. 5), we also store a 64 bins
binary histogram of the original volume brick together with
the compressed brick representation.

At run-time, the dictionary is first uploaded to texture
memory. Then, at each frame, an adaptive loader updates a
view- and transfer function-dependent working set of bricks.
Data is moved from the local or remote external database to
GPU memory always in compressed format. Following ear-
lier approaches [GMI08,CNLE09, IGM10], the working set
is maintained by an adaptive refinement method guided by
the visibility information fed back from the renderer. Since
reconstruction from the dictionary is linear, direct render-
ing can be easily supported without block decompression by
parallel random access to individual voxels. Most advanced
volume visualization techniques require, however, a voxel’s
neighborhood for calculating its visual attributes, e.g., lin-
ear interpolation, gradient calculations, or ambient occlu-
sion computation. In order to minimize reconstruction over-
head and to fully harness texture filtering hardware, we per-
form rendering using a multi-pass approach which exploits
a small texture cache of decompressed bricks (see Sec. 5).

At each frame, the octree covering the current working set
is partitioned into a number of subtrees small enough to
be decompressed within prescribed cache limits. These sub-
trees are then rendered in front-to-back order and compos-
ited to produce the final frame buffer image. Each individ-
ual subtree is rendered using a raycasting approach [GMI08,
CNLE09]. Since the bricks accessed by the raycaster are
in a decompressed 3D texture cache, native trilinear filter-
ing can be exploited, and shading methods requiring multi-
ple samples per raycasting step can be implemented without
additional compression overhead. This method, in contrast
to deferred filtering [FAM∗05], does not impose a slice-by-
slice decompress-and-render approach, and therefore better
supports perspective rendering and adaptive multi-resolution
volume rendering with empty-space leaping and early-ray
termination.

4. Building the compressed octree

The volume encoding process transforms a rectilinear vol-
ume into a compact multiresolution representation consist-
ing of an octree of compressed bricks of size B and a dic-
tionary D of prototype blocks. The parameters guiding the
process are the brick size B, which determines the octree
granularity, the compressed block sizeM≤ B, the dictionary
size K ≥M3, the sparsity level S≤ K, and a threshold ε ≥ 0
used for identification of constant and empty bricks.

Processing begins by computing the number of levels L re-
quired to cover the entire input volume starting from a single
root brick of size B3. The L levels of the LOD pyramid are
then computed bottom-up and stored on disk. The compres-
sion process, then, first learns a good sparsifying dictionary
D from the data contained in the pyramid (see Sec.4.2), and
finally iterates over all octree bricks for final encoding.

Brick encoding starts by computing a 64 bins binary his-
togram and the range of values vmin..vmax contained in the
brick. Empty bricks, i.e., those for which vmax ≤ ε, are
skipped and will be considered full of zeros at rendering
time. Constant bricks, i.e., those for which vmax− vmin ≤ ε,
simply store the average brick value. All others are, instead,
approximated by the S-sparse representation of their blocks
using dictionary D.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



E. Gobbetti et al. / COVRA: Compression-domain output-sensitive volume rendering architecture

4.1. Sparse-coding of blocks

For sparse coding, we map each block of size m = M3 to
a column vector y ∈ R

m. Given the dictionary D ∈ R
m×K

computed in the learning phase, a sparse representation of y
of at most S entries in each column can be found by solving
the following problem:

min
λi

{

‖yi−Dλi‖
2
}

subject to‖λi‖0 ≤ S (1)

where ‖λi‖0 is the number of non-zero entries in λi. The
exact solution to this problem is NP-hard, but several effi-
cient greedy pursuit approximation algorithms exist [Ela08].
In this work, we employ ORMP via Choleski Decomposi-
tion [CARKD99] because of its simplicity and efficiency.

Compression of yi is thus achieved by storing the sparse
representation of the vector λi, specifying the indices of its
nonzero elements and their magnitudes. Furthermore, we as-
sume that the learning phase produces a dictionary with nor-
malized columns. Further compression with small increase
in error is thus easily achieved by quantization of the non-
zero entries in λi. As we will show in Sec. 5, the resulting
packed representation leads to an efficient GPU implementa-
tion of the decoding process.

4.2. Dictionary learning

Searching for the best dictionary can be viewed as a general-
ization of vector quantization, in which we allow each block
yi to be represented by a linear combination of dictionary en-
tries rather than by a single representative. This corresponds
to solving the following optimization problem:

min
D,λi

{

∑
i

‖yi−Dλi‖
2

}

subject to∀i,‖λi‖0 ≤ S (2)

The K-SVD algorithm [AEB06] employed in this paper
has emerged as a highly effective method for finding approx-
imate solutions to this problem [Ela08]. It is a generalization
of K-Means clustering which iterates between a sparse cod-
ing step, in which all λi are optimized using the pursuit al-
gorithms of Sec. 4.1, and a dictionary update step, in which
D is optimized. Update is done independently for each dic-
tionary entry dk by performing a SVD on the residual matrix
computed without dk itself and for only those samples which
are represented by dk. The first dictionary element, denoted
as DC, is kept fixed to d1 =

1√
m
. The DC takes part in all

representations, and as a result, all other dictionary elements
remain with zero mean during all iterations. As in Rubin-
stein et al. [RZE08], we replace the explicit SVD computa-
tion with a numeric power approximation, which eliminates
the need to fully compute and store the residual matrix.

