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A B S T R A C T

Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it
governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of
reliable and predictive models represents an important tool to interpret experiment results, to facilitate
the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a
specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle
progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that
allows one to quantitatively describe cell cycle progression through the different phases experienced by
each cell of the entire population during its own life. The transition between two consecutive cell cycle
phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and
Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through
a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation–
dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the
entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check
point for transition and to estimate phase duration required by PB. Specific examples are discussed to
illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in
oncology, regenerative medicine and tissue engineering.

ã 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A comprehensive understanding of themechanisms involved in
cell cycle of mammalian cells is a scientific challenge of
fundamental interest and practical consequence (Nurse, 2000;
Morgan, 2007). In a typical schematization of the cell cycle
(cf. Fig. 1), a post-mitotic cell starts from a G1 phase, during which
it grows due to biosynthetic activities and cytoplasmic organelles
are replicated. Subsequently, when the G1 phase is completed, the
cell enters S phase where DNA is duplicated. At the end of this
process cell reaches the second phase (G2) where proteins and
other cellular components needed for cell division are synthesized.
Finally, cell enters M phase (mitosis) where it divides into two
daughter cells. If a cell, for any reason, leaves the cell cycle, it
becomes quiescent/senescent, thus reaching a resting phase called

G0. Studies and findings on cell cycle mechanism, undoubtedly,
have an important impact in medical science and clinical practice.
A deep knowledge of cell cycle and its complex biochemical
pathway may give rise to interesting investigations in oncology,
toxicology, gene therapy and regenerative medicine. In addition,
cell cycle is the crucial process that regulates cell growth and its
proliferation during in vitro cell cultivation. Mammalian cells are
usually cultured to produce high-value biopharmaceutical prod-
ucts such as monoclonal antibodies and vaccines (Sidoli et al.,
2006; Liu et al., 2007; Karra et al., 2010) and to synthesize ex vivo
biological tissues through stem cells differentiation for regenera-
tive medicine (Lanza et al., 1996), as well as to expand specialized
cells for tissue engineering (Horch, 2006). For all these reasons, the
cell division cycle is one of the most intensively studied biological
processes, while, on the other hand, in spite of such a great effort,
many questions still remain open (Tyers, 2004). As far as
eukaryotic cells are concerned, several biochemical mechanisms,
which regulate the cell cycle, have been identified and discussed in
the literature (Stern and Nurse, 1996; Morgan, 1997; Loog and
Morgan, 2005). It is well-known that cell cycle is an ordered series
of events required for the faithful duplication of one mother cell
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into two daughter ones. The major role in the regulation of such
events is played by specific proteins, namely cyclin-dependent
kinases (CDKs). Their activity is governed by a complex network of
regulatory subunits and phosphorylation/dephosphorylation
events, whose precise effects on CDK conformation have been
revealed by crystallographic studies (Morgan, 1997). CDKs, whose
concentration levels remain almost constant throughout the cell
cycle (Morgan, 2007), are small protein kinases that require
association with a cyclin subunit for their activation. Cell phase
progression and transition is regulated by the expression and
destruction of cyclins, activating and inhibitory phosphorylation
and dephosphorylation of the CDKs, as well as expression and
destruction of inhibitory proteins that associate with CDKs or
cyclin/CDK complexes. In the case of mammalian cells four active
complexes cyclin-CDKs have been identified (Morgan, 1995, 1997,
2007; Gérard and Goldbeter, 2009), i.e., D/Ckd4-6, E/Cdk2,
A/Cdk2 and B/Cdk1, as reported in Fig. 1. Cell cycle is indeed a
complex phenomenon, specific for each type of cells, and requires
further investigations to elucidate all mechanisms which oversee
the regulation of cell life and its division (Bouchoux and Uhlmann,
2011; Wittemberg, 2012). Mathematical modeling of cell cycle had
a significant boost over the past two decades. In particular, two
different types of the corresponding kinetic models have been
developed, namely stochastic and deterministic ones. In the first
approach, the mathematical models are developed to capture the
fluctuations of species that characterize cellular processes.
Deterministic models are instead formulated by considering
suitable material balances where classical or Michaelis–Menten
kinetics are accounted for. Following the stochastic approach,
Tyson (1991) proposed a model for fertilized frog eggs cell cycle
consisting of an alternation between S (synthesis) and M (mitosis)
phase and accounting for the effect of a dimer of the protein kinase
cdc2 and cyclin. The same research group, on the basis of
experimental observations on yeast cell cycle, developed a more
comprehensive model of eukaryotic cell cycle by considering
detailed biochemistry and genetic interactions (Chen et al., 2000).
This model was extended by accounting for the mitotic exit some
years later (Chen et al., 2004). By means of a deterministic
approach, Ciliberto et al. (2003) proposed a model to identify
checkpoints that control the progression of cell cycle for budding
yeast, while some years later Csikasz-Nagy et al. (2006) developed
a generic model of the eukaryotic cell cycle focusing on the entire
reaction network rather than on an individual phase. Gérard and
Goldbeter (2009), on the basis of a deterministic approach,
proposed a comprehensive biochemical kinetic model to describe
the cell cycle ofmammalian cells. In comparisonwith othermodels
presented in the literature for this type of cells (Aguda and Tang,

Nomenclature

AEF(t) Superficial area in the Petri dish effectively
available for adhesion of proliferating cells at
time t, mm2

AF(t) Superficial area in the Petri dish available for
adhesion of proliferating cells at time t, mm2

AC(t) Superficial area in the Petri dish roofed by
proliferating adherent cells at time t, mm2

ACG1(t) Superficial area in the Petri dish roofed by
proliferating adherent cells in G1 at time t, mm2

AP Superficial area in the Petri dish, mm2

f(v) Division probability density function, 1/mm3

kv Proportionality constant in the expression of the
rate rv (Eq. (20)), 1/h

N Number of total cell, dimensionless
N0 Number of initial total cell, dimensionless
NP Number of total cell for the generic P phase,

dimensionless
nP (v, j, t) 2D number density distribution of cells for the

generic P phase, mm�3

nPðv; tÞ 1D number density distribution of cells for the
generic P phase in the volume variable v, mm�3

nPðj; tÞ 1D number density distribution of cells for the
generic P phase in the age variable, j, dimension-
less

