SNP Genotype Calling with MapReduce

. Simone Leo '
simone.leo@crs4.it

Luca Pireddu **
luca.pireddu@crs4.it

Gianluigi Zanetti
gianluigi.zanetti@crs4.it

T CRS4, Pula, CA, ltaly
* University of Cagliari, CA, ltaly

ABSTRACT

Genotype measurement is a key step in genome-wide as-
sociation studies — those studies that aim to uncover the
underlying genetic causes of physical traits, including dis-
ease. The leading technology for measuring genotypes is the
SNP microarray, where hundreds of thousands of genetic
variants are interrogated simultaneously. For some of the
most commonly used high-throughput genotyping technolo-
gies, the conversion from raw measured data to genotype
calls (i.e., identifying the specific genomic variants) requires
the concurrent analysis of many samples, with the quality
of the results crucially depending on the size of the batch.
However, current software for microarray analysis is charac-
terized by poor scalability with respect to input batch sizes.
In large-scale studies, this limits the ability to harness the
large number of samples available to improve the accuracy
of genotype calling. Here, we present a scalable MapReduce
application that offers both greater scalability and flexibility
than the current state-of-the-art. The software can process
datasets as large as 7000 samples in a day, it is more than
one order of magnitude faster than previous solutions, and
it is currently used in production.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming— Distributed Programming

General Terms
Algorithms, Performance, Reliability

Keywords
Genotyping, MapReduce

1. INTRODUCTION

Genetic variations strongly influence phenotypic traits like
height, longevity and susceptibility to diseases. However,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MapReduce’12, June 18-19, 2012, Delft, The Netherlands.

Copyright 2012 ACM 978-1-4503-1343-8/12/06 ...$10.00.

since each individual variation only makes a small contribu-
tion to the overall effect, a large number of variants must be
studied simultaneously in order to uncover possible risk fac-
tors for disease. Genome-wide association studies (GWAS)
[11] have been made possible by the availability of high-
density genotyping microarrays [16], where hundreds of thou-
sands of variations are measured simultaneously across the
whole genome.

At CRS4 we are currently involved in the computational
aspects of a large-scale study [25,29] that collects high-
throughput data on thousands of individuals coming from
an ethnically homogeneous population — including genotyp-
ing with different high-resolution technologies (Affymetrix
and Illumina) and next-generation sequencing. Data from
Affymetrix 6.0 arrays [23] alone consists of more than 7700
samples, each pertaining to an individual enrolled in the
study, for a total data size of about 500 GB.

The sequence of computations needed to estimate genetic
variants from the raw data coming from the genotyping tech-
nology is called genotype calling (GC). In the case of the
Affymetrix arrays, GC is based on the concurrent analysis
of many samples, with results that depend on the overall
statistics, the quality of individual samples, and the number
of samples in the batch. The current gold standard im-
plementations of this procedure — apt-probeset-genotype
from the Affymetrix power tools (APT) [4] and Birdseed [15]
— are designed as scalar applications optimized to run on a
single workstation. Although apt-probeset-genotype al-
lows a certain degree of load distribution — being able to
run on a subset of the whole probeset collection at a time —
this approach is not efficient, because the initial normaliza-
tion procedure on which it depends must be re-executed for
every subset of probesets. For this reason, the application is
typically run on relatively small batches of samples. How-
ever, processing data in small batches results in well-known
adverse effects [19,27]. A strategy to counteract these ef-
fects is to consider large batch sizes, which, in the case of
an ethnically homogeneous population, can be as large as
the total number of available samples. Unfortunately, apt-
probeset-genotype presents serious scalability issues when
the number of samples to process reaches the thousands,
such that completing the GC analysis would take months
even on a very fast computational node. This makes ordi-
nary GC barely feasible, and systematic studies on how the
results depend on, for instance, the statistics of the samples
in the dataset, practically impossible.