Even with this modification, performing K-SVD calcula-
tions directly on massive input volumes would, however, be
prohibitively expensive, as at the minimum, full sweeping of
all input samples is required at each coding and update steps.

In order to tackle the problem, we reduce the amount of
data used for training. Just uniformly sub-sampling the orig-
inal volume is not an option, since, in typical input volumes,
a small subset of the blocks, e.g., on material boundaries,
carries more information than much of the rest, e.g., empty
space or other uniform/slowly varying areas. Therefore, a
dictionary for the sub-sampled set would not be a good
solution for the entire data set. Instead, we use an impor-
tance sampling approach, motivated by the notion of coreset,
which, informally, is a small weighted subset that approxi-
mates the original data in a problem-dependent sense.

First, we associate an importance ιi to each of the origi-
nal volume blocks. Since the blocks represent small volume
patches, we choose to set ιi to the standard deviation of the
entries in yi. Then, we take a non-uniform random sample
of the set of blocks, pickingC elements with probability pro-
portional to ιi. In this way, there will be with a reasonable
probability enough samples from the more important blocks
inside the input volume. Applying the K-SVD algorithm to
the selected subset Ỹ would, however, not solve the original
problem in Eq. 2, since non-uniform sampling introduces a
severe bias. We thus scale each selected block y j by a weight
w j =

1√
p j
, where p j is the associated picking probability.

Sparse coding a scaled vector ỹ j = w jy j leads to scaled co-

efficients λ̃ j = w jλ j. It is easy to prove using Eq. 2, that,
since

∑
j

∥

∥

∥
ỹ j−Dλ̃ j

∥

∥

∥

2
= ∑

j

1
p j

∥

∥y j−Dλ j

∥

∥

2
≈ ∑

i

‖yi−Dλi‖
2

applying K-SVD to the resampled and re-weighted set of
blocks ỹ j will converge to a dictionary approximating the
one associated to the original problem. As illustrated in
Sec. 6, using this approach, extremely good approximations
can be obtained by using a tiny fraction of original data.

4.3. Coreset construction

We compute the coreset Ỹ using a multipass streaming algo-
rithm over all blocks of the multiresolution hierarchy. In a
first streaming pass over the input blocks, we compute lower
and upper bounds of the importance function. We then per-
form a second streaming pass over the blocks to compute
an histogram of size H (512 in our tests) of the importance
function, counting the blocks that fall into each importance
bin Qq. The histogram is used to determine the number of
blocks Bq that will be sampled in each importance interval,
and the associated weight wq =

√

Qq/Bq.

In order to compute Bq, we start by assigning an initial

budget B(0)
q = Qq ·

q
H compatible with the desired picking

probability, which should be proportional to the importance.
We then refine this initial estimate to achieve the desired
coreset size C, i.e., to obtain ∑Bq =C. To achieve this goal,
we first handle undersampling (i.e., ∑Bq < C) by setting
the minimum number U of high importance budget to full

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



E. Gobbetti et al. / COVRA: Compression-domain output-sensitive volume rendering architecture

sampling (Bh = Qh∀h ∈ H,H−1, ...,H−U). We then man-
age undersampling by linearly adjusting the sampling rate
of the remaining slots to achieve the desired total number of
samples C. Given the budget Bq and the input block count
Qq, coreset construction is then performed in a final stream-
ing pass, using Vitter’s reservoir sampling approach [Vit85],
with a separate reservoir for each of the Q importance bins
and a weighting by wq of each of the picked elements asso-
ciated to reservoir q.

5. Compression-domain adaptive rendering

The run-time stage exploits an adaptive loader to access lo-
cal and remote compressed volume databases. Data is moved
from the external database to GPU memory always in com-
pressed format, and rendering is performed using a multi-
pass approach, implemented in CUDA, using three levels of
cache. A large RAM cache is used to reduce pressure to the
network/disk, while the two GPU caches store, respectively,
recently visited compressed bricks and decompressed bricks
required for rendering portions of the current frame. The de-
compressed brick cache can be maintained at a small size.
While direct rendering from compressed bricks is definitely
possible, this approach is more efficient for non-trivial ren-
dering methods, which require repeated access to multiple
samples at each ray-tracing step.