P Generic phase, G1, G0, S, G2, M
p Partitioning function, mm�3

q Coefficient appearing in the symmetric beta
function, dimensionless

rv Time rate of change of v, mm3h�1

rj Time rate of change of j, h�1

t Time, h
v Single cell volume, mm3

v0 Mother cell volume, mm3

vmax Maximum value for cell volume, mm3

vmin Minimum value for cell volume, mm3

w Shape factor of the Weibull distribution function,
dimensionless

Greek letters
a Constant parameter appearing in the definition of AEF,

dimensionless
b(q,q) Symmetric beta function, dimensionless
G(q) Gamma function, dimensionless
GG1

v Rate of transition G1!G0, h�1

l Scale factor of theWeibull distribution function,mm3

mv Mean of bivariate normal Gaussian distribution for v
variable, mm3

mj Mean of bivariate normal Gaussian distribution for j
variable, dimensionless

j Age, dimensionless
tP Phase maturation time for transition P!P +1, h
F(t) Geometric limiting factor, dimensionless
sv Standard deviation of bivariate normal Gaussian

distribution for v variable, mm3

sj Standard deviation of bivariate normal Gaussian
distribution for j variable, dimensionless
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Fig. 1. The phases of a standard cell cycle. G1 (gap 1, cell grows during biosynthetic
activities); S (synthesis, during this phase cell replicates DNA content); G2 (gap 2,
cell grows during biosynthetic activities), M (mitosis, mother cell divides into two
daughter ones); and G0 (gap 0, resting phase, cell leaves the cycle and stops to
divide). The rough position in the cell cycle where the complexes D/Ckd4-6, E/Cdk2,
A/Cdk2 and B/Cdk1 exert their effect is shown by oval objects.

2 M. Pisu et al. / Computational Biology and Chemistry 55 (2015) 1–13



1999; Qu et al., 2003; Novak and Tyson, 2004), the one proposed by
Gérard and Goldbeter (2009) appears to be more detailed and
complete. Results show that this approach is capable to properly
simulate the behavior of the entire cell cycle and the typical
oscillation experienced by cyclins and the corresponding com-
plexes cyclin-CDK. Similar comprehensive models have been
reported in the literature albeit for different type of cells
(for example, Chen et al., 2004; focused on yeast cells). It is worth
noting that coupling suitable cell cycle kinetic models with a
mathematical tool capable of simulating cells replication and their
distribution during in vitro cultivation may be helpful for the
proper design, optimization and control of the system and in
general to reduce number and costs of experiments. Models based
on population balance (PB) are recognized to represent a very
important theoretical tool for describing the proliferation of cells,
as widely demonstrated by the growing literature addressing this
topic (Liou et al., 1997; Fredrickson andMantzaris, 2002; Pisu et al.,
2003, 2004, 2006, 2007, 2008; Fadda et al., 2012a,b). PB approach,
combined with proper cell cycle kinetics, may represent a
potentially powerful instrument to describe, quantitatively, the
evolution of an entire population during in vitro/in vivo cell
reproduction, thus overcoming the limits of the phenomenological
equations (as exponential growth, logistic, and gompertzian
functions) traditionally adopted to describe the classic growth
profile (sigmoidal) of total cell counts (Fadda et al., 2012a). In
classic PB models the cells are seen as maturing individuals,
continuously traveling along their life cycle at a specific growth
rate till mitosis, which occurs at a specific transition rate (Fadda
et al., 2012a). Cells in a growing population may be discriminated
in terms of their own age (Faraday et al., 2001; Sherer et al., 2008)
and/or size (mass or volume) (Mantzaris et al., 1999; Pisu et al.,
2003, 2004, 2006, 2007, 2008) which increase along cell life cycle.
In order to simplify the mathematical complexity of themodel and
to facilitate its experimental validation, the description of cell
metabolism and its interactionwith the extracellular mediummay
be neglected (Fadda et al., 2012a; Mancuso et al., 2009, 2010). In
any case, the numerical solution of integro-partial differential
equations involved in PB, remains very complex (Mantzaris et al.,
1999; Ramkrishna, 2000). Furthermore, the development of classic
PB models raises in general several doubts and uncertainties
related to the specific selection of the proper functions needed to
describe cell phase transition and growth rates. Significant changes
of model output in terms of cell distributions result from different
selections of such functions, being the corresponding total cell
count not altered (Ramkrishna, 2000). Florian and Parker (2005)
proposed an age distributed cell-cycle PB model to simulate tumor
growth in the presence of chemo-therapeutic drug. Cell phases
G1 and G0 were lumped into an unique “G” phase, and the same
was done for G2 and M ones which have been lumped into the
phase “M”. Phase transition and division functions, which depend
on the drug concentration for the phase S and “M”, were developed
as a function of a critical age which is specific for each phase.
Subsequently, Liu et al. (2007) proposed a mathematical model
based on a multi-staged (volume and DNA content) population
balance for the simulation of in vitro expansion of a population of
cells distributed along their cycle phases. More recently, along
these lines, Fadda et al. (2012a,b); Fadda et al. (2012a,b) developed
a mathematical model based on multi-staged PB with volume and
DNA as internal coordinates, where different functions to describe
the G1! S and G2/M!G1 transition rates have been taken into
account and a fully deterministic criterion on cell DNA content to
simulate the S!G2/M transition has been considered.

In the present work, we propose a novel approach where the
dynamic behavior of cell cycle phase is suitably linked to PB
to simulate cellular growth and proliferation during in vitro
cultivation occurring in a batch system (i.e., monolayer adherent

cells on Petri dish). In particular, in the proposed model, the
transition between two consecutive cell cycle phases is assumed to
be governed by the biochemical kinetics that regulates the cell
cycle. Specifically, time of each phase duration (age limit of the cell
in a specific phase), appearing in PB model parameters, is
estimated by considering the evolution of specific biochemical
reactions until check point for transition is reached. With respect
to other models appearing in the literature in the present work we
propose an original method to connect PB to cell cycle kinetics.
Specific examples have been selected to test the ability of the
proposed model to simulate the effect of a cytostatic drug and of
a growth factor added during in vitro cell cultivation for
applications in oncology or regenerative medicine/tissue
engineering, respectively.

2. Mathematical modeling and numerical solution

The mathematical model proposed in this work simulates
cellular growth and proliferation during in vitro monolayer
cultivation by addressing the dynamic behavior of sub-population
of cells belonging to each phase of the cell cycle. The model
consists of two parts. In the first one, the model developed by
Gérard and Goldbeter (2009), which describes a complex network
of biochemical reactions involved in the cell cycle, is accounted for.
In the second part, bymeans of suitable PB, the distribution of cells
belonging to each cell cycle phase is described in terms of size
(volume) and dimensionless maturation age for transition.

