OMERO.biobank: a flexible approach for managing data in experimental biology

Ciclo seminari interni CRS4 2012
23 maggio 2012
Luca Lianas
lianas@crs4.it
Agenda

• Introduction

• OMERO
 – What does it do
 – How does it do it
 – Why do we like OMERO

• OMERO.biobank
 – What is a “computable” biobank
 – OMERO.biobank overview
 – Code examples

• Conclusions
Agenda

• Introduction

• OMERO
 – What does it do
 – How does it do it
 – Why do we like OMERO

• OMERO.biobank
 – What is a “computable” biobank
 – OMERO.biobank overview
 – Code examples

• Conclusions
Coping with huge amounts of data

- High throughput technologies
- Heterogeneous sources
- Continuously evolving data acquisition technology
How to handle Data: the standard approach

• The “default” solution:
 – Excel files
 • Pros: instant-on, everybody knows how to handle Excel files
 • Cons: everybody *thinks* they know how to handle Excel files, brittle, uncontrollable, does not scale (in any sense)
How to handle Data: the standard approach

• The “do it from scratch” approach:
 – Custom databases
 • Pros: structured approach, can evolve, can scale in size
 • Cons: hard to maintain, need to develop middleware and interfaces, does not scale with project evolution

• Maybe another strategy is needed?
Agenda

- Introduction
- **OMERO**
 - What does it do
 - How does it do it
 - Why do we like OMERO
- **OMERO.biobank**
 - What is a “computable” biobank
 - OMERO.biobank overview
 - Code examples
- Conclusions
OMERO: a flexible approach for managing data in experimental biology

- Client-server software for visualization, management and analysis of biological microscope images (http://www.openmicroscopy.org/site)
- Developed by the Open Microscopy Environment Consortium (University of Dundee, Glencoe Software, Harvard Medical School, LOCI)
What does OMERo do?

- Digital Acquisition System
- Raw Data
- Image
- Metadata
- OMERo
 - Visualizing
 - Data Management, tagging and querying
 - Quantitative Analysis
 - Metaphase
 - Anaphase
 - Telephase
How does OMERO do it?
Support for tabular data

- Tabular format data storage
- Like Excel, but with muscles and brain (each table can handle about 1TB of data)
OMERO is not limited to Bio Images

• Omero is agnostic
 – Configurable, distributed platform that deals with collections of objects
 – Agnostic with respect to object models
 – Agnostic with respect to programming languages (client side)

• Omero can grow
 – Meta class description of objects
 – Omero Tables

• Easy and fast deployment
 – Minimal down-time for model set extension
Agenda

• Introduction

• OMERO
 – What does it do
 – How does it do it
 – Why do we like OMERO

• OMERO.biobank
 – What is a “computable” biobank
 – OMERO.biobank overview
 – Code examples

• Conclusions
“Computable” biobank

• Computable data repository
 – Uniform formalism for bio-medical data (and operations) description
 – Scalable, distributed technologies

• Driver for data intensive computing
 – MapReduce applications
 – GPU-based applications
Capturing statics and dynamics

• Electronic Health Records
 – Multiple, heterogeneous sources
 – Implementation specific details

• Samples
 – Biological and synthetic
 – Chain of custody

• Description of operations
 – “Experimental” and “digital” operations

• Computation-driven inference process
 – Uniform access to data
Objects handled

- INDIVIDUALS
- STUDIES
- ENROLLMENTS

- VESSELS
 - TUBES
 - WELLS
- CONTAINERS
 - TITER PLATES
- VESSEL COLLECTIONS

- DATA SAMPLES
 - MICROARRAY MEASURES
 - AFFYMETRIX CEL FILES
 - ILLUMINA BEAD CHIP ARRAY
 - GENOTYPE DATA SAMPLES
- SNP MARKER SETS

- ANONYMIZED PATIENTS RECORDS
 - OpenEHR-based

- MARKER DEFINITIONS
- MARKER ALIGNMENTS
- GENOTYPE CALLS
- Web interface for CLI tools
- Keep trace of operations
• Powerful workflow editor
Object transitions

- We want to model the “chain of custody” from the biological sample to the synthetic results (i.e., genotype calls).

- It is impossible to represent data using a static system, so we introduce the concept of “action”.

If object X is the result of an event that occurred on object Y, the action has a reference to it.

