

CFD simulations of MYRRHA Control Rod system in COMPLOT facility

M. Profir, V. Moreau CRS4

SEARCH-MAXSIMA 2014 International Workshop

Objectives in MAXSIMA, Task 3.4

Numerically reproduce the control/safety rod system movement as in COMPLOT (COMPonent LOop Testing) facility, with imposed displacement.

Validate the simulations against experimental tests in COMPLOT. CFD: a predicting tool for moving bodies?

Simulate the safety/control rod displacement in the MYRRHA primary loop configuration.

Control Rod geometry in COMPLOT

• Courtesy of SCK providing CAD and help in understanding the components functions

LBE–COMPLOT physical properties and dimensions

Parameter	Value	Steady-state (SS) / Transient
LBE Temperature Range (°C)	200 – 400	SS / Transient
LBE Density (kg/m ³)	10470	SS/ Transient
LBE dynamic viscosity µ	2.432E-03	SS/Transient
Kinematic viscosity υ	2.323E-07	SS/Transient
Nominal flow ΔP (Bar(g))	2.5	SS
Mass flow rate (kg/s)	Tbd, 38	SS
Rod bundle displacement (mm)	0 - 680	Transient
Guide tube diameter / lenght (mm)	100/5000	

Steady state simulation

Motion with Morphing and re-meshings

Mesh quality criteria

- finer mesh in the morphed regions
- threshold on the compressed/total lenght ratio of the compressed region
- progressive smaller time step

Coupling Starccm+ with Java.

Change strategy of simulating motion

Overset Mesh methodology

Background region	 containing the flow domain 	
Overset region	 a separate region enclosing the moving body 	
Overset Mesh "Interface"	 "Volume" interface for information exchange 	
Conditions for successful coupling	 2-4 layers of cells attached to the moving body boundary same mesh size in both regions in the overlapping zone. 	•CD-adapco,Spotlight on Overset Mesh V902

Challenges of Overset Mesh in CR model

Hard work to get Overset Method functional on CR

- •Volume mesh 5 M cells
- •Mesh good enough for motion
- •Not good enough for physics

- Important Mass error MFR =1 kg/s (5% wrt 0.1% expected)
- Strong oscillations in pressure and force fields

Stabilized flow in new mesh approach

•Acceptable mass error

•MFR = 0.2 kg/s

Stabilized fluid

•Dependence on time step!

•Smaller time step helped to reduce mass error.

•Time Step 1E-3s with 10

inner iterations: not enough

Issues in Motion

•20 inner iterations: slower, but better results

Pressure and mass oscillations in correspondence

•Non negligible cost: Volume mesh 8 M Cells for half domain, Runtime 12 hours on 128 cores

SEARCH-MAXSIMA International Workshop, KIT, 7-10/10/2014

Narrow gaps less and less narrow

Seal – damper gap: 2.5 mm wrt to perfect matching.

Motion in stiff context adjusted with the Physics Local Increased Viscosity (Pa-s 24.32 LBE dynamic viscosity • 19.46 increased by 4 orders of magnitude 14.59 Fixed, in the 0.5 mm ulletgap at top of damper 9.73 Mobile, attached to the ullet4.87 seal. 0.00Y X

Increased pressure in the damper

CFD simulations of MYRRHA Control Rod system in COMPLOT, M. Profir, V. Moreau

Drag Force Monitor Plot

Drag Force Monitor Plot

Conclusions

- Moving meshes techniques and automatic optimized re-meshing strategies have been successfully developed and employed in the context of MAXSIMA project, including coupling of the simulation code with Java scripts.
- The full control on the overset mesh methodology in stiff flow path configuration has been acquired.
- Capacity to approach narrow gaps: an acceptable compromise between mesh density and geometrical accuracy was found.
- In order to correctly model the zero leakeage in the damper the dynamic viscosity was locally modified. We intend to switch to the resistance force (quadratic with the velocity).
- A correct drag curve was obtained, rappresentative of the considered model.