2.1. Cell cycle kinetics

The present work relies on the comprehensive kinetic model
developed by Gérard and Goldbeter (2009) and characterized by
44 variables. Such model, which is focused on mammalian cells,
describes a complex network of biochemical reactions involved in
the cell cycle and schematically shown in Fig. 2a. The reaction
network is divided into four modules each of which centered
around a specific cyclin/CDK complex whose action is crucial for
the progression of cell cycle (Morgan, 1995; Hochegger et al.,
2008). It is apparent that cyclin D/Cdk4-6 and cyclin E/Cdk2 permit
progression in G1 and elicit the G1/S transition, while cyclin
A/Cdk2 ensures progression in S and the S/G2 transition, being
cyclin B/Cdk1 the trigger for the G2/M transition. The growth factor
(GF) activates the synthesis of cyclin D which starts the cell cycle
(Gérard and Goldbeter, 2009). The model for the CDK network also
incorporates regulation by the CDK inhibitor p21 (or p27) aswell as
the antagonistic effects of the transcription factor E2F and the
tumor suppressor pRB. E2F promotes cell cycle progression by
activating the synthesis of cyclins, which is repressed by pRB.
Finally, the model incorporates the ATR/Chk1 DNA replication
checkpoint, as shown in Fig. 2b. Cyclin E/Cdk2 activates by
phosphorylation the anchor factor Cdc45, which allows DNA
polymerase a to initiate replication. The kinase ATR is activated
upon binding the RNA primer synthesized by DNA polymerase a.
Then ATR phosphorylates, and thereby activates, the kinase
Chk1 which, in turn, phosphorylates and inhibits the
Cdc25 phosphatases, thus preventing the activation of Cdk2 and
Cdk1, as long as DNA replication proceeds. Such a comprehensive
kinetic model can properly describe cell cycle phases duration. The
transition G1! S may occur after the overcoming of G1 restriction
point when the complex E/Cdk2 becomes active. The expression of
DNA polymerase a indicates the exit from G1 and the starting of
S-phase (maximum value of the variable DNA polymerase a).
When DNA replication is completed the concentration of the
enzyme DNA polymerase a rapidly diminishes and cell may exit S
phase entering the next one, G2. The peak of the active complex
B/Cdk1 indicates the occurrence of mitotic phase M. After cell
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[(Fig._2)TD$FIG]

Fig. 2. Schematic representation of the biochemical kinetic network for the mammalian cell cycle which involves cyclin-dependent kinases whose regulation is achieved
through a variety of mechanisms that include associationwith cyclins and protein inhibitors, phosphorylation–dephosphorylation, and cyclin synthesis or degradation (from
Gérard and Goldbeter, 2009, 2012). (a) Representation of four kinetic modules each one centered around a specific cyclin/CDK complex, i.e, D/Ckd4-6, E/Cdk2, A/Cdk2 and B/
Cdk1 (Gérard and Goldbeter, 2009, 2012) and (b) the reaction network for ATR/Chk1 DNA replication checkpoint (Gérard and Goldbeter, 2009, 2012).
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division the concentration of complexes E/Cdk1 and A/Cdk2 drops
to zero and a new cell cycle can be initiated. In the model proposed
by Gérard and Goldbeter (2009), reaction rate are assumed
to follow zero-th, first or second order reaction and
Michaelis–Menten kinetics. For the sake of brevity all model
equations, taken from the original work by Gérard and Goldbeter
(2009), are not reported in this paper. The model consists of a
system of 44 ordinary differential equations which is integrated as
an initial value problem by means of standard numerical libraries
(Gear method, IMSL). The solution of such a system provides the
time duration (age) of each cell-phase necessary for transition to
the next one.

2.2. Population balance

In this work we propose a mathematical model, based on PB
approach, which describes cell growth and expansion by mitosis
occurring in a batch system (Petri dish) while accounting for the
dynamic behavior of cells belonging to the four progression stages,
i.e., G0, G1, S and G2/M, respectively. The latter one is a typical
representation of the cell cyclewhere G2 andMphases are lumped
together. It should be noted in passing that in principle, from a
mathematical point of view, the proposed model could be easily
extended to consider five phases, thus maintaining the G2 and M
ones separated. With the present approach two internal coor-
dinates are considered, namely the cell volume, v and the
dimensionless age, j. The first one, v, theoretically ranges from
zero to 1, since cells of any positive volume may exist. Of course,
this upper limit is not tractable by numerical analysis, while a zero
volume should be avoided because meaningless. Actually, finite
values for the lower and upper limits of cell volume (vmin and vmax,
respectively)may be safely chosen. The second internal coordinate,
j, which represents a sort of age maturation index for cell in a
certain phase, is particularly useful to describe the transition
between two consecutive phases of the cell cycle, i.e., G1! S,
S!G2/M, and G2/M!G1, respectively. j ranges between 0
(sub-population of cells new born in the generic phase P) and 1
(sub-population of cells that reach the check point for transition in
the next generic phase P +1).

Finally, by considering the cells spatially distributed evenly on
the Petri dish and assuming negligible cell death terms, the
following PB equations can be written:

@nG1ðv; j; tÞ
@t

þ @½rG1v ðvÞnG1ðv; j; tÞ�
@v

þ
@½rG1j nG1ðv; j; tÞ�

@j
¼ �½1�FðtÞ�nG1ðv; j; tÞGG1

v ðvÞ (1)

@nG0ðv; tÞ
@t

¼ ½1�FðtÞ�GG1
v ðvÞnG1ðv; tÞ (2)

@nS v; j; tð Þ
@t

þ @ rSvðvÞnS v; j; tð Þ� �
@v

þ
@ rSjn

S v; j; tð Þ
h i

@j
¼ 0 (3)

@nG2=Mðv; j; tÞ
@t

þ @½rG2=Mv nG2=Mðv; j; tÞ�
@v

þ
@½rG2=Mj nG2=Mðv; j; tÞ�

@j
¼ 0 (4)

along with the corresponding initial and boundary conditions

nG1 v; j; tð Þ ¼ nG1
0 ðv; jÞfort ¼ 08v; j (5)

nG0 v; tð Þ ¼ nG0
0 vð Þfort ¼ 08v (6)

nSðv; j; tÞ ¼ nS
0ðv; jÞfort ¼ 08v; j (7)

nG2=M v; j; tð Þ ¼ nG2=M
0 v; jð Þfort ¼ 08v; j (8)

nG1 v; j; tð Þ ¼ 0forv ¼ vminand8j; t > 0 (9)

[(Fig._2)TD$FIG]