To enable GC analysis on large sample sizes, we designed
and implemented a distributed MapReduce [8] implementa-

tion of the algorithms contained in apt-probeset-genotype
that easily scales to thousands of samples. The software is
scalable both in the number of nodes it can effectively use
and in the number of input samples, and is capable of per-
forming GC for about 7000 samples in less than one day on a
30-node Hadoop cluster — a task that we had previously com-
pleted in 15 days on 18 machines, at the cost of laboriously
manually partitioning the input data and reassembling the
results. This new MapReduce application is currently being
used in production at CRS4. To the best of our knowledge,
ours is the first distributed implementation of the Affymetrix
6.0 analysis pipeline.

The remainder of this article is structured as follows: sec-
tion 2 provides background information regarding genotyp-
ing and genotype calling; section 3 describes the MapReduce
workflow that implements the GC procedure; section 4 deals
with the evaluation of our solution; section 5 delineates the
related work in this area.

2. SNP GENOTYPE CALLING

Single nucleotide polymorphisms (SNPs) are variations at
a single position in a DNA sequence that appear in at least
1% of the population. In most cases, a SNP consists of only
two variants, or alleles, customarily denoted by the letters A
and B. Thus, for diploid organisms such as humans, there
are three possible genotype configurations at each SNP site:
AA, AB and BB. Measuring genotypes is a fundamental
step in genome-wide association studies (GWAS) [11], where
a large number of SNPs distributed across the whole genome
are tested for correlation with qualitative (e.g., a disease) or
quantitative (e.g., BMI) phenotypic traits.

Several techniques have been developed for measuring geno-
types: here, we concentrate on high-throughput genotyping
with SNP microarrays [16] such as the Affymetrix Genome-
Wide Human SNP Array 6.0 [23], where hundreds of thou-
sands of SNPs are interrogated simultaneously. These arrays
are based on the biochemical binding property of comple-
mentary nucleotides (A to T and C to G). The microarray
chip is covered with probes, each designed to be complemen-
tary to a DNA sub-sequence containing a particular SNP.
Probes are included for each variant of the SNP (A or B)
and are grouped in redundant collections called probesets.
When an experiment is run, DNA is fragmented, amplified
via polymerase chain reaction (PCR), and labeled with a
fluorescent dye; the prepared DNA is then hybridized to the
probes in the array; finally, the microarray machine detects
the intensity of the fluorescence at each probeset location
and transfers these measurements into an Affymetrix CEL
file for the sample. The relative intensity of the fluorescence
of a SNP’s probes contains the information necessary to un-
derstand which variants exist in the sample.

The path from raw probe intensities to discrete genotypes
consists of a series of computations culminating in the geno-
type calling (GC) step. The gold standard for this calcula-
tion is set by Birdseed, developed by the Broad Institute
of MIT and Harvard and integrated into the Affymetrix
power tools (APT) [4]. Birdseed performs a genotype call
by analyzing the SNP’s intensities from many samples to-
gether. To this data it fits a two-dimensional Gaussian mix-
ture model (GMM) — where the two dimensions represent
the summarized intensities (see below) for allele A and B —
by expectation-maximization initialized with prior expected
means, variances and proportions of genotype classes calcu-

1800
16001
1400

by

12001
1000
8001

allele B intensit;

6001
400
2001

200 400 600 800 1000 1200 1400 1600 1800
allele A intensity

Figure 1: Scatter plot of allele A versus allele B
intensities for one of the probesets in a production
run. Red circles, blue triangles and green squares
represent, respectively, the AA, AB and BB clusters
as determined by Birdseed.

lated from HapMap [31] data. The model reveals the clusters
of AA, AB and BB variants (figure 1), and each sample’s
genotype is given by the cluster to which it belongs, while
the distance from the cluster centroid gives a measure of
confidence associated with the call. A limit may be placed
on the acceptable smallest distance from any cluster cen-
troid, beyond which the SNP is labeled as no call given the
excessive risk of error.