5.1. Multi-pass adaptive rendering strategy

The rendering process is subdivided in three main phases:
(1) adaptive refinement of the multiresolution octree, (2) par-
titioning of the octree into a set of subtrees, and (3) subtree
decompression, raycasting and compositing.

In the first phase, an adaptive loader updates a view- and
transfer function-dependent working set of bricks, maintain-
ing on the GPU a cache of recently used compressed vol-
ume bricks stored in a 3D texture by asynchronously loading
it from a local or remote external database. Following ear-
lier approaches [GMI08,CNLE09], the working set is main-
tained by an adaptive refinement method guided by the visi-
bility information fed back from the renderer.

We then split the working set defined in the first phase into
separate subtrees, using the size of the decompressed brick
cache as a constraint. In a post-order visit of the tree, we
construct the subtrees bottom-up, recursively merging sub-
trees if their union fits into the cache. At the end of this sec-
ond phase, each subtree thus contains only up to the number
of leafs that can fit in decompressed form into the decom-
pressed brick cache.

In the last rendering phase, we produce the final image, de-
compressing, raycasting, and compositing subtrees in front-
to-back order. Rendering starts by clearing the frame-buffer
to transparent black. Subtrees are then rendered and com-
posited during a front-to-back hierarchical traversal of the

octree. At each visited octree brick, we test whether it was
identified as an octree root in the previous phase. If not, we
recursively visit the brick’s children in front-to-back order,
using the octree split planes for fast visibility ordering.

Subtree rendering starts by decompressing all volume
bricks covered by the subtree into the decompressed brick
cache, using an efficient CUDA decompressor (see Sec. 5.2),
before using a raycaster to produce the image. Volume bricks
are decompressed in GPU and directly written to GPU mem-
ory. To exploit temporal coherence we also implemented
in GPU a LRU cache of decompressed brick data, which
records recently used decompressed bricks. If the amount
bricks required for a single frame exceeds the cache size,
only the first accessed bricks are kept inside the cache, while
the remaining bricks are decompressed to a temporary area
of the cache which is rewritten for successive subtrees.

Figure 2: Decompression layout. Left: voxel distribution

inside an 8×8 CUDA thread block for decompression of 43

K-SVD blocks; the CUDA block decompresses two slices of

four adjacent K-SVD blocks, and each thread computes two

output voxels; a single CUDA block can decompress blocks

belonging to two bricks. Right: GPU grid layout for M oc-

tree bricks; each brick is made by N3 compressed blocks

which are mapped to a 2D grid of N × N2 blocks; small

quads represent single blocks, which in turn are unrolled as

shown on the left.

5.2. CUDA decompression

In our approach, the GPU decompresses in parallel all the
bricks referenced by a given subtree to a 16bit texture before
rendering them.

Each brick is made of N3 compressed blocks, each of
them of linear block size M. Thus a decompressed brick
is made of (N ×M)3 voxels. All the elements of a single
K-SVD block with sparsity S share the same representation,
encoded as S pairs of coefficients ci and indices ai. The de-
coded block is given by ∑

S
i=1 ci ∗d[ai], where d[i] is the i-th

dictionary element, made of M3 values.

The dictionary D is stored in a 2D texture of unsigned
shorts, where each row of the texture represents a dictionary
element d. Each (index,coe f f icient) pair is encoded in 24
bits, using from 8 to 16 bits for the index (depending on the
dictionary size), and the remaining bits for the coefficient.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



E. Gobbetti et al. / COVRA: Compression-domain output-sensitive volume rendering architecture

For example a dictionary of 1024 elements uses 10 bits for
the index and 14 for the coefficient. For each brick, we also
store the coefficient range of all the compressed blocks of the
brick, which permits to dequantize the coefficient values.

Decompression is implemented by a two-phase CUDA
kernel: in the first phase the first T threads of the CUDA
block cooperatively move to shared memory the T (ct ,at)
pairs needed to decode all the voxels belonging to the K-
SVD blocks associated to the current CUDA block. Threads
are then synchronized, and in the second phase, voxels are
reconstructed by linear combination of dictionary elements.
In order to optimize memory access, each CUDA thread re-
constructs two voxels. The idea behind this coupled voxel
decompression is that we can fetch two adjacent unsigned
short dictionary values with a single 32 bit fetch operation,
and write the decompressed result as a single 32 bit write
operation, significantly reducing memory access overheads.