Fig. 2. (Continued)
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rG1j nG1 v; j; tð Þ ¼ 2
Z1

v

rG2Mj nG2=Mðv;1; tÞp v; v0ð Þdv0forj

¼ 0and8v; t > 0 (10)

nG0ðv; tÞ ¼ 0forv ¼ vminand8t > 0 (11)

nSðv; j; tÞ ¼ 0forv ¼ vminand8j; t > 0 (12)

rSjn
Sðv; j; tÞ ¼ rG1j nG1ðv;1; tÞforj ¼ 0and8v; t > 0 (13)

nG2=M v; j; tð Þ ¼ 0forv ¼ vminand8j; t > 0 (14)

rG2=Mj nG2=Mðv; j; tÞ ¼ rSjn
Sðv;1; tÞforj ¼ 0and8v; t > 0 (15)

where nP(v,j,t) with P =G1, S, G2/M, represents the 2D number

density distribution of cells, nG0ðv; tÞ is the 1D number density
distribution of cell in G0 phase, and rPj , with P =G1, S, G2/M,

represent the time rate of change of the internal variable v and j,

respectively, GG1
v ðvÞ is rate of transition G1!G0, while F(t)

represents the geometric limiting factor to describe cell contact
inhibition (Fadda et al., 2012a). Since in the present work the
transition G1!G0 is assumed to be irreversible, it is not necessary
to describe cell distribution in terms of age when considering the
resting phase G0. Thus, the cells belonging to the resting phase G0

are represented by the 1D distribution nG0ðv; tÞwhere the volume v
in this case is the only distributed property. In Eq. (1),
which represents the PB for cells in G1, the three terms of the
left-hand-side describe the accumulation, the cell volume and age
growth, respectively. The right-hand-side of Eq. (1) represents the
removal of cells that leave the stage G1 entering the G0 phase
depending on the level of confluence reached so far. Eq. (2)
represents the PB for quiescent cells and describes their
accumulation in phase G0 as arising from G1 cells that, due to
contact inhibition, cannot cycle further to S phase. The 2D
distribution for phase G1, nG1 is properly transformed in 1D

(nG1 appearing in Eq. (2)) through a simple integration over the
variable j:

nG1 v; tð Þ ¼
Z1

0

nG1 v; j; tð Þdj (16)

The PB for cells in S phase is reported in Eq. (3), where along
with the accumulation term, two advection terms are considered
in order to take into account the simultaneous growth of size
(volume) and age. Analogously, the PB for cells in G2/M phase is
reported in Eq. (4). The advection term containing the derivative
with respect to j variable (last term in the right hand side of Eqs.
(1)–(3) at j =1, intrinsically accounts for the loss of cells due to the
transition to the next phase.

For each phase P, corresponding toG1, S, andG2/M, respectively,
the time (age) to reach the check point for transition to the next
phase P + 1 is represented by tP, which corresponds to the case
when j =1 of the distributed property. In the proposed model, the
transition of cells between two consecutive phases of the cell cycle
is accounted for in the appropriate boundary conditions (at j =0,
Eqs. (10), (13) and (15), for G2/M!G1, G1! S and S!G2/M,
respectively). It is worth noting that the mitotic term, appearing in

the boundary condition (10), is expressed in terms of unequal
partitioning function since, in general, two daughter cells, obtained
by a dividing mother cells, may have different dimension. The
unequal partitioning distribution of mother cell into daughters, p
(v,v0), proposed by Hatzis et al. (1995), is therefore taken into
account:

pðv; v0Þ ¼ 1
b q; qð Þ

1
v0

v
v0

� �q�1
1� v

v0
� �q�1

(17)

where b(q,q) is the symmetrical beta function:

b q;qð Þ ¼ G qð Þ� �2
G 2qð Þ (18)

and G(q) is the gamma function:

G qð Þ ¼
Zþ1

0

sq�1e�sds: (19)

The volume growth rates, rPvðvÞ appearing in Eqs. (1)–(4) may be
assumed to be linear on the basis of the references available in the
literature (Tzur et al., 2009; Fadda et al., 2012a):

rPvðvÞ ¼
dv
dt

¼ kvvfor P ¼ G1; S;G2=M: (20)

Along these lines, it is worth noting that, the containment
condition of PBs (i.e., rPv¼0 ¼ 0), discussed by Fredrickson and
Mantzaris (2002), is automatically verified. On the other hand, the
boundary conditions on vmin (Eqs. (9), (11), (12) and (14) result
from the choice of a linear volume growth rate in order to satisfy
the regularity condition (Fredrickson and Mantzaris, 2002; Fadda
et al., 2012a) when vmin > 0. From the theoretical point of view, it is
apparent that also the cell volume variation can be related to the
cell cycle kinetics, metabolism and external stimuli. However, this
important and difficult task is beyond the scope of this work and
could be the subject of future investigations.

According to the proposed model, the time rate of change rPj of

variable j should be expressed as:

rPj ¼ dj
dt

¼ 1
tP

for P ¼ G1; S;G2=M: (21)

Consequently, the related advection terms in the PB above
assume the classical form of age structured population balance
(Himmelblau and Bischoff, 1968; Ramkrishna, 2000). Finally, the

rate of transition GG1
v ðvÞ between G1 and G0 phase is expressed as

follows:

Gv
G1 vð Þ ¼ rG1v vð Þ f vð Þ

1�
Zv

0

f ðv0Þdv0
(22)

where the function f(v) may be represented by a probability
density function of transition volume v like the Weibull
distribution, characterized by two adjustable parameters, namely
w and l (Hatzis et al., 1995):

f ðvÞ ¼ w
lwv

w�1exp � v
l

� �w
� 	

(23)

Due to space limitations, the population of adherent cells
growing in a monolayer may reach the full confluence when the
limited surface area of a Petri dish is completely occupied, while
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proliferation stops because of contact inhibition (Fadda et al.,
2012a). This phenomenon is represented by the continuous
transition of cycling cells into G0 phase. Specifically, as the
available surface reduces due to proliferation and size growth, a
fraction of cells may leave the cycle from the stage G1 to enter the
resting phase G0, where cell size growth does not occur. In the
present work, although it is theoretically possible, we do not
account for the back-transition G0!G1, so that all quiescent cells
remain in the resting state G0. In order to simulate contact
inhibition, which progressively slows down culture expansion
before reaching complete confluence in the Petri dish, a limiting
factor F(t) appearing in the transitions G1!G0 is introduced
(Fadda et al., 2012a). Such factor is naturally related to the available
superficial area between cells on the Petri dish surface, assuming
that cells tend to distribute themselves on a monolayer.
Specifically, if during cell cultivation, sufficient, residual surface
area is still available, this limiting factor is assumed to maintain a
value equal to one and irreversible transition fromG1 to the resting
phase G0 does not occur. On the other hand, when the free surface
on the Petri dish is no more sufficient, F(t) is assumed to have a
value less than one, so that, the transition G1!G0 will proceed
proportionally to a factor [1�F(t)]. In this way not all the cells
may complete the phase G1 (thus, reaching the value j =1) to enter
the next phase S. The limiting factorF(t) is calculated as proposed
by Fadda et al. (2012a):

