
2014, pages 1–2
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu386

Sequence analysis Advance Access publication June 12, 2014

BioBlend.objects: metacomputing with Galaxy
Simone Leo1,2,*, Luca Pireddu1,2, Gianmauro Cuccuru1, Luca Lianas1, Nicola Soranzo1,
Enis Afgan3 and Gianluigi Zanetti1
1CRS4, Polaris, 09010 Pula (CA), 2Universit�a degli Studi di Cagliari, via Universit�a 40, 09124 Cagliari, Italy and 3Rud-er
Bo�sković Institute, 10000 Zagreb, Croatia

Associate Editor: Alfonso Valencia

ABSTRACT

Summary: BioBlend.objects is a new component of the BioBlend

package, adding an object-oriented interface for the Galaxy REST-

based application programming interface. It improves support for

metacomputing on Galaxy entities by providing higher-level function-

ality and allowing users to more easily create programs to explore,

query and create Galaxy datasets and workflows.

Availability and implementation: BioBlend.objects is available online

at https://github.com/afgane/bioblend. The new object-oriented API is

implemented by the galaxy/objects subpackage.

Contact: simone.leo@crs4.it

Received on April 9, 2014; revised on May 23, 2014; accepted on

June 9, 2014

1 INTRODUCTION

In recent times, the massive increase in the amount of data pro-

duced by genomic sequencers and other data-intensive acquisi-

tion devices used in the life sciences has led to a continuous

intensification of the effort required for biological data analysis.

Huge and numerous datasets must be processed by complex

analysis workflows, articulated in a large number of steps,

most of which are highly dependent on many configuration par-

ameters. Data processing frameworks can help mitigate the com-

plexity by simplifying the pipeline execution. An example of such

a framework is Galaxy (Goecks et al., 2010), an extremely popu-

lar Web application for bioinformatics analysis. It provides a

simple way to encapsulate computational tools and datasets in

a graphical user interface (GUI), together with a mechanism to

keep track of the execution history in a reproducible manner.
However convenient and user-friendly, though, GUIs are ill-

suited to automated analysis and bulk processing. For instance,

consider a situation that happens regularly with each release of a

new reference genome for resequencing, or with the update of

sequence alignment software: to ensure that analysis results stay

relevant, such events require that the full set of experimental

results (e.g. single nucleotide polymorphism discovery) be reeval-

uated from scratch using the new model data or software. This

laborious task requires better support from the computational

framework being used, in the form of reliable ways to automate

operations, process datasets in bulk and document the analysis

performed on any of them.More generally, studies tend to handle

a growing numbers of samples; they also tend to last longer than

the relatively frequent update cycles for model data and software.

Both these conditions pose requirements for such automated bulk

data operations that are currently not handled well by GUIs.
To facilitate this sort of processing, Galaxy includes a RESTful

(Richardson and Ruby, 2007) application programming interface

(API) that allows other programs to control it automatically.

However, this API is fairly low level, as it requires users to con-

struct and issue HTTP requests, explicitly handle the standard

error cases that occur in such distributed scenarios and take

care of data serialization and deserialization in exchanges between

the client and the server. This gap in functionality motivated the

development of BioBlend (Sloggett et al., 2013), a Python package

that hides HTTP communication, error handling and JSON

(de)serialization from the user, providing a dictionary-based

API that greatly simplifies interaction with the Galaxy server.
However, despite its significant enhancements over the raw

low-level interface, BioBlend still leaves room for improvement.

For instance, most of the BioBlend API still offers a one-to-one

mapping of generic Python dictionaries to the Galaxy REST

resources, with no explicit modeling of Galaxy entities and

their relationships. Also, the interface fails to isolate client code

from changes in the Galaxy API, as it passes to the caller the

same dictionary structures that the server sends. Finally,

BioBlend does not provide much in the way of ‘rich’ functional-

ity to perform higher-level, sophisticated yet generic tasks, des-

pite being positioned in a prime location in the software stack

where it is potentially shared by all the user’s client applications.

In this work we present BioBlend.objects, a Galaxy interface

implemented as a new layer above BioBlend. The new API

addresses the aforementioned issues with two main features: an

object-oriented (OO) programming model, which simplifies de-

velopment and isolates client code from changes in the Galaxy

API and a high-level component that simplifies complex oper-

ations and supports metacomputing on the information describ-

ing the various Galaxy entities. With BioBlend.objects, running a

Galaxy workflow requires just a few lines of simple code:

from bioblend.galaxy.objects import GalaxyInstance

gi = GalaxyInstance(“URL", “API_KEY”)

wf = gi.workflows.list()[0]

hist = gi.histories.list()[0]

inputs = hist.get_datasets()[:2]

input_map = dict(zip(wf.input_labels, inputs))

params = {"Paste1": {"delimiter": “U"}}

wf.run(input_map, “wf_output", params=params)

The new API is described in more detail in Section 2.*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

 Bioinformatics Advance Access published July 1, 2014
 at U

niversity of D
undee on July 25, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

https://github.com/afgane/bioblend
mailto:simone.leo@crs4.it
w
:
,
SNP
-
,
-
,
ince
``
''
;
XPath error Undefined namespace prefix
http://bioinformatics.oxfordjournals.org/


2 METHODS

BioBlend.objects has been developed as a submodule of the original

BioBlend library. Hierarchically, the code is currently located at the

same level as BioBlend’s Galaxy submodules (Fig. 1); in the future, the

new API will be moved up to replace the current one. The library consists

of two main components: the wrappersmodule, which defines the object

structure that mirrors Galaxy’s entities, and the client module, a high-

level code layer built upon the original API to expose a simpler, more

concise interface based on the object hierarchy defined in wrappers. The
client module consists of three main classes that encapsulate inter-

actions with Galaxy’s most important entities: histories, workflows and

libraries. The galaxy_instance module contains the GalaxyInstance

class, which unifies the three clients, acting as a common entry point for

all interactions with the Galaxy server.

