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Abstract We present a system to easily capture build-

ing interiors and automatically generate floor plans scaled

to their metric dimensions. The proposed approach is

able to manage scenes not necessarily limited to the

Manhattan World assumption, exploiting the redun-

dancy of the instruments commonly available on com-

modity smartphones, such as accelerometer, magnetome-

ter and camera. Without specialized training or equip-

ment, our system can produce a 2D floor plan and a

representative 3D model of the scene accurate enough

to be used for simulations and interactive applications.

Keywords Sensors fusion · Mobile graphics · Mobile

mapping · Scene analysis · Indoor reconstruction

1 Introduction

Automatic 3D reconstruction of architectural scenes is

a challenging problem in both outdoor and indoor en-

vironments. Fully automated approaches exist for the

reconstruction of urban outdoor environments [26,5,19,

29], furthermore user-assisted methods have long proven

effective for facade modeling [7,16,28,25]. Compared

to building exteriors, the reconstruction of interiors is

complicated by a number of factors. For instance, vis-

ibility reasoning is more problematic since a floor plan

may contain several interconnected rooms, in addition

interiors are often dominated by surface that are barely

lit or texture-poor walls. Approaches range from 3D

laser scanning [17,18] to image-based methods [11,21].

These methods produce high resolution 3D models, which

G. Pintore and E. Gobbetti
CRS4 Visual Computing, POLARIS Ed. 1, 09010 Pula, CA,
Italy
E-mail: {giovanni.pintore,enrico.gobbetti}@crs4.it
www: http://www.crs4.it/vic/

are often an overkill for a large branch of applications,

especially those focused on the structure of a building

rather than the details of the model. The use of mod-

ern mobile devices to create a 3D map of an indoor

environment is a growing and promising approach, as

highlighted by the recent presentation of Google Project

Tango [13]. In this context we propose a method to

enable any user to reconstruct building interiors with

the aid of a mobile phone and without requiring the

assistance of computer experts, 3D modelers, or CAD

operators. This kind of multi-room mapping is useful

in many real-world applications, such as the definition

of thermal zones for energy simulation, or, in the field

of security management and building protection, to en-

able non-technical people to create models with enough

geometric features for simulations and enough visual in-

formation to support location recognition.

Approach. We capture the scene by walking between

rooms, ideally drawing the wall upper or lower bound-

ary aiming the phone camera at it (Fig. 1 left). During

the acquisition a video of the environment is recorded

and every frame spatially indexed with the phone’s sen-

sors data, storing thousands of samples for every room.

Through a specialized method based on statistical indi-

cators, we merge all individual samples exploiting their

strong redundancy and obtaining the walls direction

and position in metric coordinates. With a further re-

finement pass we calculate the complete shape of the

single rooms and the whole aligned floor plan(Fig. 1

center).

Contributions. In contrast to previous work, see Sec. 2,

no Manhattan World assumption is needed to recon-

struct the geometry of the walls, allowing our method to

reconstruct rooms with irregular shapes – i.e., with cor-

ners that do not form right angles. Moreover, the output

of the mathematical model adopted returns both wall
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Fig. 1 The system captures an indoor environment through a mobile device, automatically producing a floor plan and a 3D
model with its metric dimensions.

directions and corner positions in real world units, re-

turning a room shape ready for the following automatic

floor merging step, which is able to compose multi-room

models without manual interventions.

Advantages and limitations. Our approach com-

bines and extends state-of-the-art results in order to

support acquisition using low-end mobile devices and

reduces user interaction and editing time when build-

ing multi-room models in a non-Manhattan world. In

order to achieve its goals, the systems makes a number

of assumptions on the acquired shapes. In particular,

the floor plane must be parallel to the ceiling plane,

since the wall height is supposed constant during the

acquisition of a single room. Moreover, narrow corridors

with complex shapes can not be managed properly (see

Sec. 5).