FðtÞ ¼
1 if AEFðtÞ � ACG1ðtÞ

AEFðtÞ
ACG1ðtÞ


 �
if 0 < AEFðtÞ < ACG1ðtÞ

0 if AEFðtÞ � 0

8>><
>>:

(24)

where

AEFðtÞ ¼ APðtÞ � aACðtÞ (25)

ACðtÞ ¼ pð Þ1=3 3
4

� 	2=3 Z1
vmin

v2=3 nG1ðv; tÞ þ nG0ðv; tÞ þ nSðv; tÞ
h

þnG2=Mðv; tÞ�dv (26)

ACG1ðtÞ ¼ pð Þ1=3 3
4

� 	2=3 Z1

vmin

v2=3nG1ðv; tÞdv (27)

with

nSðv; tÞ ¼
Z1

0

nSðv; j; tÞdj (28)

nG2=M v; tð Þ ¼
Z1

0

nG2=M v; j; tð Þdj (29)

AEF in Eq. (25) represents the effectively free surface area, AP the
Petri dish cultivation area and a a geometric shape constant. AC,
defined in Eq. (26), is the area occupied by all cells calculated as
the bi-dimensional projection of a monolayer culture of spherical
cells. Analogously, ACG1 represents the area occupied by cells
belonging only to G1 phase. For details of inhibition contact
modeling the interested reader should refer to Fadda et al. (2012a).
It is worth noting that the contact inhibition effect plays an
important role only during in vitro cell cultivation when
confluence is approached. For in vivo applications this effect can
be neglected.

Finally, the total cell count, N(t), and the number of cells
belonging to a specific phase of the cell cycle, namelyNG1(t),NG0(t),
NS(t) and NG2/M(t), respectively, can be expressed as follows:

NðtÞ ¼ NG1ðtÞ þ NG0ðtÞ þ NSðtÞ þ NG2=MðtÞ (30)

NPðtÞ ¼
Z1

vmin

Z1

0

nPðv; j; tÞdvdj;with P ¼ G1; S;G2=M (31)

NG0ðtÞ ¼
Z1
vmin

nG0 v; tð Þdv (32)

Eqs. (1), (3), and (4) are partial differential equations in the
independent variable t (time) and internal coordinates v and j,
while Eq. (2), beside the variable t, is characterized by only one
distributed variable, v. In this work we took advantage of the
method of lines (Schiesser, 1991) which is a powerful tool for
solving partial differential equations. Once their finite limits are
chosen, v and j domains are divided using constant step size
meshes, and only the partial derivatives with respect to such
variables are discretized by backward finite differences. Thus, the
partial differential Eqs. (1)–(4) are transformed into a system of
ordinary differential equations in time, which is integrated as an
initial value problem by means of standard numerical libraries
(Gear method, IMSL). To numerically solve the model, 100 and
300 grid points in the v and the j domain, respectively are adopted.
According to Sidoli et al. (2006), such a choice represents a
sufficient resolution to track cell distributions when numerically
solving a PB model through the method of lines. A typical
computational run, performed on HP Dual CPU Intel E5440 (Quad
Core) at 2800GHz, by considering 100�300 grid points, may
require more than 2h. Actually, finer grids have been tested in this
work, but they did not provide significant improvements in
accuracy, while prohibitively increasing the computational time.
All integrals appearing in the model equation are numerically
evaluated by means of trapezoidal rule.

3. Results and discussion

In order to show the ability of the proposed modeling approach
we can simulate various situations which may occur when using
specific substances capable to influence cell cycle. In particular, by
properly changing the relative values of its adjustable parameters,
the proposed model is able either to simulate in vitro cytostatic
effects of drugs used in oncology or the increasing in proliferation
of cells induced by specific growth factors. As widely known in the
literature, the duration of cell cycle phases varies considerably
depending upon the type of cells under consideration (Cooper,
1997). The typical cell cycle duration of human cells which is
completed within 24h is assumed as base case. Specifically, this
condition has been obtained by taking advantage of all kinetic
model parameters reported byGérard andGoldbeter (2009) except
for the value of eps (i.e., the scaling factor) which is set equal to
17.5 in the present work to ensure a cell cycle duration of 24h. It
should be noted that in the original work its value is equal to
17 which corresponds to a duration of the cell cycle of 24.7h for
the case when the rate constant of cyclin E synthesis induced
by E2F, kce, was set to 0.24h-1 and without coupling the model
with the circadian clock. For the sake of brevity the values of
model parameters and the initial concentration of all involved
biochemical species, used in the simulations, are taken from t
he original work by Gérard and Goldbeter (2009) and are
not reported in this paper. In Fig. 3, simulation results are
depicted in terms of concentration as a function of time
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for all key cyclin-CDK active complexes, namely D/Cdk4-6, E/Cdk2,
A/Cdk2 and B/Cdk1. It can be observed the typical oscillating
behavior of cyclin-CDK complexes over the cell cycle which is
repeated, periodically, in 24h. Focusing on a single cycle, each
phase duration tP, where P=G1, S, G2, M, may be calculated. In
Fig. 4a, simulation results for a single cell cycle of 24h, in terms of
concentration as a function of time of active E/Cdk2, A/Cdk2 and
B/Cdk1 complexes as well as DNA polymerase a are shown as base
case. Starting from a cell belonging to the stage G1, the transition to
the next phase S may occur when the biological check point is
reached, i.e., in the presence of the active complex E/Cdk2 which
triggers this transition,while the concentration of DNApolymerase
a reaches the maximum to sustain the DNA replication
(t = tG1 = 5.4 h). Next, cell in S phase undergoes the transition to
G2 one, when the new check point is reached. This occurs when
DNA replication is completed while the concentration of DNA
polymerase a starts to decrease (t =16h; tS = 10.6h). The subse-
quent cell phase transition, i.e, G2!M, may take place when the
active complex B/Cdk1 displays a peak (t =19h; tG2 =3h). Finally,
cell can complete the cycle by performing the mitotic process. At
the end of the cell division (t =24h; tM=5h) the active complexes
E/Cdk2 and A/Cdk2 concentrations drop to zero and cell restarts in
G1 phase. The time ofmaturation for a cell belonging to the lumped
phase G2/M, tG2/M, necessary to undergo the transition in G1 phase
can be easily computed by adding the time tM to tG2 (i.e., tG2/
M = tG2 + tM=8h). Starting with this base case, it is now possible to
show the ability of the proposed modeling approach in simulating
various situationswhichmayoccurwhen using specific substances
capable to influence cell cycle. Specifically, in oncologic therapies,
drugs are employed to induce cytostatic effects which inhibit
proliferation and cause arrests at specific cell cycle phases (Shapiro
and Harper, 1999). In particular, by inhibiting CDKs activity and
reducing the formation of the activated complex CDK-cyclin
necessary for phosphorylation processes, cell cycle speed may be
slowed down (Shapiro and Harper, 1999). This situation, for in vitro
applications, may be suitably described by the adopted biochemi-
cal model which is characterized by a sufficient level of details to
identify a possible kinetic target of a specific drug. In this case, the
cytostatic effect of a drug can be simulated by properly changing
one of the kinetic model parameters, i.e., the basal rate of synthesis
of the transcription factor E2F, being the latter one a proteinwhich
is capable to promote the cell progression by triggering the
synthesis of cyclin/CDK complexes. In particular, in Fig. 4b the
simulation of the cytostatic effect induced by a certain drug that
increases the duration of the cell cycle is shown. All simulation