Yet, Birdseed is not a complete tool for GC since it does
not perform the preliminary steps required prior to its anal-
ysis. On the other hand, the APT version (apt-probeset-
genotype) implements gender calling, quantile normaliza-
tion and summarization (i.e., computation of a single per-
probeset intensity value for each allele) of probe intensities,
allowing it to take its input from CEL files directly. The
information on gender is used to decide the relevant GMM
parameters that should be used, e.g., to handle SNPs on the
X and Y chromosomes differently depending on the gender
of the sample. The normalization step is a key factor that
influences scalability, since data from all samples must be
combined to build the reference distribution that is then as-
signed to each intensity vector. Let m be the number of
probes, n the number of samples, and A the m X n matrix
whose columns represent intensity vectors. So, if i(p;, si) is
the intensity for probe j and sample k we have the matrix

i(p1,s1) i(p1,82) i(p1,83) i(p1, sn)
i(p2751) i(p2752) i(p2783) i(p278n)
A= i(ps,ys1) i(p3,82) e i(p3, Sn)
i(pmss1) 1(DPmyS2) e 1(DPm, Sn)

The quantile normalization procedure acts as follows [6]:

1. each column in A is sorted;
2. in each row, all elements are replaced by the row mean;

3. each column is rearranged to have the same ordering
as the original A.

Since the APT version of Birdseed is optimized for a sin-
gle CPU (the only option for load distribution being parti-
tioning by probeset subset, as discussed above), analyzing
thousands of samples at the same time can be prohibitive
in terms of both processing time and disk space usage (for
APT temporary files). The most straightforward method
for reducing the computational burden is to split the input
data set into batches and perform GC per batch. However,
this technique introduces batch effects that are an impor-
tant source of errors [19,27]. To obtain the best possible
GC, it is therefore necessary to process all available sam-
ples together. However, for large-scale genome-wide studies
such as the one mentioned in the introduction, conventional
single-core techniques fail to perform this kind of computa-
tion efficiently, since data structures (e.g., the normalization
matrix) become too large to fit into memory. In this case,
the APT implementation swaps data to disk, leading to a
severe loss of performance (see section 4). This reason is
what motivated us to develop a distributed implementation
of the algorithm.

3. MAPREDUCE WORKFLOW

The distributed genotype calling algorithm is implemented
as a sequence of Pydoop [20] MapReduce jobs that lever-
age NumPy [33] for numerical computation. Python is our
programming language of choice for most applications, pri-
marily due to its rapid development cycle and ease of main-
tenance. Pydoop is, in several ways, preferable to other
solutions for Python Hadoop development: with respect to
Streaming, it provides access to a broader range of MapRe-
duce components (e.g., record reader/writer); being written
in CPython, it has none of the shortcomings of Jython; its
HDFS API allows for a flexible implementation of compo-
nents that require interaction with the distributed file sys-
tem. Each job (figure 2) produces intermediate results that
are serialized with protocol buffers [10] (protobuf) and saved
to HDFS. The algorithm’s overall strategy is to transpose
the sample-probeset matrix according to the direction of
record flow needed by each job. Each stage is driven by
a wrapping script that performs the necessary setup steps
(e.g., uploading input and auxiliary files), runs the MapRe-
duce job and post-processes results where necessary.

While most of the code has been written from scratch,
we integrated numerical functions and Affymetrix-specific
1/0 routines from the APT as Boost.Python [2] extension
modules. Specifically, the algo extension wraps gender and
genotype calling routines, while the io extension integrates
tools for reading CEL files and other Affymetrix file formats
(e.g., chip layout files).

The individual workflow steps can be summarized as fol-
lows.

Get Probe Arrays. Probe intensities are extracted from
CEL files and stored into probe array (PA) objects. This
is a map-only stage where a file containing a serialized PA
is written for each input CEL file. The MapReduce job
takes as input a list of CEL file paths. A custom record
reader reads each file in the list, extracts a vector of probe
intensities from it using APT’s FusionCELData API (made
available by the io extension), serializes it and sends it to
the mapper. The latter, in turn, writes the serialized probe
intensities to a file in a user-specified directory.