2 Related Work

Standard methods for reconstructing building struc-

tures usually focus on creating visually realistic mod-

els [9,10], rather than structured ones. Even though

some of these 3D reconstruction algorithms extract pla-

nar patches from data [1,27], these usually have the

goal of finding simplified representations of the mod-

els, rather than identifying walls, ceilings, and floors.

Furukawa et al. [11] reconstruct the 3D structure of

moderately cluttered interiors by fusing multiple depth

maps (created from images) using the heavily constrained

Manhattan World [6] assumption, through the solution

of a volumetric Markov Random Field. These image-

based methods have demonstrated potential, but they

tend to be computationally expensive and do not work

well on texture-poor surfaces such as painted walls,

which dominate interiors. SLAM-based reconstruction

has been shown to work on smartphones by Shin et

al. [24] who used sensor data to model indoor envi-

ronments, similarly Kim et al. [14] showed how to ac-

quire indoor floor plans in real-time, but under the

constraints imposed by the Manhattan World assump-

tion. Their approach is hardware-intensive, requiring

the user to carry a Kinect camera, projector, laptop

and a special input device while capturing data around

the house. Exploiting modern mobile devices capabil-

ities, commercial solutions as MagicPlan [22] recon-

struct floor plans by marking floor corners visible from

the room’s center via an augmented reality interface.

This approach manages also non-Manhattan world scenes,

but requires manual editing for room assembly and is

susceptible to error when floor corners are occluded by

furniture, requiring the user to guess their positions.

With a similar acquisition approach Sankar et al. [20]

reconstruct individual room shapes geometrically calcu-

lated using only the horizontal heading of the observer,

assuming they must be Manhattan-world shapes. The

resulting rooms have arbitrary dimensions and need

manual scaling and manual identification of correspon-

dences between doors before the floor plan can be as-

sembled. In contrast to these related methods, our new

approach is not limited by the Manhattan World as-
sumption and it can reconstruct the model without

manual scaling or manual assembly of the floor plan.

3 Overview

We divide the pipeline of our system in two blocks:

scene capture and scene processing, resulting in

two different applications (see Sec. 5 for implementation

details). The scene capture application stores the ac-

quired data in a distributed database, whereas the scene

processing application remotely accesses this database

to reconstruct the environment. In the mobile version

(e.g., Android) of the system the two applications are

implemented as two Activity components which can be

both hosted on the same device.
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Fig. 2 Left: the adopted model for data capturing. Center: Acquired samples in Cartesian coordinates (black line interpola-
tion). Green lines show the 2D fit of the samples with a standard M-estimator (Huber distance). Right: The walls geometry
estimated with our method (blue). Note as the outliers points (upper left corner) have been discarded in the wall computation
thanks to their images feedback (see Sec. 4.2).

3.1 Scene capture

Starting approximately from the center of the room,

the user acquires a 360 degrees video of the environ-

ment, targeting with the phone camera the upper or

lower boundaries of the walls, with a movement which

traces an ideal trajectory along the intersection of the

wall with the floor or with the ceiling. Once a room cor-

ner or a door is reached the user records the event with

a click on the screen, storing their azimuth angles, then

he continues acquiring the following wall, until he/she

completes the whole perimeter of the room. For each

wall segment delimited by two corner angles we auto-

matically acquire a set of angular coordinates, taken

at the maximum rate allowed by the device (order of

thousands samples for room), establishing an associa-

tion with the video frames acquired. When a room ac-

quisition is completed the user moves to the next one

aiming the phone camera to the exit door, whereas the

application tracks his direction and updates a graph

with the interconnections between the rooms.