parameters are taken from Gérard and Goldbeter (2009) except
for the basal rate of synthesis of the transcription factor E2F,
Vse2f, which is reduced from 0.15 to 0.06mM/h. The time required
to complete the cell cycle is now equal to 30h, while the duration

[(Fig._4)TD$FIG]

Fig. 4. Cell phase transition simulated by means of the kinetic model proposed by
Gérard and Goldbeter (2009). (a) Base case with cell cycle of 24h (tG1 = 5.4h,
tS = 10.6 h,tG2 =3 h,tM=5h;tG2/M = tG2 + tM=8h); (b) casewhena cytostaticdrug is
added, cell cycle of 30h (tG1 = 9.5h, tS = 10.5 h, tG2 =5.5 h, tM=4.5 h; tG2/M = tG2 +
t

M
= 10h); and (c) casewhen a substance acting as a growth factor is added, cell cycle

of 17h (tG1 =2.6 h, tS = 4h, tG2 =3.4 h, tM=7h; tG2/M = tG2 + tM=10.4h).

[(Fig._3)TD$FIG]

Fig. 3. Simulation results of the kineticmodel in terms of the four active cyclin-CDK
complexes, i.e, D/Ckd4-6, E/Cdk2, A/Cdk2 and B/Cdk1, which govern the cell cycle
progression, as a function of time.
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of the phases is tG1 = 9.5 h, tS = 10.5h and tG2/M = tG2 + tM=5.5 +
4.5 h = 10h, respectively. In this example, as expected, the major
effect is induced in the duration of G1 phase (t

G1
= 9.5 h instead of

5.4 h as in the base case), since the inhibition of the transcription
factor E2F by the drug leads to a delay in the formation of the active
complex E/Cdk2 which, in turn, is necessary to trigger the
transition G1! S. This prolongation in cell cycle time leads to a
reduction of the proliferative capabilities of cells (cytostasis). A
stronger effect of the drug may induce the arrest of a specific cell
phase and of the entire cycle. In regenerative medicine and tissue
engineering, growth factors are added to increase the proliferative
capacities of cells during in vitro cultivation (Popovi�c and Pörtner,
2012). An acceleration of the cell cyclemight be achieved byadding
specific substances capable to affect the synthesis of pRB
(retinoblastoma protein) which controls the inhibition of the cell
cycle progression. The adopted biochemical model properly
describes the hypothetical effect of specific substances on pRB
kinetics and on the entire cell cycle. In Fig. 4c, the possible
accelerating effect of a substance that reduces the rate of pRB
synthesis is illustrated. All kinetic model parameters are taken
from Gérard and Goldbeter (2009) except for the basal rate of
synthesis of pRB, Vsprb, which is reduced from 0.8 to 0.4mM/h.
In this case, the duration of entire cell cycle reduces to 17h while
the duration of the phases is tG1 = 2.6 h, tS = 4h and
tG2/M = tG2 + tM=3.4 + 7h=10.4 h, respectively. The effect of
acceleration induced by acting on pRB synthesis is particularly
evident for G1 and S phase whose duration is more than halved
with respect to the base case (tG1 = 2.6 h instead of 5.4 h, and
tS = 4h instead of 10.6 h, respectively).

The knowledge of each single phase duration is required by the
population balance here proposed. Such parameters, namely tP,
where P =G1, S, G2/M, govern the phase transition and their values
can be employed to estimate the time rate of change rPj of variable j

defined in Eq. (21) of the PB model. In the present work we
considered various seeding conditions performed by means of
different values of initial cell number (i.e., N0 = 1.6�104; 8.0�104;
1.6�105; 3.2�105). The initial cell distribution for cells in
G1 phase (appearing in the initial condition (5)), as a function
of the variables v, and j, was assumed to follow the bivariate
normal gaussian distribution:

nG1ðv; j; t ¼ 0Þ ¼ nG1
0 ðv; jÞ

¼ N0

2psvsj
exp �1

2
v�mvð Þ2
s2
v

þ
j�mj

� �2

s2
j

2
64

3
75

0
B@

1
CA

This expression is characterized by the mean values mv and mj as
well as the standard deviations sv and sj of the variable v and j,
respectively. No cells are assumed to pertain to the other phases

(i.e., nG0 v; t ¼ 0ð Þ ¼ nG0
0 vð Þ ¼ 0; nSðv; j; t ¼ 0Þ ¼ nS

0ðv; jÞ ¼ 0;

nG2=Mðv; j; t ¼ 0Þ ¼ nG2=M
0 v; jð Þ ¼ 0 appearing in the initial condi-

tions (6)–(8), respectively). Parameters of the bivariate gaussian
function, used to describe initial distribution, are reported in
Table 1 (in this simulation mj = 0.2 and sj = 0.01).

In Fig. 5,the initial distributions of cells in G1 phase as a
function of v (Fig. 5a) and j (Fig. 4b) are shown. Fig. 6 illustrates
model results in terms of total counts evolution obtained at
different seeding conditions (i.e., N0 = 1.6�104; 8.0�104;
1.6�105; 3.2�105) as a function of cultivation time. All
parameters used in this simulation are reported in Table 1. As it
might have expected, by increasing N0, the cell number results
augmented for each cultivation time considered. The time
evolution of the total number of cell shows the typical oscillating
behavior characterized by stationary periods followed by incre-
mental steps. This fact depends on the time required for each stage

of the cell cycle to undergo the transition to the next phase.
Starting from cell synchronized in G1 phase (as imposed by the
initial condition) a period of time is required for the cells to enter
the next phase S, then another period of time to reach the G2/M
stage and finally a further lag time for cell to undergo mitosis. By
observing Fig. 6, it clearly appears that the proposed model

Table 1
Parameters for PB model used in the simulation.