Fig. 2 illustrates the memory layout of the data referenced
by the CUDA kernel, which decompresses multiple bricks.
The layout is exploited in the first phase of the decoding
method, where we need to identify which are the (maximum)
two bricks partially covered by the current GPU block. In
this layout, 3D bricks are mapped to a 2D grid, trying to
minimize the number of K-SVD blocks which are decoded
by a single GPU block, and thus the number of fetches per-
formed in the first part of the algorithm. In this layout, 2D
brick slices are appended one after the other in the Y direc-
tion of the CUDA grid, and bricks are appended one after the
other in the X direction. In the first phase, we can thus fetch
3×K bytes for each decoded K-SVD block. In order to opti-

mize memory transfer, the first
⌈

3×K
4

⌉

×blockcount threads

of the CUDA block moves 4 bytes to shared memory. In or-
der to support this approach, brick rows in the database are
aligned to 4-byte boundaries, while bricks on shared mem-
ory are aligned to 12-byte boundaries, ensuring proper align-
ment for write (4 bytes) and read (3 bytes) operations.

5.3. Subtree rendering and compositing

After all bricks are decompressed, the renderer builds an oc-
tree spatial index, which is uploaded in GPU and is used to
traverse the subtree using a stackless raycaster, similarly to
Crassin et al. [CNLE09]. The spatial index is linearized in an
array of 32-bit index nodes. The first byte encodes the node
type (split, data, or constant). The next bytes encode the in-
dex of the first child in the spatial index for split nodes, the
average of brick values for constant nodes, or the brick loca-
tion inside the texture storing decompressed bricks for data
nodes. Similarly to [IGM10] a parallel write-only Boolean
array, initialized at false, is used for visibility feedback.

The raycaster is implemented in a single CUDA kernel,
which renders the subtree to a viewport of the frame buffer
that strictly encloses the projection of the subtree’s bound-
ing box. Each thread produces the color and opacity of a sin-

gle pixel, and updates the visibility status of traversed nodes.
The subtree raycasting procedure starts from the color and
opacity fetched from the frame buffer, and follows the ray
accumulating colors and opacity until maximum opacity is
achieved or the ray leaves the subtree. During traversal, the
visibility feedback array of each traversed leaf is set to true.
At the end, the accumulated color is written to the frame
buffer. The CPU then reads back the visibility array and up-
dates the visibility status of rendered octree bricks. After ren-
dering all subtrees, the frame-buffer contains the final com-
posited image for the volume, and the visibility status of all
octree bricks is up-to-date and can be used to guide the next
frame’s refinement step.

Chameleon Visible Human Supernova

Coreset Size Time PSNR Size Time PSNR Size Time PSNR

% Mvox h dB Mvox h dB Mvox h dB

1.40% 18 0.16 52.18 8 0.06 38.19 82 0.76 49.23
3.13% 38 0.29 52.39 16 0.15 38.32 164 1.49 49.30
6.25% 77 0.56 52.57 33 0.28 38.43 329 2.94 49.32

12.50% 154 1.12 52.69 67 0.56 38.54 659 5.79 49.35
25.00% 308 2.21 52.76 134 0.97 38.59 1318 11.73 49.46
50.00% 617 4.37 52.81 268 2.09 38.59 2636 N/A N/A
100.00% 1234 8.66 52.85 536 4.16 38.60 5273 N/A N/A

Table 1: Coreset tests. Training time and reconstruction

quality as a function of coreset size. Tests marked N/A were

not completed due to memory overflow on a 8GB PC. All

tests were performed with 25 iterations, fixed dictionary size
K = 1024, block size M= 6, sparsity S= 8 and the tolerance
ε = 0.015.

6. Implementation and results

An experimental software library has been implemented on
Linux using C++, OpenGL and NVIDIA CUDA 4.0. The
out-of-core octree structure is implemented on top of Berke-
ley DB. Network access to compressed datasets is imple-
mented through a HTTP protocol, using Apache 2.2 on
the server side. The preprocessor is structured to exploit
OpenMP for parallel encoding.

We have tested our system with a variety of high resolu-
tion models and settings. In this paper, we discuss the results
obtained with the inspection of three datasets: a micro-CT
scan of a Veiled Chameleon specimen (1024×1024×1080,
16bit/sample: 2.1GB), the Visible Human Male Frozen CT
(512× 512× 1877, 16bit/sample: 0.91GB), and a 60 time
steps time-varying Supernova simulation (4323× 60, float –
18GB). All the tests have been performed on a Linux Intel
3.2 GHz Core I7 PC with a NVIDIA GTX 560 with 1GB of
video memory.