3.2 Scene processing

From the samples acquired for each wall segment we

estimate a 2D line representing the observer’s direction

and position in real-world metric coordinates. Assum-

ing a model where the coordinates of the wall’s up-

per and lower boundary depend only on the azimuth

θ (defining the heading of the current target point,

Eq. 1) and the tilt γ (defining the distance of the point

from the observer), we observe that these couples of

angular coordinates must be linked by a relation when

they individuate points on the wall boundaries. Due to

model approximation (see Sec. 4) and measurement er-

ror, fitting the associated coordinates (eq. 1 and 2) of

the samples Si directly with a conventional method re-

sults in an inaccurate estimation (see Sec. 5). In our

approach, to achieve a more accurate result we intro-

duce a method exploiting the associated image data and

the redundancy between samples, in order to achieve

a better linear fitting, thus obtaining a more accurate

estimation of the wall. Once all the single wall lines

have been estimated in real-world metric coordinates,

we build the room shape through a merging algorithm,

which considers the wall approximations with their re-

liability without restricting the problem space to the

Manhattan World assumption nor requiring camera or

scene calibration methods. Exploiting the interconnec-

tion graph generated during the scene capture we calcu-

late through doors matching all the transformations to

generate the whole floor in real world metric units, as-

suming as origin of the coordinates system the room

with the best fit values (see Sec. 4.2).Besides a 3D

model is extruded using the floor plan with the walls

height (Fig. 1 right).

4 System components

4.1 Scene acquisition

We acquire the scene according with the model illus-

trated in Fig. 2 left. The height he of the eye is assumed

constant, considering included in the angle γ all height

variations. The angle θ is the heading of the targeted

point respect to the magnetic North, and is defined as

a rotation around the ideal axis between the Sagittal

and Coronal planes of the observer. The angle γ (ob-

server tilt) is the rotation around the axis between the

Coronal and Transverse planes, and the angle ρ is the

rotation around the intersection between the Sagittal

and Transverse planes. We assume that the Transverse
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plane of the observer is parallel to the floor and paral-

lel to the ceiling, and the walls are perpendicular to the

floor (but not necessarily perpendicular to each other).

For the specific world constraints (e.g. floor or ceiling

visibility, etc.) refer to Sec. 5. Assuming that the ob-

server position is the origin of room’s coordinates, a

target point p can be represented with metric Carte-

sian coordinates as

p(x, y) = (r ∗ cos θ, r ∗ sin θ) (1)

where r is the distance from the observer to the wall

r =

{
(he/ sin γf ) ∗ cos γf floor point

((hw − he)/ sin γc) ∗ cos γc ceiling point
(2)

In order to estimate he and hw we perform a quick

geometric calibration standing in front of the wall at

a known distance rn (3 meters in all the test cases),

and aiming the phone at the wall intersections with the

floor and then the ceiling and thus measuring the eye

tilt angles γf and γc, respectively{
he = rn ∗ tan γf

hw = rn ∗ tan γc + he
(3)

To acquire a room the observer stands approximately in

the middle of the room and rotates 360 degrees to cap-

ture a video of the entire environment. While rotating,

he/she should follow an ideal trajectory with the phone

camera, in order to target in the middle of the screen

the boundary of the wall (upper or lower) (see Fig. 1

left). During this phase we automatically store a set

of samples for each wall, with the maximum frequency

allowed by the device (see Tab. 1). Every sample con-

tains 3 angles θ, γ, ρ, individuating the instant targeted

point according to the illustrated model, and a time in-

dex expressed in milliseconds identifying the frame in-

side the video sequence. Once a room corner is reached

the user records the event with a click on the screen

storing its azimuth θ, then he proceeds acquiring the

next wall, until he completes the whole perimeter of the

room. Since points can be acquired indifferently aiming

at the floor or at the ceiling, depending on the visibility

from the observer’s point of view, we overcome a typical

problem of systems such as MagicPlan [22] which are

prone to considerable errors when corners on the floor

are occluded, with the only constraint that every single

wall must be acquired along the same upper or lower

boundary. In addition, like corners, doors are recorded

by indicating their two azimuths with a click. Once a

room is acquired the user moves to the next one aiming

the phone camera to the exit door. We automatically

identify the passage’s door to the next room tracking

the direction of the movement and storing this infor-

mation in a graph of the rooms interconnections (see

Sec. 4.3). A connection between two room is defined as

a couple of doors: the exit door from the previous room

(identified by tracking the movement direction) and the

entrance door to the next room (by convention the first

one acquired). In case the user should happen to visit

the same room more than once (e.g., a corridor) we

provided the acquisition application with an interface

to manually update the room id.