Call Gender. Gender calling is performed on each PA. This
is a map-only stage that executes one or both of the two
supported gender calling methods on each probe intensity
vector; the wrapping script collects all results in a table that
will be used by the genotype calling step. One of the gender
calling methods is based on computing the intensity ratio
between the sum of the signals on groups of probes that are,
respectively, on the Y and X chromosome; the other one
is based on an expectation-maximization algorithm. This
stage takes as input a list of PA file paths. A custom record
reader reads each file in the list and passes its contents to the
mapper, which deserializes the probe intensity vector and
performs gender calling on it using one or both of the above
methods, made available by the algo extension. Results
(the male/female call plus method-specific parameters) are
emitted in tabular format and collected into a single file by
the wrapping script.

Find Reference Distribution. The mean quantile distribu-
tion of probe intensity vectors (see section 2) is computed.
The idea is to compute the row-averages of the matrix where
each column is a sorted intensity vector. To perform this op-
eration, the mapper, for each PA, emits a value consisting
of a protobuf-serialized structure containing the sorted in-
tensity vector and a sample counter set to 1, and the host
name as the key. The reducer then calculates the element-
wise sum of all the sorted intensity vectors and counters it
receives and emits data with the same structure. Since the
reduce operation is idempotent, we also use it as a combiner
to do most of the work directly on the mapper nodes and
reduce the amount of data to shuffle. By using the host
name as the reduce key, we effectively partition the work by
host. The motivation behind this approach is as follows. A
first, intuitive algorithm for this problem might be to have
the mappers sort the PA and then emit (rownumber, value)
tuples. The combiners and reducers would sum all the el-
ements for each row, and these could then be fetched and
assembled into a vector by the wrapping script, which would
also divide by the number of samples to compute the means.
However, this approach would force us to perform the nu-
meric additions in bare Python, two numbers at a time. Fur-
thermore, it would generate a large number of intermediate
values, which in this case are even more time-consuming to
process than in Java-based Hadoop programs because of the
overhead of the pipes framework. On the other hand, our
approach allows the algorithm to perform the additions in
bulk, thus taking advantage of the speed of NumPy vector
operations and reducing the number of intermediate values
to shuffle. Yet, with large matrices the column reduction
operation can be quite computationally and data intensive.
Therefore, a straightforward implementation using a single
reducer that would see all the sorted PAs and calculate the
row-averages would introduce an obvious bottleneck. For
this reason we opted for a hybrid approach where we use
multiple reducers, and rely on the wrapper script to com-
pute the final sum and the averages. The final result is
serialized with protobuf and written to HDFS.

Normalize. This is a map-only stage that maps each PA
to a normalized probe array (NPA), using the distribution
computed in the previous step as reference. As prescribed
by the quantile normalization procedure, each value in the
original PA is replaced with the corresponding probe value

S1 S2 S3

b1 P2 p3

n[T T F—

call gender

Y

call genotypes

s 111
R_> D2 I:I:I:I_> summarize [implementing 52 I:I:I:l
normalize birdseed
> A > s [T 1]
"""" data by sample === feceeoeeeeeeeeoeoos data by probeset -oeeeseessessesssseessseeoesd L daga by sample -

Figure 2: A schematic representation of the MapReduce workflow for GC. All steps up to and including
normalization process data by sample, while summarization and GC proper act on a per-probeset basis. The

final reduce phase rearranges results by sample.

from the reference distribution. The applications reads PAs
from an input list as in the previous stages, and the reference
distribution from the corresponding HDF'S file, whose path
is passed to the mapper as a configuration parameter. For
each PA, normalization with respect to the reference distri-
bution is performed with a NumPy-based routine. Finally,
NPAs are serialized with protobuf and written to HDFS.

Summarize. This step operates on a collection of NPAs,
generating per-probeset intensity values. Essentially, it im-
plements a transposition from a sample — collection-of-
probesets map to a probeset — collection-of-samples map,
allowing summarization of normalized probe intensities to
per-probeset values. The mapper receives NPAs as input
values from a custom record reader, gathers probe intensi-
ties by probeset and emits the probeset ID as the key and
the corresponding protobuf-serialized intensity array as the
value. The reducer summarizes all per-probe intensities cor-
responding to the same probeset to a per-probeset value
using the PLIER method from the APT SDK, available
through the algo extension. Finally, summarized intensi-
ties are serialized with protobuf and written to HDF'S.