Parameter Value Unit References

N0 1.6�104/3.2�105 Cells Fadda et al. (2012b)
AP 8.0�108 mm2 Fadda et al. (2012b)
mv 1.37�103 mm3 This work
sv 3.0�102 mm3 This work
mj 0.2 or 0.5 – This work
sj 0.01 or 0.15 – This work
kv 0.035 h�1 Fadda et al. (2012b)
vmin 20.0 mm3 Fadda et al. (2012b)
vmax 7000.0 mm3 Fadda et al. (2012b)
a 1.6 – Fadda et al. (2012b)
w 7.8 – Fadda et al. (2012b)
l 1.78�103 mm3 Fadda et al. (2012b)
q 40 – Mancuso et al. (2009)
rG1j

0.1842 h�1 This work

rSj
0.0943 h�1 This work

rG2=Mj
0.125 h�1 This work

[(Fig._5)TD$FIG]

Fig. 5. Initial distribution of cells in phase G1 as a function of cell volume (a) and
dimensionless age (b). Parameters of the bivariate gaussian function used to
describe initial distribution are reported in Table 1 (mj= 0.2 and sj =0.01 in this
simulation).
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properly describes the well-known oscillating behavior of the cell
cycle. In particular, it results that one complete cell cycle
progression requires 24h coherently with the time, in terms of
age of maturation tP, determined by the adopted kinetic model. By
means of this modeling approach, it is also possible to describe the
characteristic “incubation/acclimation” time which may occur at
the beginning of cultivation. Cells may undergomitosis only if they
reach the G2/M by experiencing the transition G2/M!G1. The
latter one requires a period of time for cells which are initially
synchronized in G1 phase. In the simulations depicted in Fig. 6,
this incubation time corresponds to about 24h, coherently with

the time needed by cells starting in the stage G1 to complete the
cell cycle. Fig. 7 shows model results in terms of cell count
evolution for each cell cycle phase as a function of cultivation time
obtained at different initial seeding condition (i.e., N0 = 1.6�104,
8.0�104, 1.6�105 and 3.2�105 for Fig. 7a–d, respectively). To
facilitate the comparison we kept the same x-axis scale for all
figures. Cells belonging to phase G1, S and G2/M display a typical
oscillating behavior going from a minimum value to a (relative)
maximum one. Cells belonging to S stage appear after the
maturation in G1 phase is completed. A decreasing in cell number
of cell in G1 phase corresponds to an increasing number of cells in
the subsequent phase S. The same aspect can be observed for the
transition S!G2M. When cells belonging to G2/M stage undergo
mitosis the cell cycle restarts and new daughter cells appear in G1
phase. From Fig. 7, it is apparent that transitions occur coherently
with the maturation age (i.e., for G1! S starts after tG1 =5.4 h;
S!G2/M occurs after other tS = 10.6h and finally G2/M! takes
places after tG2/M =8h). The quiescent/senescent phase G0,
consisting of cells which exit the cell cycle, leaving in particular
the G1 stage (transition G1!G0), displays an oscillating “step”
behavior. Since in the present work the transition G0!G1 is
neglected (irreversible cell cycle exit), the total number of cell in
the stage G0 cannot decrease, as coherently obtained by the model
results. Cell can enter (irreversibly) the G0 stage, as properly
described by the proposed model, on the basis of the contact
inhibition effect, which becomes important as the total
cell number increases (less available space for cell growth).
Therefore, by increasing the initial cells number seeded on Petri
dish one can expect a higher rate of cell entering the G0 phase, as
properly simulated by the model results shown in Fig. 7. From the
latter ones, it is also worth noting, that the rate of cells entering

[(Fig._7)TD$FIG]

Fig. 7. Model results in terms of cell count evolution for each cell cycle phase versus cultivation time obtained at different initial seeding condition: (a) N0 = 1.6�104; (b)
N0 = 8.0�104; (c) N0 = 1.6�105; and (d) N0 = 3.2�105.

[(Fig._6)TD$FIG]

Fig. 6. Model results in terms of total cell count evolution versus cultivation time
obtained at different initial seeding condition.
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G0 phase approaches zero (constant value of cell number in
G0 stage) when cells belonging to G1 phase end the transition to
the subsequent active phase S. This fact is correctly described by
the proposed model as clearly illustrated in Fig. 7. Consequently,
the increasing of cell number in G0 phase starts to stop. Initial
distribution of cells in phase G1 as a function of cell volume and
dimensionless age, for various cultivation time, are shown in Fig. 8
where the case of seeding with N0 = 1.6�105 is considered. Cells at
t = 0 belong to G1 phase while at t =14h the transition G1! S is
already completed (t > tG1) and cells are in S state displaying
volume distributionwith an highermoda value, with respect to the
one at t = 0, since cell volume at 14h is obviously increased
(Fig. 8a). Similarly, at t =20h, after the transition S!G2/M, cells
belong to G2/M phase with a moda distribution which shows an
higher valuewith respect to the previous one for phase S at t =14h.
Finally, when cells undergo mitosis, new (and smaller) daughter
cells appear in G1 phase (t =26h) and their volume distribution
displays a lower value of moda with respect to the one shown at
t =20h for cells belonging to G2/M phase. In Fig. 8b the same
behavior is illustrated in terms of dimensionless age distribution.
Increasing the cultivation time cell distribution curve displays an
enlargement (cells with distribution of age spread over the entire
range). Some hours after the cell cycle completion, at t =26h, cells
belong again to the G1 phase with a moda distribution that
displays a lower value with respect to the ones defined at lower
time (i.e., t =14h in S phase, t =20h in G2/M phase).