4.2 Room reconstruction

We describe a room as a set of segment lines (walls)

{l1 · · · ln+1} whose intersections {p0 · · ·pn} define a

closed polygon in metric Cartesian coordinates. A sin-

gle wall li is identified as the 2D line that best fit the

samples Si = {s0 · · · sm}, acquired between the two

azimuth angles θi−1 and θi (angles marked as corners

during the scene capture). To recover the linearity im-

posed by our acquisition method we need to decompose

the problem in order to exploit the additional infor-

mation provided by our integrated device, since fitting

directly the samples cartesian coordinates with conven-

tional methods (eg. RANSAC [4]) results in bad ap-

proximations (see Sec. 5). We start from the assumption

that in our model the coordinates of a sample depend

only by the azimuth θ, defining the heading of the cur-

rent target point p (eq. 1) on the wall, and the tilt γ,

defining the distance r from the observer to the wall

(eq. 2). Since these samples have been acquired impos-

ing a linear trajectory on the boundary, the coordinates

of the point p are linked by a linear relation

y(x) = a+ bx (4)

The maximum likelihood estimate of the parameters is

obtained by minimizing the quantity

χ2 =

m∑
i=0

(yi − a− bxi)2

σ2
yi + b2σ2

xi

(5)

where σyi and σxi
are the standard deviations of y

and respectively x for the i sample. The occurrence of

b in the denominator makes equation 5 for the slope

∂χ2/∂b = 0 non linear. To simplify our relation we in-

troduce the image data acquired during the room cap-

ture. Assuming θ varies linearly inside the interval be-

tween two corners, we group our data quantizing the

angular interval between θi−1 and θi into finite intervals

(eg. 0.5 degrees steps) {θ0 · · · θm}. For each discretized

θd we considered the samples Sd = {s0 · · · sk} which

lie inside the quantization interval, then we calculate
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Fig. 3 Left: A video frame associated with a sample (image enhanced for printing). Despite for an human eye the line between
ceiling and wall looks clear, it could not be the same for an automatic edge detector (see central figure). Center: The noise
of the frame without filtering, evidenced by a Canny edge detector. Right: The edge line detected after filtering and Hough
transform.

a representative sample sd having θd as azimuth angle

and a weighted γd mean angle

γd =

∑k
i=0(γiwi)∑k
i=0 wi

(6)

with an individual weighted standard variance

σ2
γd

=

∑k
i=0 wi (γi − γd)2∑k

i=0 wi
(7)

and with the weights {w0 · · ·wk} calculated from the k

frames associated with the samples Sd = {s0 · · · sk} as

follow.

We consider the frame fi of the sample si (Fig. 3

left). The walls intersections with the ceiling or with

the floor are usually dark and noisy in an image ac-

quired with a mobile phone, reason for standard fea-

tures detectors (see for example [12,23]) often consider

these regions as background, failing to find information

to perform camera calibration (i.e. an adequate number

of vanishing points). Since for the scope of our analysis

we are not interested in a full image calibration and fur-

thermore we already roughly know where to search for

the edge line, we focus our attention only on estimat-

ing the reliability of our measures in image space. To

attenuate the typical noise originated by the compres-

sion and by the sensor limitations (see Fig. 3 center)

we apply a Non Local Mean filter based on [2] on the

luminance channel, then we run a standard edge detec-

tor (i.e.Canny [3]) with a low threshold, isolating the

break in the shadows due to the wall edge geometry. We

transform the filtered image in a Hough Space [15] hav-

ing as origin the center of the image, obtaining several

lines (see Fig. 3 right)

di = x cosα+ y sinα (8)