Call Genotypes. The final step performs actual SNP call-
ing on a collection of summarized probeset intensities. The
mapper receives intensity vectors from the record reader,
applies APT’s Birdseed method — again, through the algo
extension — to call genotypes, and emits the sample IDs as
the keys and the protobuf-serialized call results as the val-
ues for each probeset. With the above key choice, the re-
ducer automatically receives calls grouped by sample, which
it writes to HDFS — one file per sample — in a specialized
protobuf-based binary format.

4. EVALUATION

We evaluate the performance of the MapReduce workflow
as compared to that of apt-probeset-genotype. In addi-
tion, we measure the scalability of the MapReduce imple-
mentation with respect to the number of input samples.

All tests have been run on a homogeneous set of machines
where each node runs CentOS-5.2 and is equipped with: two
Intel Xeon CPUs @ 2.83 GHz with 4 cores each; 16 GB of
RAM; two 250 GB SATA hard disks, one of which has been
used for HDFS storage (the other one is reserved for the
0S); Gigabit Ethernet NIC. Hadoop clusters have been con-
figured with each slave running a task tracker and a data

1000

[.9]
o
=]

600

400

samples processed per hour

[
[=
=

()\Q) \%q’{b q:\(b% (b%b& géa% @S‘q (){boo\' (\‘)9%

Figure 3: MapReduce throughput on a 30-node clus-
ter for dataset sizes ranging from 916 to 7292 sam-
ples. Each measurement has been repeated three
times. Deviations from the ideal flat line are mostly
due to shuffle and sort and to the single-node data
collection performed by wrapper scripts. The line

has been drawn only to guide the eye.

+— hadoop
80t . 1
e—e baseline
Z 60}
=2
[
E
— 40}
%
o
=
[}
20t 1
! e

&S’o%\,() \’%j:b b
Figure 4: Total running times, in hours, for differ-
ent dataset sizes (number of input CEL files). Each
measurement has been repeated three times. The
line has been drawn only to guide the eye.

node, plus two dedicated machines for the task tracker and
the name node. We used Hadoop-0.20.2 to run the MapRe-
duce workflow: however, with the latest version of Pydoop,
0.5, the software runs on the latest Hadoop version (1.0.0
at the time of writing). For our performance measurements,
we were given access to a dataset of 7292 CEL files from the
aforementioned study on autoimmunity diseases [29].

To evaluate the accuracy of our implementation, we used
it to re-compute genotypes for 6863 samples from a pre-
vious study [32] (see below for details). The average no
call rate (see section 2) was slightly lower (5.017 x 1072
vs 5.206 x 1072, with the default 0.1 confidence threshold),
which resulted in calling about 12 million additional geno-
types over all samples. The average allelic discordance rate
(i.e., the fraction of single allele mismatches between the two
runs) was 3.6 x 107%, with a standard deviation of 107%.
Note that the Affymetrix microarray’s own error rate [3],
measured as discordance with the HapMap genotypes, is
3x107°.

Figure 3 shows MapReduce throughput for a 30-node clus-
ter, expressed in samples processed per hour, for dataset
sizes ranging from 916 samples to the full set of 7292 sam-
ples. Deviations from the ideal flat line are mostly due to
shuffle and sort in those workflow steps that include a re-
duce phase (shuffle and sort are reduce sub-phases) and to
the single-node data collection performed by wrapper pro-
grams.