The proposed model is also capable to simulate smoothed
oscillating behavior whichmay take place as a result of the specific
conditions adopted. To this aim we can consider the following
bivariate normal Gaussian function to describe the cell distribution
at t =0, used in initial conditions (5), (7), and (8), for cells belonging
to the phase P =G1, S, and G2/M, respectively:

nP
0ðv; jÞ ¼

N0=3ð Þ
2psvsj

exp �1
2

v�mvð Þ2
s2
v

þ
j�mj

� �2

s2
j

2
64

3
75

0
B@

1
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Parameters of the bivariate gaussian function are reported in
Table 1 (mj = 0.5 andsj =0.15)while the initial distribution of cells
in G1, S, G2/M as a function of v and j are shown in Fig. 9. The effect
of the seeding conditions is illustrated in Fig. 10 where model
results are reported in terms of total cell count evolution as a
function of cultivation time for an initial cell number N0 = 1.6�105.
Solid line represents the simulation result when cells are seeded at
G1-phase (parameters of simulation reported in Table 1 for the
case when mj = 0.2 and sj = 0.01) while the dashed line is related
to the situation where the seeded cells belonging to all active
phases, i.e., G1, S, G2/M (parameters of simulation reported in
Table 1 with mj = 0.5 and sj =0.15) start being cultivated.

By observing Fig. 10, it is apparent that the temporal behavior
represented by the dashed line displays a smoother trend if

[(Fig._8)TD$FIG]

Fig. 8. Cell distribution as a function of cell volume (a) and dimensionless age (b) at
various cultivation time (i.e.,t= 0, 14, 20, 26h) for cells belonging to G1, S and G2/M
phase for the case when N0 = 1.6�105.

[(Fig._9)TD$FIG]

Fig. 9. Initial distribution of cells in phase P =G1, S and G2/M as a function of cell
volume (a) and dimensionless age (b). Parameters of the bivariate gaussian
function, used to describe initial distribution, are reported in Table 1 (mj= 0.5 and
sj= 0.15 in this simulation).
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compared with the one depicted with the solid line. Indeed, in the
case represented by the dashed line, at t = 0 cells are distributed in
all active phases (G1, S and G2/M) thus cells belonging to G2/M can
undergo mitosis after few minutes, thus increasing the total
number of cell even at the beginning of the cultivation. Cells in
G1 stage can enter the subsequent phase S, and those ones
belonging to the S one canproceed to theG2/Mphase byensuring a
sort of continuous behavior in the cell expansion. On the other
hand, with a lag time of about 24h (the typical cell time for one cell
cycle completion) the solid line “reaches” the dashed one, since
cells, initially synchronized only in G1 phase, have experienced all
cell cycle. In Fig. 10, it is also possible to note that the difference
between the two temporal profile increases as the cultivation time
augments.

Finally, model results in terms of total cell count evolution as a
function of cultivation time for the base case (cell cycle completed
in 24h, solid line) are compared in Fig. 11 to those ones obtained
by simulating the use of a cytostatic drug (cell cycle completed in
30h, dot-dashed line) or a substance acting as a growth factor
during cell proliferation (cell cycle completed in 17h, dot-dashed
line). All model parameters used in simulations are reported in

Table 1 except for rG1j ¼ 1=tG1 ¼ 1=9:5h ¼ 0:1053h�1, rSj ¼ 1=tS ¼
1=10:5h ¼ 0:0952h�1 and rG2=Mj ¼ 1=tG2=M ¼ 1=10h ¼ 0:1h�1,

when a cytostatic drug is added during the culture cultivation
(cell cycle time for phase transition as shown in Fig. 4b) and

rG1j ¼ 1=tG1 ¼ 1=2:6h ¼ 0:3846h�1, rSj ¼ 1=tS ¼ 1=4h ¼ 0:25h�1

and rG2=Mj ¼ 1=tG2=M ¼ 1=10:4h ¼ 0:0961h�1rG2=Mj ¼ 1=tG2=M ¼
1=10:4h ¼ 0:0961h�1 when a substance to inhibits the synthesis
of pRB protein is used (cell cycle time for phase transition as
shown in Fig. 4c). From a view inspection of Fig. 11 the cytostatic
effect of the drug, which results in a slowdown of the cell
cycle progression (30h are needed to complete an entire cycle
instead of 24h as in the base case), is apparent. On the other hand,
the positive contribution in terms of cell proliferation of a
substance which acts on pRB rate of synthesis by leading to a
shortening of cell cycle duration (17h instead of 24h as in the base
case) may be clearly seen. The coupling of a comprehensive
biochemical model with a multistage population balance, as
clearly demonstrated by the results reported in Fig. 11, shows that
the proposed approach represents a powerful tool to predict the
effect of specific chemical species on the temporal evolution of the
cell cycle. The proposed model, in the light of simulations
discussed in this work, presents versatile features which appear
undoubtedly useful for description of in vitro cell proliferation
processes.

4. Concluding remarks

In this work, a novel mathematical model helpful to investigate
cell proliferation kinetics is developed. Specifically, the model is
based on a PB approach that allows one to quantitatively describe
cell cycle progression through the different phases experienced by
all the cells of the entire population during their own life. The
transitions between two consecutive cell cycle phases are
governed by a complex network of biochemical kinetics related
tomammalian cells and proposed by Gérard and Goldbeter (2009),
which involves CDKs and their associationwith cyclins and protein
inhibitors, phosphorylation–dephosphorylation, and cyclin
synthesis or degradation. Time of each phase duration, required
by the 2D multi-staged PB developed in this work, is estimated by
considering the evolution of biochemical reactions until check
point for transition is reached. Specific examples are discussed to
illustrate the ability of the proposedmodel to simulate the effect of
drug and growth factors during in vitro cell cultivation for
applications in oncology, medicine regenerative or tissue
engineering. The coupling proposed in this work of a detailed
biochemical model with a multistage population balance
represents therefore an useful and powerful tool to simulate the
effect on the cell proliferation due to substances/drugs that can
accelerate or decelerate the cell cycle. The model also
properly accounts for the variation of cell volume during cell
growth and proliferationwhich can be helpful for model validation
by direct comparison with experimental data where the cell
size distribution can be suitably provided. A possible future
work direction may be addressed toward a more rigorous
description of the cell size growth in connection with its
metabolism and by accounting for the not negligible cell-to-cell
interactions.
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Fig. 11. Model results in terms of total cell count evolution versus cultivation time
for the base case (cell cycle completed in 24h, solid line), computed to the case
where the use of a substance acting as a growth factor during cell proliferation (cell
cycle completed in 17h, dot-dashed line) or a cytostatic drug (cell cycle completed
in 30h, dot-dashed line) is taken into account.

[(Fig._10)TD$FIG]

Fig. 10. Model results in terms of total cells count evolution versus cultivation time
obtained at different initial cell distribution in terms of age and progression phase.
Solid line represents the simulation result when seeded cells start cultivation
belonging to the G1-phase; dashed line represents the simulation result when
seeded cells start cultivation belonging to all active phases, i.e., G1, S, G2/M.
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