OO interface: BioBlend.objects provides a compact OO interface for

controlling operations performed with Galaxy. The new interface pro-

vides objects for the entities that are handled within Galaxy, explicitly

modeling the underlying logical structure, and thus is arguably more in-

tuitive than the older one. The OO interface also facilitates development

by enabling programmer-friendly features such as code completion in

modern development tools and in the IPython shell (Perez and

Granger, 2007). Moreover, the new API defines specific objects as its

method return values, thus effectively isolating client code from changes

in the server-side Galaxy interface. This improvement should result in less

painful upgrades of the Galaxy server since, at worst, client compatibility

would require updating BioBlend.objects to the latest version.

Metacomputing library: The second principal contribution in

BioBlend.objects consists of a set of high-level functions that simplify

complex interactions with the Galaxy back end. These functions encap-

sulate sequences of common operations and implement functionality to

support computing on the information describing the various Galaxy

entities––i.e. metacomputing. Supported features range from running

workflows to downloading Galaxy histories and querying for datasets

with particular characteristics. This library is a key component of the

automation mechanisms used at CRS4 to run its sequencing pipeline

and acquire the details of the operations applied to generate each dataset

so that they may be stored into OMERO.biobank, a ‘computable

biobank’ that extends OMERO (Allan et al., 2012) to handle data

types produced in sequencing and microarray experiments (http://www.

openmicroscopy.org/site/support/partner/omero.biobank).

Consider the example given in the introduction, where a workflow is

retrieved and run on a set of input datasets, setting a tool parameter at

run time. With the original BioBlend API, the same task requires writing

the following code:

from bioblend.galaxy.objects import GalaxyInstance

gi = GalaxyInstance("URL", "API_KEY")

summaries = gi.workflows.get_workflows()

wf_id = summaries[0]["id"]

wf_info = gi.workflows.show_workflow(wf_id)

hist_infos = gi.histories.get_histories()

hist_id = hist_infos[0]["id"]

hist_dict = gi.histories.show_history(hist_id)

content_info = gi.histories.show_history(hist_id,

contents=True)

datasets=[gi.histories.show_dataset (hist_id, _["id"])

for _ in content_info]

inputs = datasets[:2]

input_slots = wf_info["inputs"].keys()

input_map = {

input_slots[0]: {"id": inputs[0]["id"], "src": "hda"},

input_slots[1]: {"id": inputs[1]["id"], "src": "hda"}

}

params = {"Paste1": {"delimiter": “U"}}

gi.workflows.run_workflow(wf_id, input_map,

history_name="wf_output", params=params)

A comparison of the two versions shows how the higher-level interface

allows for much more compact code that is easier to read and write.

To keep the example as simple as possible, in the above code fragments

we used a ‘toy’ workflow that merges columns from two input tabular

files. However, the git repository (see ‘Availability and implementation’)

includes three examples of interaction with real-world microbiology

workflows (Cuccuru et al., 2014) hosted by CRS4’s Orione platform

(http://orione.crs4.it): bacterial resequencing, bacterial de novo assembly

and metagenomics. The examples are available under docs/examples/
objects and can be run on Orione after registering and obtaining an API

key (details are included in the examples directory itself).

3 DISCUSSION

BioBlend.objects is designed to model the relations between

Galaxy entities. For instance, a History object can be used to

retrieve its datasets through an instance method: this makes the

API similar to an object-relational mapping library for Galaxy.

The BioBlend.objects module has received the support of the

original BioBlend team members, who are involved in its devel-

opment. As such, it is expected to supplant, in the future, the

original programming interface.

Funding: CRS4 work was partially supported by a Wellcome

Trust Strategic Award [095931/Z/11/Z]. S.L. and L.P. have per-

formed their activity within the context of the PhD program in

Biomedical Engineering at the University of Cagliari, Italy.

Conflict of Interest: none declared.

REFERENCES

Allan,C. et al. (2012) OMERO: flexible, model-driven data management for experi-

mental biology. Nat. Methods, 9, 245–253.

Cuccuru,G. et al. (2014) Orione, a web-based framework for NGS analysis in

microbiology. Bioinformatics, doi:10.1093/bioinformatics/btu135.

Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting accessible,

reproducible, and transparent computational research in the life sciences.

Genome Biol., 11, R86.

Perez,F. and Granger,B.E. (2007) IPython: a system for interactive scientific com-

puting. Comput. Sci. Eng., 9, 21–29.

Richardson,L. and Ruby,S. (2007) RESTful Web Services. O’Reilly Media,

Sebastopol, CA, USA.

Sloggett,C. et al. (2013) BioBlend: automating pipeline analyses within Galaxy and

CloudMan. Bioinformatics, 29, 1685–1686.

Fig. 1. BioBlend.objects location within BioBlend’s logical structure.

New modules are displayed in white background

2

S.Leo et al.

 at U
niversity of D

undee on July 25, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

-
-
3
Object-oriented 
-
 -- 
,
``
''
http://www.openmicroscopy.org/site/support/partner/omero.biobank
http://www.openmicroscopy.org/site/support/partner/omero.biobank
and 
``
''
``
''
http://orione.crs4.it
-
 (ORM)
http://bioinformatics.oxfordjournals.org/