6.1. Encoding performance

In order to evaluate our coreset-based training strategy, we
ran a battery of tests, changing the fraction of the input
dataset retained in the coreset for dictionary learning. In all
these tests, we used a K-SVD block size M = 6, a target

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



E. Gobbetti et al. / COVRA: Compression-domain output-sensitive volume rendering architecture

Chameleon (2.1 GB) Visible Human (0.91 GB) Supernova (18 GB)

K-SVD, C = 64Mvox, K = 1024 M4 S16 M6 S8 M6 S4 M8 S4 M4 S16 M6 S8 M6 S4 M8 S4 M4 S16 M6 S8 M6 S4 M8 S4

Size(MB) 1112.1 170.3 85.4 36.4 487.4 72.6 36.5 16.7 1741.3 258.4 129.4 56.6
PSNR(dB) 65.98 52.44 49.25 46.77 49.74 38.55 36.34 35.02 59.49 49.11 46.57 43.88

Bps 4.9 0.75 0.38 0.16 4.95 0.74 0.37 0.15 1.39 0.21 0.10 0.05
Training time 2h39m 33m 15m 14m 2h40m 32m 14m 12m 2h9m 41m 26m 24m
Encoding time 2h21m 28m 12m 12m 58m 12m 5m 4m 3h13m 45m 23m 21m

Decoding (MVox/sec) 1283 1701 1942 1838 1283 1701 1942 1838 1283 1701 1942 1838

HVQ,C = 64Mvox D8192 D4096 D1024 D256 D8192 D4096 D1024 D256 D8192 D4096 D1024 D256

Size(MB) 144.5 143.9 143.4 143.3 62.1 61.5 61.1 60.9 218.9 218.3 217.8 217.7
PSNR(dB) 48.98 48.51 47.53 46.46 37.29 36.84 35.85 34.66 46.93 46.43 45.29 43.75

Bps 0.64 0.63 0.63 0.63 0.63 0.62 0.62 0.62 0.18 0.17 0.17 0.17
Training time 1h8m 35m 10m 4m 1h5m 33m 9m 3m 1h19m 46m 23m 17m
Encoding time 32m 18m 6m 3m 13m 7m 2m 1m 54m 32m 15m 11m

Decoding (MVox/sec) 2012 2011 2010 2011 2012 2011 2010 2011 2012 2011 2010 2011

TD R16 R12 R8 R4 R16 R12 R8 R4 R16 R12 R8 R4

Size(MB) 357.2 201.2 102.6 42.2 152.8 86.1 43.9 18.0 502.2 283.0 144.3 59.3
PSNR(dB) 55.72 46.63 44.56 42.70 39.63 37.68 35.30 31.74 50.60 47.61 43.52 39.42

Bps 1.48 0.83 0.43 0.17 1.38 0.78 0.40 0.16 0.42 0.24 0.12 0.05
Encoding time 1h45m 1h22m 1h2m 31m41s 51m 30m 29m 21m 2h22m 1h54m 1h27m 59m

Decoding (MVox/sec) 415 498 625 781 415 498 625 781 415 498 625 781

Table 2: Compression/decompression performance tests.We fixed the tolerance ε = 0.015 for all algorithms. K-SVD and HVQ

were run for 25 training iterations.

sparsity S = 8 and a dictionary size K = 1024. The K-SVD
algorithm was run for 25 iterations. Consistent behaviors are
obtained with other parameter settings.

As highlighted in Table 1, dictionary learning time is lin-
ear in coreset size, and very good dictionaries are obtained
with extremely small coresets, since PSNR (Peak Signal-to-
Noise-Ratio) reduction saturates very quickly. Using only
about 3% of the input data leads to a decrease in PSNR of
approx 0.2− 0.6 dB with respect to using the full dataset,
while decreasing by over 30× the required time and mem-
ory resources. This fact allows us to effectively process
datasets which would be otherwise infeasible due to mem-
ory (or time) constraints. For instance, we were unable, due
to memory overflow on our 8GB PC, to complete training for
the time-varying Supernova datasets with coresets exceed-
ing 25% of the dataset size. It is also interesting to note that,
given the quick convergence of the method, we can expect
to obtain good quality compression with bounded coreset
sizes, leading to a practically constant-time/memory learn-
ing method.

6.2. Compression rate and distortion

We evaluated compression performance on both static and
dynamic datasets by analyzing the results of our method with
different parameter settings. We maintained fixed the dictio-
nary size K = 1024, the coreset sizeC = 64Mvoxels and the
tolerance ε= 0.015, while varying block sizeM= 4,6,8 and
target sparsity S = 4,8,12,16. The small size of the dictio-
nary improves cache coherence and allows us to allocate 10
bits for the index and 14 bits for the coefficient in our block
encoding scheme. Fig. 3 illustrates the compression perfor-
mance of our method in term of rate-distortion curves. As is
common in image compression we use bits per sample (i.e.,
bits/output voxel) to measure compression rate and PSNR to
measure error. The scalability of our method is demonstrated

Figure 3: Compression performance. Rate-distortion

curves for large static and dynamic datasets.

by the fact that, by suitably tuning block sizes and sparsity,
our method can span wide ranges of both compression rates
and quality. The much higher compression rate of the Su-
pernova dataset is due to the higher input bit count and the
larger fraction of empty/constant voxels for this dataset.