with d distance of the line to the center and alpha the

angle defining the direction of the line. Since the center

of the image is also the projection in image space of the

sample with the values θi and γi, we choose the line

with the lowest value di and we assign the weight wi to

the sample si

wi = 1− di/maxd (9)

with maxd the maximum distance admitted to consider

valid the line (i.e. 10 pixels). Samples with lines found

outside the maxd circle are marked as outliers and dis-

carded. Once we have externally calculated the rep-

resentative samples {s̄0 · · · s̄m} we can simplify equa-

tion 5 as follows

χ2 =

m∑
i=0

(yi − a− bxi)2

σ2
i

(10)

with σi ≈ σγi . Equation 10 can be minimized to deter-

mine a and b. At its minimum derivatives of χ2(a, b)

with respect to a and b vanish, resulting in a system of

two equations in two unknowns, giving the solution for

the best-fit model parameters a and b.{
a ∗ (

∑m
i=0

1
σ2
i
) + b ∗ (

∑m
i=0

xi

σ2
i
) =

∑m
i=0

yi
σ2
i

a ∗ (
∑m
i=0

xi

σ2
i
) + b ∗ (

∑m
i=0

xi
2

σ2
i

) =
∑m
i=0

xi∗yi
σ2
i

(11)

From the derivatives of a and b with respect to yi we

can also evaluate the variances σ2
a and σ2

b , that allow us

to estimate the probable uncertainties of our fitting (see

Sec. 5, respectively for scale and direction. We estimate

the goodness-of-fit of the samples to the wall model

through the incomplete gamma function

Q = gamma(
m− 2

2
,
χ2

2
) (12)

We adopt this estimator considering its values can be

precomputed and tabulated, thus facilitating the use on

low-end devices. For each intersection (corner) pi of the

estimated walls li and li+1 we store an angle φi

φi =

{
angle(li, li+1) Q(li) and Q(li+1) >0.1

sign(li, li+1) ∗ 90 Q(li) and Q(li+1) <0.1

(13)
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resulting in the set of corner angles {φ0 · · ·φn}, with

φ calculated from the walls intersection if its estima-

tion is considered reliable, otherwise approximated to

90 degrees (with the sign of the lines intersection). In

a similar way we define a rank between corners, com-

bining σ2
a and σ2

b for each intersection. Due to angles

approximation the resulting polygon defining the room

shape is not always perfectly closed as we expect. We

perform a further optimization step to refine our shape.

For every possible direction β we trace an intersection

ray from the corner with the best ranking p0 and di-

rection β to intersect the ray(origin,θi), traced from

the origin of the room along the heading of the corner

θi (see Figure 4). We continue the procedure for each

corner

Pi = intersect(ray(origin, θi+1), ray(Pi, αi)) (14)

with αi = β + φi, until we complete all intersection and

and we close the polygon. As last point we obtain an es-

timated p0
∗, which in an ideal case must coincide with

the starting point p0. Then we calculate the distance

between p0
∗ and p0 and we choose the β that minimizes

this distance, estimating the definitive shape. The gen-

erated room is already scaled in real world metric units,

without the need for further manual editing in contrast

to [11,20,22].

4.3 Floor plan generation

Once all shapes have been calculated we choose the

room r0 with the global best fit values (i.e. eq. 12,

σ2
a , σ2

b ) as origin of the whole floor coordinates sys-

tem, and then we exploit the information stored in the

graph to align the other rooms {r1 · · · rN} to the first

one. For each connection we calculate the affine trans-

form Mj,j+1 representing the transform from the room

rj+1 to the room rj coordinates. Since a connection be-

tween two rooms is defined as a couple of doors that

fundamentally are the same door expressed in differ-

ent coordinates, we obtain Mj,j+1 applying a standard

least squares method to the corresponding door extrem-

ities. From the rooms connectivity graph we calculate

for each room rp ∈ (r1 . . . rN) the path to r0 as a set

of transforms {M1 · · ·Mp}, representing the passages

encountered to reach r0 and the whole transformation

from rp to r0 coordinates. At the end of this passage

we have obtained a floor plan fully aligned and scaled,

rather than in [20] where the user manually indicates

the matching doors and the different scale factors for

each room and in [22] where the alignment is manual.

