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Motivation

Application Target
Windowless Spallation target: HLM/Near Vacuum interface
MYRRHA primary loop: LBE/cover Gas (∼ 1Bar)

Tool
Starccm+ Volume of Fluid (VOF) Framework
Navier-Stokes Equation (NSE) for incompressible fluid

Criticallities
Very high density ratio: numerical instability
Highly stressed transient flows: interface smearing
Stagnant interface: light phase spurious flow
Computational power: free-surface not main objective of simulation
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General Approach

Issue
Immiscibility of the phases is set a priori in the equations: equations are
projected onto the reduced functional space.
VOF numerical flows are partially mixed at least on a one cell interface
basis: validity of the projection is therefore questionable.

Attack angle
Check/re-derive equations for mixed fluids
Start from the separate single phase equations

Constraints
Must give back NSE equations
Must be resistant to classical examples
Must clarify relation between force and diffusive flux
Phases must tend spontaneously to separate

V. Moreau (CRS4) Ljubljana February 6-8, 2012 3 / 31



Equations framework

Many variables
Phase A (heavy) uses subscript a: volume fraction a, density ρa, velocity
ua.
Phase B (light) uses subscript b: volume fraction b, density ρb, velocity ub.
Derived quantities:

density ρ = aρa +bρb,
volume fraction velocity v = aua +bub,
mass fraction velocity u = ρ−1(aρaua +bρbub)

Pressure (shared): P.

Two valid candidates for the global velocity
Their difference is related to the phase variables:

u− v =
ρb−ρa

ρ
ab(ub−ua)

no difference when both densities are equal.
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Base equations

Inconsistent set of primary equations
Momentum: ∂t(ρu)+∇ · (ρuu)+∇P+∇ · τ = ρg+F

Equation of State (EoS), incompressibility constraint: ∇ · v = 0
Phase A mass conservation: ∂t(ρaa)+∇ · (aρaua) = 0
Phase B mass conservation: ∂t(ρbb)+∇ · (bρbub) = 0

Rewritting of mass/volume conservation
Phase A mass conservation: ∂t(ρaa)+∇ ·aρau−∇ · ρaρb

ρ
ab(ub−ua) = 0

Phase A volume conservation: ∂ta+∇ ·av−∇ ·ab(ub−ua) = 0

Closure of the system
The system of equations for (u,v,a,P) if closed and consistent if we decide to
model ub−ua in terms of the other variables and parameters.
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Classical closure: Fick’s law

Closure
φa = ab(ua−ub) =−D∇a where D is the diffusion coefficient m2s−1, gives
simplest linear equation in a.

Closed system under Fick’s law closure
Momentum: ∂t(ρu)+∇ · (ρuu)+∇P+∇ · τ = ρg+F

Equation of State (EoS), incompressibility constraint: ∇ · v = 0
Phase A volume conservation: ∂ta+∇ ·av−∇ ·D∇a = 0
Velocity difference: u− v = ρb−ρa

ρ
D∇ ·a

Note
In terms of mass fraction ã defined by ρ ã = ρaa we retrieve the classical
diffusion equation (with u): ∂tρ ã+∇ρ ãu−∇ ·ρD∇ã = 0
When D = 0 we have u = v and we retrieve the VOF implementation in
Starccm+
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Other less classical closures

Cahn-Hilliard and Allen-Cahn
Cahn-Hilliard: φa = ab(ua−ub) = α∇∆a−β∇ab(b−a)
Allen-Cahn: ∇ ·φa =−∇ ·α∇a+βab(b−a)+ ε(t)

related to small scale phase separation process (linked to surface tension)
with negligible apparent velocity (v = 0).

Baro-diffusion

φa = ab(ua−ub) =−D∇a+ γ(ρa−ρb)
ab
ρ

∇P

related to gas separation process for which there is no surface tension

Immiscible fluids

φa = ab(ua−ub) = 0

because ab = 0

V. Moreau (CRS4) Ljubljana February 6-8, 2012 7 / 31



Postulated phase momentum equation

General form of "all" conservation equations
from a balance over an arbitrary control volume of a property Xa of phase A

∂tρaX +∇ ·uρaXa +∇ ·Φa = Sa + Ia

Where Sa is the source of Xa and Ia is a term of exchange.