Fig. 4 illustrates the quality obtained at various bitrates. It
can be seen that despite the high compression rates, the es-
sential parts as well as details of a certain feature size can be
visualized in all datasets. As in all current block-based lossy
compression methods, our method may, however, introduce

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



E. Gobbetti et al. / COVRA: Compression-domain output-sensitive volume rendering architecture

Figure 4: Compression quality. Quality and bitrate of the three compressed datasets with different compression parameters.

Figure 5: Visualization of gradients. Compression artifacts

are emphasized by using the gradient vector of the skin iso-

surface of the Visible Human mapped to RGB color. Block

boundaries become apparent at low bit rates.

block artifacts at low bit rates that manifest themselves as
an annoying discontinuity between adjacent blocks. Fig. 5
shows the effects of compression on gradient quality. We
plan to investigate how to visually improve the results, in-
corporating in our framework solutions inspired by the post-
processing block-artifact removal approach of current image
compression methods.

In order to provide a context for the evaluation of
our work, we have implemented Hierarchical Vector
Quantization (HVQ) [SW03] and Tensor Decomposition
(TD) [SIM∗11] within our framework for the encoding of oc-
tree bricks. The TD codec is unmodified with respect to the
original implementation, while our HVQ implementation is
optimized using a coreset technique similar to the one pre-
sented in this paper. We verified that our implementations
were able to replicate (or improve) the results presented in

the original papers for all the available datasets, before run-
ning compression/decompression tests with a variety of set-
tings. Numerical results for both compression and decom-
pression are presented in Table 2.

In terms of encoding time, while HVQ and TD appear to
be generally faster, K-SVD performance remains tractable,
thanks to the coreset approach, especially at low bitrates,
when the sparsity level is reasonably low. On the other
hand, our method sensibly achieves, on average, better rate-
distortion performance with respect to HVQ and TD. The
PSNR for HVQ on the Visible Human is very similar to
the one reported by Fout et al. [FM07] for HVQ at the
same bitrates. This allows us to also compare our results
with their Transform Coding Vector Quantization approach
(TCVQ) [FM07], which reports a PSNR of about 33.8dB
at 0.37bps and 37.8dB at 0.74bps. At the same bitrates, our
compressor achieves, respectively, 36.3dB and 38.6dB.

6.3. Interactive streaming and rendering

We evaluated the rendering performance of our framework
on a number of interactive inspection sequences. The qual-
itative performance of our adaptive GPU ray-caster is illus-
trated in an accompanying video, using the dataset config-
urations selected in Fig. 4. Because of video frame capture
constraints, the sequence is recorded using a window size
of 1024× 576 pixels. In all recorded sequences, we used a
1 voxel/pixel accuracy and a decompression budget of 64
bricks per subtree to drive the adaptive renderer.

As shown in the video, the system is fully interactive. It is

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



E. Gobbetti et al. / COVRA: Compression-domain output-sensitive volume rendering architecture

possible to translate, rotate, and scale the model as well as to
change the transfer function, also for the time-varying mod-
els, without affecting rendering performances. Frame rates
are generally above 10Hz, varying from 5Hz for closeups
of semitransparent animated data to above 60Hz for over-
all views of moderately opaque objects, for which we can
better exploit early ray termination and visibility culling. A
few popping artifacts, caused by discrete resolution changes
during adaptive loading and refinement, are visible in the
video. As in other other adaptive techniques, they could be
removed by blending between level of details using quadri-
linear interpolation to continuously blend between resolu-
tion levels [CNLE09, IGM10].

Figure 6: Multi-volume visualization. 60 time stamps of the
supernova. Working set composed of 2051 octree bricks, dis-
tributed among 13 subtrees rendered at 10 fps in a window

of 1280×512 pixels.

When the decompressed brick cache size is large enough
to cache the entire working set, only few bricks/frame are
decompressed at cache misses, and performance is similar
to previous single-pass GPU raycasters working on uncom-
pressed data [CNLE09, IGM10]. Such a configuration may
only typically occur for static datasets and small rendering
windows. Table 2 reports the decoding performance for the
various benchmarked methods. The GPU reconstruction pro-
cess of TD is the more costly, which reduces its applica-
bility in compression-domain real-time renderers. TD can
thus be used only in situations where few bricks/frame can
be decoded. On the other hand, both HVQ and our method
achieve reconstruction speeds compatible with the full de-
coding of volume working sets during rendering. The fastest
decoder is HVQ, which sustains 2Gvox/s for all the settings.
The decoding time of our method, which depends on spar-
sity, ranges from about 1.2Gvox/s for (M = 4,S = 16) to
1.9Gvox/s for (M = 6,S = 4). We can thus afford to ren-
der working sets of thousands of bricks at fully interactive
frame rates even without any caching. In addition to improv-
ing responsiveness during refinement, fast decompression is
particularly useful for time-varying datasets, where the de-
compressed cache is not big enough to keep all the decom-
pressed animation, and thus data is completely overwritten
from one frame to the other. Moreover, the high compression
rates of our method permit to store in the GPU compressed
cache entire datasets at high quality. For instance, the com-
pressed Supernova datasets and M = 6 and S = 8 of Fig. 4
with PSNR= 46.8dB fits within less than 200MB of texture
memory. For time-varying datasets, this allows the playback