An action is a generic event that produces data that is recorded into the system.

Every object knows the action that generated it.
From metadata to computation

Collection of raw data

MapReduce program

Genotyping results
def main():
 kb = KB(driver='omero')('biobank.crs4.it', 'omero', 'secret')
maker, model = 'crs4-bl', 'taqman-foo'
mset = kb.get_markers_set('AFFY_GW6')
s = gkb.get_gdo_iterator(mset)
counts = algo.count_homozygotes(s)
mafs = algo.maf(counts)
hwe = algo.hwe(counts)
Data Overview

• Data for autoimmune disease studies (CNR-IRGB / CRS4)
• Used from CRS4, Polaris building 5 lab, Monserrato, Lanusei, Tramariglio
• Currently handling
 – ~16,500 individuals (with parental relationships in order to build families)
 – ~28,200 vessels
 – ~330 Titer Plates
 – 2 Genotyping technologies
 • Illumina Immunochip
 – ~196,000 markers, ~10,000 genotypes
 • Affymetrix Genome-Wide Human SNP Array 6.0
 – ~935,000 markers, ~7,000 genotypes
 – 26,800 clinical records
• We are going to acquire ASAP
 – Illumina Human OmniExpress
 • ~730,000 markers, ~3,000 genotypes
 – Illumina Human Exome
 • ~240,000 markers, ~5,000 genotypes
Examples

```xml
<type id="ome.model.vl.Vessel">
  <properties>
    <required name="activationDate" type="timestamp"/>
    <optional name="destructionDate" type="timestamp"/>
    <required name="currentVolume" type="float"/>
    <required name="initialVolume" type="float"/>
    <required name="content" type="ome.model.vl.VesselContent"/>
    <required name="status" type="ome.model.vl.VesselStatus"/>
  </properties>
</type>

<type id="ome.model.vl.Tube"
  superclass="ome.model.vl.Vessel">
  <required name="label" type="string" unique="true"/>
  <optional name="barcode" type="string" unique="true"/>
</type>
```
import omero
import omero.model as om
import omero.rtypes as ort

tube = om.TubeI()
tb.label = ort.rstring('TEST_TUBE')
tb.barcode = ort.rstring('XXYYZZ')
tb.activationDate = ort.rtime(time.time())
tb.initialVolume = ort.rfloat(15.0)
tb.currentVolume = ort.rfloat(10.0)
tube_status = om.VesselStatusI()
tube_status.value = ort.rstring('CONTENTUSABLE')
tb.status = tube_status
tube_content = om.VesselContentI()
tube_content.value = ort.rstring('DNA')
tb.content = tube_content

c = omero.client()
s = c.createSession('biobank.crs4.it', 'omero', 'secret')
us = s.getUpdateService()
tube = us.saveAndReturnObject(tube)
c.closeSession()
from bl.vl.kb import KnowledgeBase as KB

kb = KB(driver='omero')('biobank.crs4.it', 'omero', 'secret')

tube = kb.factory.create(kb.Tube, {'activationDate': time.time(),
 'initialVolume': 15.0,
 'currentVolume': 10.0,
 'content': kb.VesselContent.DNA,
 'status': kb.VesselStatus.CONTENTUSABLE,
 'label': 'TEST_TUBE',
 'barcode': 'XXYYZZ',
 'action': kb.create_an_action(kb.get_study('FOOBAR'))})

kb.save(tube)
Agenda

- Introduction
- OMERO
 - What does it do
 - How does it do it
 - Why do we like OMERO
- OMERO.biobank
 - What is a “computable” biobank
 - OMERO.biobank overview
 - Code examples
- Conclusions
• **Computable biobanks**, *Bridging the Gap in Biomedical Genetics, Hinxton October 2010*

• **COBIK**, a platform for uniform computational approach to integrated clinical and experimental data, *IFHRO, Milan 2010*

• **Scalable data management and computable framework for large scale longitudinal studies**, *ICHG, Montreal 2011*

OMERO developers meeting
Conclusions

- OMERO is an useful and flexible technology
- If you have a problem related to biomedical data management, OMERO.biobank can be a good solution
- If you have a Big Data management issue you can extend OMERO in order to satisfy your needs
And of course, don’t forget that OMERO handles images 😊
... and, of course, thanks for your attention