∇ ·ρauXa "approximate" convective flux (main)
∇ ·Φa corrective flux (deviation)
Sa is the source of ρaXa (may be more than one)
Ia is a term of exchange with the other phase

Important notes
The velocity used is the mass fraction velocity u

The term ∇ ·Φa is the most strongly modelled
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Postulated phase momentum equation

Phase momentum equation: X = aua and X = bub

∂taρaua +∇ ·aρauua +∇ ·a([P+P0]I + τ) = aρag+F′a + Ia

∂tbρbub +∇ ·bρbuub +∇ ·b([P+P0]I + τ) = bρbg+F′b + Ib

Where g is the gravity acceleration, P0 is the time dependant pressure
constant (in space), Id the identity matrix, while F′a and F′b are (partially)
responsible for diffusion or phase separation and surface tension effects.
Summing the two phase momentum equations gives back the classical
momentum NSE under the conditions:

Ia + Ib = 0 as we expect from exchange terms
F′a +F′b = F
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Postulated phase momentum equation

Splitting of the corrective flux

∇ ·a([P+P0]I + τ) = a∇P+(P+P0)∇a+ τ∇a+a∇ · τ

We can recognize the pressure force in the first term. The second and third
terms are related to diffusion and are therefore coupled with F′a. Taking
Fa = F′a− (P+P0)∇a− τ∇a, we have our almost final phase momentum
equations:

∂taρaua +∇ ·aρauua +a∇P+a∇ · τ = aρag+Fa + Ia

∂tbρbub +∇ ·bρbuub +b∇P+b∇ · τ = bρbg+Fb + Ib

with
Ia + Ib = 0 as we expect from exchange terms
Fa +Fb = F
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Phase energy terms

Representation
given a potential energy Ea of phase A, the corresponding force density fa to
be put in the phase A momentum equation is found by solving

∂tEa =−
∫

Ω

faua

it is just stating that potential plus kinetic energy is conserved and applying
Newton’s law to all the "particules" of phase A. This is acceptable because all
particules have the same weight, otherwise an error is introduced.

Remark
In the Cahn-Hilliard framework, the chemical potential is referred to the entire
system. By splitting the potential between the phases, we slightly increase the
level of description, allowing to derive the force in exact math. More precisely,
we do not need any more to invoke any Lyapunov functional.

V. Moreau (CRS4) Ljubljana February 6-8, 2012 11 / 31



Important examples

Gravitational potential
with Ea =

∫
Ω

aρa|g|z, we have: fa = aρag

Partial pressure
with Ea =

∫
Ω

a(P+P0), Va =
∫

Ω
a and P0 = V−1

a
∫ t ∫

Ω
a∂tP,

we have: fa =−a∇P associated to baro-diffusion

"Thermal" pressure
with Ea =

∫
Ω
(nkT)a lna, where T is the constant temperature,

we have: fa =−(nkT)∇a, a good candidate for diffusion effects

Generic
Ea =

∫
Ω

H(a) then Fa =−a∇h with H′ = h

Ea =
∫

Ω
G(|∇H(a)|) then Fa = a∇[h∇ · (gn)] with n = ∇H(a)

|∇H(a)| , G′ = g
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Surface tension related terms

Landau surface tension
with Ea =

∫
Ω

σb|∇a|, Eb =
∫

Ω
σa|∇b| and n = |∇a|−1∇a,

we have: fa = σa∇(b∇ ·n) and fb =−σb∇(a∇ ·n)
E = Ea +Eb =

∫
Ω

σ |∇a|
f = fa + fb =−σ∇ ·n∇a

Cahn-Hilliard diffusive
with Ea =

∫
Ω

1
2 α|∇a|2 and Eb = 0,

we have: fa = σa∇∆a =−α∆a∇a+α∇(a∆a).

Cahn-Hilliard contracting
with Ea = 1

2 β
∫

Ω
a2b2 and Eb = 0,

we have: fa =−βa∇ab(b−a).

Remark
Forces are similar but not proportional to the Cahn-Hilliard fluxes.

V. Moreau (CRS4) Ljubljana February 6-8, 2012 13 / 31



Phase momentum exchange term

First modelling
From a crude approximation based on a binary collision, following several
authors and looking for the most simple consistent expression, we arrive to
the following modelling:

Ia = Rab(ub−ua) =−Rφa

where R is a resistance coefficient, a priori quite independent of the
concentration, asymptotically independent of the concentration gradient for
small gradients but not necessarily for large ones.