of full animations without unpredictable delays due to ex-
ternal data loading. These low GPU memory requirements
can also be exploited for rendering multiple volumes within
the same environment. Fig. 6 illustrates this concept with
a frame captured during an interactive simultaneous inspec-
tion of all the 60 time-steps of the Supernova dataset. As
for the animation case, it is possible to pre-load the entire
dataset in texture-memory.

Networking scenarios are at the opposite side of the spec-
trum. In this case, compression is used to reduce bandwidth
requirements throughout the entire pipe-line. The accom-
panying video illustrates this concept with the exploration
of the Chameleon dataset over a 8Mbps ADSL connection.
Compression settings were M = 6 and S = 4, leading to
PSNR = 49.26dB for a bitrate of 0.36bps. As shown in the
video, data quickly arrives to the client in an incremental
way, and a full semi-transparent view of the Chameleon, re-
quiring about 4MB of data, is displayed in about 5 seconds.
By contrast, over 3.5 minutes would be needed to achieve
the same result using uncompressed brick data.

Please refer to the video for additional results.

7. Conclusions and Future Work

We have presented a multi-resolution compression-domain
GPU volume rendering architecture designed for interactive
local and networked applications on commodity platforms.
Compressed models are adaptively streamed and loaded on
demand. The method supports high quality multi-sample ren-
dering from general block-compressed data formats, extend-
ing to adaptive multi-resolution methods the capabilities of
current deferred filtering solutions. The compression method
introduced in this paper supports quick GPU-accelerated
on-the-fly reconstruction through sparse linear combination
of prototype blocks stored in an overcomplete dictionary.
We have shown how extremely massive volumes can be
processed off-line thanks to the application of the K-SVD
method to a coreset representing the full block-based hierar-
chical representation of the input volume. Results in terms
of rate-distortion are on par or significantly better than pre-
vious GPU accelerated methods. The principal limitation of
the method, common to all contemporary block-based com-
pression techniques, is that reconstruction artifacts at low bi-
trates manifest themselves as visible discontinuities between
adjacent blocks. Our future work will concentrate on alleviat-
ing them by incorporating compression-aware post-process
filters in the decompression and rendering process.

Acknowledgments. The authors would like to thank Alex Bronstein
for helpful discussions. Datasets are courtesy of: Digital Morphol-
ogy Project, the CTLab and the University of Texas, Austin; Visible
Human Project; Dr. John Blondin at North Carolina State University
through SciDAC Institute for Ultrascale Visualization. This work is
partially supported by the EU FP7 Program under the DIVA project
(290277). We also acknowledge the contribution of Sardinian Re-
gional Authorities.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



E. Gobbetti et al. / COVRA: Compression-domain output-sensitive volume rendering architecture

References

[AEB06] AHARON M., ELAD M., BRUCKSTEIN A.: rmk-svd:
An algorithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on Signal Processing 54, 11
(2006), 4311–4322. 2, 4

[AHPV05] AGARWAL P., HAR-PELED S., VARADARAJAN K.:
Geometric approximation via coresets. Combinatorial and Com-

putational Geometry 52 (2005), 1–30. 2
[BNS01] BOADA I., NAVAZO I., SCOPIGNO R.: Multiresolution

volume visualization with a texture-based octree. Visual Com-

puter 17, 3 (2001), 185–197. 2
[CARKD99] COTTER S., ADLER R., RAO R., KREUTZ-

DELGADO K.: Forward sequential algorithms for best basis se-
lection. In Proc. Vision, Image and Signal Processing (1999),
vol. 146, IET, pp. 235–244. 4

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN

E.: Gigavoxels: Ray-guided streaming for efficient and detailed
voxel rendering. In Proc. I3D (2009), pp. 15–22. 2, 3, 5, 6, 9

[Cra] CRAIGHEAD M.: Gl_nv_texture_compression_vtc.
OpenGL Extension Registry. 2

[CS07] CZUMAJ A., SOHLER C.: Sublinear-time approximation
algorithms for clustering via random sampling. Random Struc-

tures & Algorithms 30, 1-2 (2007), 226–256. 2
[Ela08] ELAD M.: Sparse and Redundant Representations.