Figure 4 displays the total running time in hours for dif-
ferent dataset sizes, separately for the MapReduce version
on the aforementioned 30-node Hadoop cluster and the APT
implementation. Since the latter is single-CPU, running GC
with it for increasing numbers of samples quickly becomes
a matter of days. As discussed above, a certain degree of
parallelization can be achieved by partitioning the probeset
space and running a separate apt-probeset-genotype in-
stance for each partition. However, since the normalization
matrix must be recomputed each time for all samples, this
leaves the disk space requirements unmodified and results in
poor scalability. In a previous work by Valentini et al. [32],
this strategy was employed to perform GC on 6863 samples
in 15 days on 18 nodes.

To compare the efficiencies of the various strategies, let us
consider the throughput per node. Let N be the number of
nodes, S that of samples and ¢ the run time in hours; the
throughput per node is then:

S

Tn=—.
Nt

The distributed probeset solution achieves a T}, of 1.1. On
the other hand, the T, of our MapReduce implementation
ranges from 16.0 (for 7292 samples) to 25.4 (for 916 sam-
ples). Again in [32], the running time was further reduced
to two days on 7 CPUs (T}, = 20.4) by manually partitioning
the dataset into 7 overlapping (for quality control) batches
of about 1000 individuals. However, this is an ad-hoc solu-
tion that requires substantial user intervention: to minimize
the batch effects mentioned in section 2, partitions must
be carefully balanced with respect to case/control ratio and
plate/laboratory representation; calls on the overlapping re-
gions must be quality checked; individual jobs must be man-
ually monitored and rerun in case of failure. Furthermore,
even with careful balancing, the average allelic discordance
rate with respect to the by-probeset run was 3.4 x 1072,

Table 1: scalability for varying cluster size

N T,
mean | std. error

51 26.9 0.1
10 | 23.1 0.2
15 | 23.6 0.5
20 | 21.8 0.3
25| 25.9 0.3
30 | 244 0.1

Finally, to evaluate scalability with respect to the number
of nodes, we performed a series of runs on a 1823 samples
dataset, with cluster size varying from 5 to 30 nodes, in steps
of 5. With three repeated instances of the workflow run for
each cluster size, we measured an average 7T, of 24.3, with
a standard deviation of 1.87. Details are shown in table 1.

S. RELATED WORK

Since Affymetrix started producing SNP arrays, new al-
gorithms for genotype calling have been developed in re-
sponse to subsequent improvements of the technology [16].
For the 10K (i.e., containing approximately 10000 SNPs)
array, Affymetrix adopted a modified version of the parti-
tioning around medoids (PAM) algorithm [21]. Call rates
on the 10K array were later improved with the development
of SNiPer [13]. With the introduction of the 100K array,
the manufacturer abandoned the PAM method in favor of
the dynamic model (DM) approach [1], in turn replaced by
a modified version of the RLMM algorithm [28] with the ad-
vent of the 500K array. For the more recent Genome-Wide
SNP 6.0 arrays, such as the ones that produced the data
used for our tests, Affymetrix has integrated Birdseed [15] —
the current state-of-the-art in SNP GC — in the Affymetrix
power tools (APT) [4] software suite, which includes the
apt-probeset-genotype GC tool.

The MapReduce model has been increasingly adopted in
data-intensive bioinformatics since late 2008, with works on
the parallelization of BLAST and other popular tools [9,22].
Its adoption was stimulated by the rapid increase in data
rates resulting from the advancement in high-throughput
sequencing technologies. As such, many of the MapReduce
applications in bioinformatics relate to sequencing data anal-
ysis problems such as short read mapping [18,26,30], quality
control [14] and RNA-sequencing [17]. To the best of our
knowledge, no other work has been published on applying
MapReduce or other distributed computing approaches to
the SNP GC problem.

6. CONCLUSIONS AND FUTURE WORK

We have presented a MapReduce workflow for genotype
calling that reproduces the functionalities of the standard
apt-probeset-genotype tool, with the added scalability of
a distributed implementation. In less than one day, the
MapReduce version enables the analysis of thousands of
data samples in the same batch, thus eliminating the error-
inducing batch effects mentioned in section 2. Moreover, our
implementation is much more suitable for repeated analysis
with varying configuration parameters, not only because of

the speed advantages, but also because of its greater flexi-
bility: while apt-probeset-genotype is a monolithic piece
of software that runs the whole process from input CEL files
to the final genotype calls, our MapReduce workflow acts in
stages that save intermediate results to HDFS. Thus, if a
parameter affecting the final GC step is changed, only that
step needs to be re-executed.