Refinement
For separated fluids, the concentration gradient becomes infinite and we will
see that taking δ as a characteristic small size,it can be very convenient to
perform a successive modelling of the form:

R = Ro(1+ |δ∇a|2)
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Relation Phase forces/Corrective flux

Diffusion force
Fa =−(nkT)∇a, Fb =−(nkT)∇b and F = 0
Diffusive flux φa =−D∇a, proportional to Fa

Pressure force
Fa =−a∇P, Fb =−b∇P F =−∇P

Baro-diffusive flux φa = γ(ρa−ρb) ab
ρ

∇P, not proportional to Fa.

Gravity force
Fa = aρag, Fb = bρbg F = ρg

No associated phase flux: φa = 0

Question
Is there any simple systematic relation?
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Relation Phase forces/Corrective flux

Natural split of force pairs
Any phase force can be split in two parts:

A first part participating to the flow transport as a whole
A residual part related to the penetration in/separation of the other

To have the first parts "accelerating" the same their respective phase they
must be proportional to their mass fraction, according to Newtow’s law.

Mathematical formulation
Fa = αF +F0

Fb = βF−F0

α +β = 1
αFua +βFub = Fu
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Relation Phase forces/Corrective flux

Solution of the Mathematical formulation
F0 = bρb

ρ
Fa− aρa

ρ
Fb

Application to the diffusion force
F0 =−(nkT)∇a for φa =−D∇a

Application to the pressure force
F0 = (ρa−ρb) ab

ρ
∇P for φa = γ(ρa−ρb) ab

ρ
∇P

Application to the gravity force
F0 = 0 for φa = 0
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"Almost" final modelling assumption

Statement
The sum of the residual forces F0 of phase A is in dynamical equilibrium with
phase B exchange term.

Mathematical formulation

ΣF0 = Ib

Corrective flux
Direct application of the exchange term modelling gives the volume fraction
flux:

φa =
1
R

[(ρa−ρb)
ab
ρ

∇P+F0]

where now F0 stands for all the terms proportional to the gradient of
concentration. For two perfect gases, we have: F0 =−(nkT)∇a.
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Main result

Statement
Given a pair of phase potential energies, the force in the momentum
equations and the associated corrective flux are uniquely defined.
Conversely, a force in the global momentum equation together with the
associated corrective phase flux uniquely defines both the force in the
phase momentum equations and the related potential energies.

Remark
This is very convenient because we can freely test any potential
The Cahn-Hilliard classical formulation is not retrieved, a volume fraction
dependent mobility coefficient appears. This is a pity because the
Cahn-Hilliard framework has been the main source of inspiration in this
work.
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Baro-diffusion and surface tension

General consideration
While baro-diffusion is a term used for micro-scale, the effect it describes is
very general and can be very large scale. Rain and bubbly flows are driven by
the mean pressure gradient. Surface tension, by limiting the minimum size of
the structure, strengthen the baro-diffusion seen at a larger scale: larger
droplets of bubbles have faster drift velocity. Surface tension, however only
works at small scale, millimetre range.
There is a formal analogy between the baro-diffusion/surface tension pair and
the turbulent dissipation/molecular dissipation. In the later, while the turbulent
dissipation makes apparently all the job, only the molecular dissipation
effectively lower the kinetic energy. In the former, the separation process is
apparently performed by the baro-diffusion, but only the surface tension really
separates the phases.
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Baro-diffusion, diffusion and surface tension

General consideration
In the large scale governing equations, the molecular viscosity can be
neglected in the bulk flow. By analogy, as in our cases of interest the
base cell size is larger than the surface tension range, we can neglect the
surface tension effect and concentrate our efforts to the baro-diffusion
flux.
To have a complete phase separation, classical diffusion must be
completely cancelled by surface tension anti-diffusion. So, if we neglect
surface tension, we also must cancel molecular diffusion.
In a turbulent framework, turbulent diffusion makes sense. However, its
functional form must be changed to avoid unbounded propagation speed
and allow stable finite size interface.
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Phase transport equation

Formula
First we recognize that R = M−1 where M is proportional to the classical
mobility
Using the apparent velocity v, equations symmetrical in (a,b):

∂ta+∇ ·av−∇ ·Mab(ρb−ρa) ∇P
ρ

= 0

∂tb+∇ ·bv−∇ ·Mab(ρa−ρb) ∇P
ρ

= 0

Using the mass weighted velocity u, symmetry is in (aρa,bρb) but is
broken in (a,b)