Moreover the generated scene graph and the image data

acquired can be exploited as input for systems like [8],

for example to enable interactive photo-realistic tours

of the indoor scene.

Fig. 4 Room shape optimization Illustrative room with the
error intentionally increased. For every possible direction β
we trace an intersection ray from the corner with the best
ranking p0 and direction β to intersect the ray(origin,θi),
traced from the origin of the room along the heading of the
corner θi. Then we calculate the distance between p0∗ and p0
and we choose the β that minimizes this distance, estimating
the definitive shape.

5 Results

We developed a framework including two distinct appli-

cations: scene capture and scene processing. The scene

capture application has been developed as a simple and

intuitive tool working on any Android device with cam-
era, accelerometer and magnetometer, features currently

available on commodity smart-phones and tablets. The

scene processing part is implemented both for Android

and for PC desktop applications (Windows and Linux),

in fact the peculiar solution proposed makes the method

scalable for mobile devices, avoiding long iterations and

hardware consuming routines. For the mobile version

we propose an optional image filtering based on a Gaus-

sian kernel, since this second filter is less time consum-

ing than Non Local Means filter. The loss in quality

of the reconstruction is strictly related to the quality

level of the video and the phone’s camera, the discus-

sion about is beyond our purpose. To capture the envi-

ronments we intentionally employed a mid-low end de-

vice, an Acer Liquid E2 Duo, with 1.2 GHZ quadcore

processor MediaTek MT6589, RAM 1 GB, a PowerVR

SGX 544MP GPU, an accelerometer Bosch BMA050, a

magnetometer Bosch BMM050 and 8 Mpixels camera.

We present 7 significant test cases of office and residen-

tial environments, divided in scenes MW (Manhattan
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Fig. 5 Comparison between the building map (right) and our reconstruction (left blue) of three of seven cases presented.
Since our method does not adopt any specific Manhattan World constraint, the two groups are threatened exactly in the same
way. In reality the true measures do not always coincide with the building layout supplied by the architects. For the purpose
of this work the differences are negligible, so we assume the provided floor plan data as ground truth and we consider as error
the differences with respect to our reconstruction.

World) and NMW (Non Manhattan World)(see Fig. 5

and Table 1). Since our method does not adopt any

specific Manhattan World constraint, the two groups

are treated exactly in the same way. We perform the

initial calibration step from a distance rn of 3 meters

(see Sec.4.1). For almost all rooms we acquired the sam-

ples on the ceiling intersection, since the visibility of the

floor was often occluded by the furniture. We acquired

instead the samples on the floor when the upper part

of the wall contains awnings, ducts for ventilation,etc.

It is important to note that, similarly to other systems,

stairs, sloped ceilings and walls that do not belong to

the perimeter of the room can not be managed by the

system. Moreover, in reality, the true measures do not

always coincide with the building layout supplied by

the architects. For the purpose of this work the differ-

ences are negligible, so we assume the provided floor

plan data as ground truth and we consider as error the
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Features Samples per room Errors MagicPlan
Scene Area Rooms Avg Valids Area Corner Corner Unrel. editing

mq number % % angle max pos max corners time
MW Office F1 875 29 2289 64 1.78 1.2 degrees 25 cm 8 41m23s
MW Office F2 875 25 2426 60 1.58 1.6 degrees 20 cm 12 37m11s
MW Office F3 320 8 1852 69 1.16 0.7 degrees 15 cm 0 17m35s

NMW Office F1 185 12 2046 72 1.74 4.2 degrees 12 cm 3 28m30s
NMW Office F2 180 7 2224 86 1.42 1.1 degrees 10 cm 0 18m30s
NMW House 1 70 5 2312 54 2.12 3.7 degrees 23 cm 1 23m30s
NMW House 2 138 9 2128 57 3.67 4.5 degrees 18 cm 1 34m10s