With the lack of substantial increases in density in SNP
arrays since 2007 [16] and the continuously decreasing costs
of next generation sequencing (NGS) [24], which could soon
make it the first choice for genotyping [7], it might appear
that microarrays are becoming irrelevant. On the contrary,
microarrays are still widely used, especially in medical re-
search where studies can reach sizes of hundreds of thou-
sands of individuals [12]. Therefore, SNP genotype calling
will continue to require scalable and efficient methods for
data analysis such as the one presented in this work.

In addition to scalability, the decision to base the work-
flow on Hadoop provides another benefit in the possibility
to run the workflow on a cloud infrastructure as the one of-
fered by Amazon. However, we expect there to be two main
problems stopping users from taking advantage of this pos-
sibility: first, the privacy issues associated with the remote
storage of confidential clinical patient data; second, the cost
and time required to transfer the data. For instance, con-
sider a GC run on 5000 samples: since the average CEL file
size for 6.0 arrays is about 66 MB and that of output files is
89 MB, with a 10 Mbps connection at 80% network utiliza-
tion it would take more than 9 days to get the results, for a
total cost (data transfer only) of $562 [5].

In the near future, we plan to add more features (e.g., a
distributed application for generating allele-allele plots — see
figure 1 — for all probesets) and release the full source code
as open source.

7. ACKNOWLEDGMENTS

We would like to thank Francesco Cucca and CNR-IRGB
for kindly allowing us to perform scalability tests with their
genotyping data. We would also like to thank our colleagues
Maria Valentini and Ilenia Zara and CNR-IRGB’s Serena
Sanna for sharing their expertise on genotype calling and
GWAS and for their precious feedback at all stages of devel-
opment.

8. REFERENCES

[1] Dynamic model based algorithms for screening and
genotyping over 100 K SNPs on oligonucleotide
microarrays. Bioinformatics, 21(9):1958-63, 2005.

[2] D. Abrahams and R. W. Grosse-Kunstleve. Building
hybrid systems with Boost.Python. C/C++ Users
Journal, 21(7):29-36, 2003.

[3] Genome-wide human SNP array 6.0 — data sheet.
http://wuw.affymetrix.com/support/technical/
datasheets/genomewide_snp6_datasheet.pdf.

[4] Affymetrix power tools.
http://wuw.affymetrix.com/partners_programs/
programs/developer/tools/powertools.affx.

[5] Aws import/export.
http://aws.amazon.com/importexport/.

[6] B. Bolstad, R. Irizarry, M. Astrand, and T. Speed. A
comparison of normalization methods for high density

(14]

(15]

(17]

(18]

(19]

20]

(21]

(22]

23]

oligonucleotide array data based on variance and bias.
Bioinformatics, 19(2):185-193, 2003.

A. Coombs. The sequencing shakeup. Nature
Biotechnology, 26(10):1109-1112, 2008.

J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In OSDI ’04: 6th
Symposium on Operating Systems Design and
Implementation, 2004.

M. Gaggero, S. Leo, S. Manca, et al. Parallelizing
bioinformatics applications with MapReduce. CCA-08:
Cloud Computing and its Applications, 2008.

Google Protobuf: protocol buffers.
http://code.google.com/p/protobuf/.

J. N. Hirschhorn and M. J. Daly. Genome-wide
association studies for common diseases and complex
traits. Nature Reviews Genetics, 6(2):95-108, 2005.

T. J. Hoffmann, Y. Zhan, M. N. Kvale, et al. Design
and coverage of high throughput genotyping arrays
optimized for individuals of East Asian, African
American, and Latino race/ethnicity using imputation
and a novel hybrid SNP selection algorithm.
Genomics, 98(6):422-430, 2011.