∂ta+∇ ·au−∇ ·aM(ρb−ρa)
bρb
ρ

∇P
ρ

= 0

∂tb+∇ ·bu−∇ ·bM(ρa−ρb)
aρa
ρ

∇P
ρ

= 0

Remark
The correction velocity is symmetrical refered to v and almost entirely
concentrated on the light phase when refered to u

The correction velocity goes to zero with saturation.
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Suggestion for Starccm+ VOF implementation

Incorporate barodiffusion
Use phase transport equation with the mass weighted velocity.
Allow user-defined mobility coefficient M

Take into account the velocity divergence
The projection of the velocity u must be such that:
∇ ·u = ∇ ·M(ρb−ρa)2 ab

ρ

∇P
ρ

Remark
The baro-diffusion term should allow to consistently consider phase
change (evaporation or condensation) without large interface smearing in
case of evaporation. The velocity divergence becomes:
∇ ·u = (1− ρb

ρa
)Ṡb +∇ ·M(ρb−ρa)2 ab

ρ

∇P
ρ

where Ṡb is the volume rate of created gas.
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Impossible for end-user to force the variant in
Starccm+ VOF

Problem in mass conservation
The baro-diffusion term should be of null integral over a volume enclosing the
free-surface, the flux being null at the boundary. Setting the baro-diffusion
term as a source term in Starccm+, we have encountered a relative error
about 12%:

|
∫

Ω
∇ · ab∇P

ρ2 |∫
Ω
|∇ · ab∇P

ρ2 |
∼ 12%

and thus the total phase volume is not conserved (the effect is quite strong).
This come from the fact that the numerical discretization of a source which is
the divergence of a flux do not comply with the Stokes theorem (while
classical diffusion flux should do).
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On surface tension

Millimetre range application
When the discretization reaches the millimetre range. Surface tension may
become relevant. The Cahn-Hilliard framework being reserved to scales at
least one order less. The energy leading to the Landau surface tension force
is:

Ea =
∫

Ω
σb|∇a|, Eb =

∫
Ω

σa|∇b|, E =
∫

Ω
σ |∇a|.

F =−σ∇ ·n∇a,
F0 = σab∇∇ ·n+ ab

ρ
(ρb−ρa)F

The first RHS term of F0 serves to regularize the curvature. It is
degenerated when a local extrema of a is not zero or one. At the foreseen
level of description, it may be wiser to discard the term.
The second RHS term of F0 is quite similar to the baro-diffusion term and
seems to indicate that no baro-diffusion should occur if the pressure
gradient is caused by a curvature effect. This term seems to make sense.
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On surface tension

Millimetre range application
We can see that this surface tension energy is quite neutral for what concern
diffusion effect but is still marginally diffusive in presence of curvature.
In the Cahn-Hilliard framework, the constitutive energy (only globally defined)
is:

E = 1
2
∫

Ω
[α|∇a|2 +βa2b2].

We could not find any elegant splitting giving both F and F0 pleasant.

The first RHS term of E has a clear diffusing effect while the second one
has a clear contracting effect.
Moreover, the minimum of the second part is clearly reached for perfectly
separated fluids
looking for the analogy of form, it is tempting to consider an energy in
which the "2" are transformed in "1".
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On surface tension

Millimetre range application
The effect is to include a contracting energy in the Landau surface tension
energy, that is adding the energy:

E =
∫

Ω
σ

ab
δ

where δ is a characteristic length over which the related force
is relevant against curvature.

We could find the splitting: Ea =
∫

Ω
σ

ab(1+b)
3δ

, Eb =
∫

Ω
σ

ab(1+a)
3δ

for which F = 0, so no added term in the momentum equation and
F0 = 2σ

ab
δ

∇a

To avoid an inconsistent unbounded drift velocity for large gradients, one
can take the resistance term R as: R = R0(1+ |δ∇a|2) so that the drift
velocity gently goes to zero while the interface strongly sharpens.

Remark
The symmetrization of the contracting part of the energy is needed to avoid
an increase of pressure across a flat interface. In alternative, one can revert
to a higher power term (e.g. a2b2).
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End

Greetings

Thank you for your attention

Figure: Nice interface smearing combining oscillatory motion and shear
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