Springer, 2008. 2, 4
[FAM∗05] FOUT N., AKIBA H., MA K., LEFOHN A., KNISS J.:

High-quality rendering of compressed volume data formats. In
Proc. EG/IEEE Symposium on Visualization (2005). 2, 3

[FFS11] FEIGIN M., FELDMAN D., SOCHEN N.: From high def-
inition image to low space optimization. In Proc. SSVM (2011).
2

[FL11] FELDMAN D., LANGBERG M.: A unified framework for
approximating and clustering data. In Proc. 43rd annual ACM

symposium on Theory of computing (2011), ACM, pp. 569–578.
2

[FM07] FOUT N., MA K.-L.: Transform coding for hardware-
accelerated volume rendering. IEEE Transactions on Visualiza-

tion and Computer Graphics 13, 6 (2007), 1600 – 1607. 1, 2,
8

[GMI08] GOBBETTI E., MARTON F., IGLESIAS GUITIÁN J. A.:
A single-pass GPU ray casting framework for interactive out-of-
core rendering of massive volumetric datasets. Visual Computer
24, 7–9 (2008), 797–806. 2, 3, 5

[GS04] GUTHE S., STRASSER W.: Advanced techniques for high
quality multiresolution volume rendering. Computers & Graph-

ics 28 (2004), 51–58. 2
[HQK05] HONG W., QIU F., KAUFMAN A.: GPU-based object-

order ray-casting for large datasets. In Proc. Volume Graphics

(2005), pp. 177–186. 2
[IGM10] IGLESIAS GUITIÁN J., GOBBETTI E., MARTON F.:

View-dependent exploration of massive volumetric models on
large scale light field displays. The Visual Computer 26, 6–8
(2010), 1037–1047. 2, 3, 6, 9

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. In Proc.

Graphics Hardware (2002), pp. 7–15. 2
[KWAH06] KAEHLER R., WISE J., ABEL T., HEGE H.-C.:

GPU-assisted raycasting for cosmological adaptive mesh refine-
ment simulations. In Proc. Volume Graphics (2006), pp. 103–110.
2

[LHJ99] LAMAR E. C., HAMANN B., JOY K. I.: Multireso-
lution techniques for interactive texture-based volume visualiza-
tion. In IEEE Visualization (1999), pp. 355–362. 2

[Lju06] LJUNG P.: Adaptive sampling in single pass, GPU-based
raycasting of multiresolution volumes. In Proc. Volume Graphics
(2006), pp. 39–46. 2

[MBPS10] MAIRAL J., BACH F., PONCE J., SAPIRO G.: Online
learning for matrix factorization and sparse coding. The Journal
of Machine Learning Research 11 (2010), 19–60. 2

[NIH08] NAGAYASU D., INO F., HAGIHARA K.: A decompres-
sion pipeline for accelerating out-of-core volume rendering of
time-varying data. Computers & Graphics 32, 3 (2008), 350–
362. 2

[PK09] PARYS R., KNITTEL G.: Giga-voxel rendering from com-
pressed data on a display wall. In Proc. WSCG (2009), pp. 73–80.
2

[RBE10] RUBINSTEIN R., BRUCKSTEIN A., ELAD M.: Dictio-
naries for sparse representation modeling. Proceedings of the

IEEE 98, 6 (2010), 1045–1057. 2
[RK09] RUITERS R., KLEIN R.: Btf compression via sparse ten-

sor decomposition. In Computer Graphics Forum (2009), vol. 28,
Wiley Online Library, pp. 1181–1188. 2

[RZE08] RUBINSTEIN R., ZIBULEVSKY M., ELAD M.: Efficient
implementation of the K-SVD algorithm using batch orthogonal

matching pursuit. Tech. rep., CS Technion, 2008. 4
[SE10] SKRETTING K., ENGAN K.: Recursive least squares dic-

tionary learning algorithm. IEEE Transactions on Signal Process-

ing 58, 4 (2010), 2121–2130. 2
[SIM∗11] SUTER S., IGLESIAS GUITIÁN J., MARTON F., AGUS

M., ELSENER A., ZOLLIKOFER C., GOPI M., GOBBETTI E.,
PAJAROLA R.: Interactive multiscale tensor reconstruction for
multiresolution volume visualization. IEEE Transactions on Vi-

sualization and Computer Graphics (2011). 2, 8
[SW03] SCHNEIDER J., WESTERMANN R.: Compression do-

main volume rendering. In Proc. IEEE Visualization (2003),
pp. 293–300. 2, 8

[Vit85] VITTER J.: Random sampling with a reservoir. ACM

Transactions on Mathematical Software (TOMS) 11, 1 (1985),
37–57. 5

[YNV08] YELA H., NAVAZO I., VAZQUEZ P.: S3dc: A 3dc-
based volume compression algorithm. In Proc. CEIG (2008). 2

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.