Table 1 The approximate acquisition time has been the same needed by MagicPlan. However no editing time is required by
our method. The number of total samples acquired is proportional to the time spent by the user in the room and the refresh
time of the sensors. This rate is adapted dynamically during the acquisition (eg. compass not reliable, etc.)and can range from
10Hz to 50 Hz, affecting also the video spatial indexing. MW Office was built in 2002, NMW Office in 1998, NMW House 1 in
1934 and NMW House 2 in 1957.

differences with respect to our reconstruction. We show

in Tab. 1 the direction error and the scale error. The

maximum error in degrees showed in Tab. 1 is relative

to reliables corners. Corners marked as unreliable have

been instead approximated as indicated in Sec. 4; their

number grows with the number of the rooms visited

and with the presence of corridors or narrow rooms. For

these specific cases our method does not work properly

and we adopt a Manhattan World backup solution to

complete the reconstruction. The scale error is shown

by the columns Area and Corner position. The area er-

ror is calculated as the ratio of area incorrectly recon-

structed to the total ground truth area, whereas the

corners position max error is the max depth error ob-

served for each corner. Although the results between

the area and the absolute corner positions may seem

contradictory we evince that the overall shape and sur-

face of every room is maintained, thanks to a good wall

direction estimation. In Figure 2 we highlight the dif-

ference between a robust M-estimator applied to the

samples of a room with only right angles (samples in

black, estimated lines in green), showing the resulting

wrong approximation. In the same figure we see instead

the same samples fitted with our method, where we

can evince how outlier points (upper left corner) have

been discarded from the the wall computation thanks to

their images feedback. In Fig. 6 we show an example of

Non Manhattan World room reconstruction. We show

in black the average trajectory of the camera tracking

the boundary and in red the estimated wall directions.

Almost all the samples in the corners 1,2 and 4 have

been discarded through the images weights. We found

2 not right angles in corner 5 (97 degrees) and 4 (83 de-

grees) and we approximate to 90 degrees the others with

a variance of ±0.5 degrees. The time needed to acquire

the scene has been the same needed by MagicPlan(time

to walk through the scene targeting the features on the

wall). We show also the editing time required by Mag-

icPlan to obtain the same results produced by our au-

tomatic method. In many cases (example NMW House

1) MagicPlan was unable to approximate 3 of 5 rooms

due to the furniture on the floor occluding the view,

needing for additional editing time.

Fig. 6 Non Manhattan World room example. We show the
samples tracked by the phone as a trajectory in black, the es-
timated directions in red and the reconstructed shape in blue.
Almost all samples in corners 1,2 and 4 have been discarded
through the images weights. The estimated NMW corners are
97 degrees for corner 5 and 83 degrees for corner 4

6 Conclusions

We presented a framework for mobile devices enabling

non-technical people to automatically map and recon-

struct multi-room indoor structures. To achieve our re-

sults we don’t need to impose Manhattan World con-

straints as previous methods did, taking advantage of

the redundancy of the modern smartphones instruments.

Our computational solution was conceived to be scal-

able on the mobile devices hardware, as well as the re-
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sults obtained can be useful in many real-world appli-

cations. The recent unveiling of Google Project Tango

highlights the interest for such kind of applications, es-

pecially those focused on the structure of a building

rather than the details of the model. These applications

can be for example the definition of thermal zones for

energy simulation or the support for evacuation simu-

lations and estimation for circulation of people in com-

mercial/public/office buildings, without requiring any

specialized equipment or training to model the scenes.

For the future we plan to extend our methods exploiting

the new instruments available on the next generation

mobile devices, as integrated depth sensors or tools as

Google Glasses, with the intent to capture and manage

more complex features as furniture, transparent win-

dows, curved walls, and offer support to new and more

advanced visual and physical simulations.
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