M. J. Huentelman, D. W. Craig, A. D. Shieh, et al.
SNiPer: improved SNP genotype calling for
Affymetrix 10K GeneChip microarray data. BMC
genomics, 6(1):149, 2005.

D. R. Kelley, M. C. Schatz, and S. L. Salzberg. Quake:
quality-aware detection and correction of sequencing
errors. Genome Biology, 11(11):116, 2010.

J. M. Korn, F. G. Kuruvilla, S. A. McCarroll, et al.
Integrated genotype calling and association analysis of
SNPs, common copy number polymorphisms and rare
CNVs. Nature Genetics, 40(10):1253-1260, 2008.

T. LaFramboise. Single nucleotide polymorphism
arrays: a decade of biological, computational and
technological advances. Nucleic Acids Research,
37(13):4181-4193, 20009.

B. Langmead, K. D. Hansen, and J. T. Leek.
Cloud-scale RNA-sequencing differential expression
analysis with Myrna. Genome Biology, 11(8):83, 2010.
B. Langmead, M. C. Schatz, J. Lin, et al. Searching
for SNPs with cloud computing. Genome Biology,
10(11):134, 20009.

J. Leek, R. Scharpf, H. Bravo, et al. Tackling the
widespread and critical impact of batch effects in
high-throughput data. Nature Reviews Genetics,
11:733-739, 2010.

S. Leo and G. Zanetti. Pydoop: a Python MapReduce
and HDFS API for Hadoop. In Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing, pages 819-825, 2010.

W.-m. Liu, X. Di, G. Yang, et al. Algorithms for
large-scale genotyping microarrays. Bioinformatics,
19(18):2397-2403, 2003.

A. Matsunaga, M. Tsugawa, and J. Fortes.
Cloudblast: combining MapReduce and virtualization
on distributed resources for bioinformatics
applications. In Fourth IEEE International Conference
on eScience, pages 222-229, 2008.

S. A. McCarroll, F. G. Kuruvilla, J. M. Korn, et al.
Integrated detection and population-genetic analysis

[28]

of SNPs and copy number variation. Nature Genetics,
40(10):1166-1174, 2008.

M. L. Metzker. Sequencing technologies — the next
generation. Nature Reviews Genetics, 11(1):31-46,
2010.

S. Naitza, E. Porcu, M. Steri, et al. A genome-wide
association scan on the levels of markers of
inflammation in Sardinians reveals associations that
underpin its complex regulation. PLoS Genetics,
(1):€1002480.

L. Pireddu, S. Leo, and G. Zanetti. SEAL: a
distributed short read mapping and duplicate removal
tool. Bioinformatics, 27(15):2159-2160, 2011.

A. Pluzhnikov, J. E. Below, A. Konkashbaev, et al.
Spoiling the whole bunch: quality control aimed at
preserving the integrity of high-throughput
genotyping. American Journal of Human Genetics,
87(1):123-128, 2010.

N. Rabbee and T. P. Speed. A genotype calling

(30]

(31]

(32]

33]

algorithm for Affymetrix SNP arrays. Bioinformatics,
22(1):7-12, 2006.

S. Sanna, M. Pitzalis, M. Zoledziewska, et al. Variants
within the immunoregulatory CBLB gene are
associated with multiple sclerosis. Nature Genetics,
42(6):495-7, 2010.

M. C. Schatz. CloudBurst: highly sensitive read
mapping with MapReduce. Bioinformatics,
25(11):1363-1369, 2009.

G. A. Thorisson, A. V. Smith, L. Krishnan, and L. D.
Stein. The international HapMap project web site.
Genome Research, 15(11):1592-1593, 2005.

M. Valentini, I. Zara, and M. Muggiri. Comparison of
two strategies for genotype calling. Poster - ESHG
2011, Amsterdam, May 25-31, 2011.

S. van der Walt, S. Colbert, and G. Varoquaux. The
NumPy array: a structure for efficient numerical
computation. Computing in Science Engineering,
13(2):22 30, 2011.

