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Abstract—In this work we present a Process Mining analysis
performed on event logs coming from two fully automated
Laboratory pre-analytical sites. Our purpose is to empirically
discover the relevant workflow models and compare them with
the theoretical (conceptual) workflow. The goal is to discover
any unexpected behavior of the site workflow, and to refine
and correct the theoretical model according to what the models
themselves are evidencing, following a quantitative and objective
approach.

I. INTRODUCTION

Process Mining technique applications to the healthcare
domain increased in the last decade, at first to discover clinical
workflows from real data [1] [2], later to also evaluate the
conformance to medical guidelines of actual behavior [3] [4].
Business Process Management and Business Intelligence have
been used in healthcare processes descriptions [5] [6] [7] [8],
but they often lead to models too influenced by stakeholders
visions of the workflow, therefore unable to capture aspects
outside their specific vision. Process Mining instead, starting
from event logs recorded during process running, helps to
create dynamic end-to-end models, describing the current
behavior of heterogeneous workflows.

The preanalytical phase in laboratory medicine is a per-
fect example of how a medical procedure can highly vary
according to the clinical site: best practices and protocols
exist, but the combination of human resources, devices, test
panels and management rules can result in extremely disparate
configurations in different phlebotomy rooms. This peculiarity
is among the reasons that preanalytical phase has partially
been left behind in the process of automation which invested
laboratories in the last twenty years; anyway, the high error
rate occurrence of this phase induced many vendors to enrich
automation support in the pre-analytical workflow, from test
ordering to sample labeling [9] [10] [11].

This paper reports the results of a preliminary analysis of
the first example of automation for the phlebotomy process
combined with a traceability system, generating events at each
relevant step of the workflow1. We analyzed traceability event
logs coming from two different hospital sites, in order to
discover the real workflows and to compare the discovered
models to the theoretical representation: we will show how
process mining techniques can be helpful for the settings and

1Inpeco ProTube [11]

the fine tuning of an automated system in sites with different
workflows, giving an objective and quantitative representation
of reality.

The remainder of the paper is structured as follows. Sec-
tion II provides a short description of the clinical context
(laboratory medicine), followed by a overview of process
mining techniques devoted to workflow discovery, including
the framework we developed to perform the analysis(Section
III). The results will be analyzed in Section IV and the last
two sections will be dedicated to related works (Section V)
and conclusions (Section VI).

II. LABORATORY WORKFLOW

The classification of a laboratory workflow is not universal
and can vary according to different authors, but traditionally
laboratory medicine workflow is divided into three main
phases:

• preanalytical phase, which consists of test ordering, pa-
tient identification and sample collection, transportation
and preparation;

• analytical phase, including all the steps to perform the
analysis required by the physician;

• postanalytical phase, consisting in reporting and distri-
bution of test results.

The activities to go from exam prescriptions to results (Total
Testing Process TTP- model) [13] [14] [15] are not confined to
the laboratory, so an additional distinction was made to divide
what happens inside and outside the laboratory, introducing
the definition of pre-preanalytical (from ordering to sample ar-
rival in the laboratory) and post-postanalytical (reception and
interpretation of laboratory reports) and limiting preanalytical
to sample preparation before the analysis and postanalytical
to validation and reporting. These definitions are functional
to identify mistakes problems origin, since the importance of
each of these steps is specified in the official definition by
International Organization for Standardization (ISO) 22367 of
laboratory error: f̈ailure of planned action to be completed as
intended, or use a wrong plan to achieve an aim, occurring
at any part of the laboratory cycle, from ordering examina-
tions to reporting results and appropriately interpreting and
reacting to them¨ [16]. To evaluate and improve accuracy
and quality in the testing process, externally quality assurance
programs (EQA) and rules for internal quality control (IQC)



Fig. 1. Workflow elements model, based on analysis of workflow definitions [12].

have been developed [17] [18] and methodologies derived
from the industrial sector have been introduced, like pro-
cess automation, lean and six sigma strategies [19] [20].The
first objective of the optimization in the past years was the
analytical phase and the results are extremely good: this
process, considering the six sigma evaluation, has a close to 5
sigma performance (0.002%), value which is the best among
healthcare processes (1-2 sigma) and is comparable with non-
healthcare industries [21]. Experimental studies [22] [23]
shows that the analytical phase is less affected by errors, as
can be seen in fig, and that pre-pre and preanalytical steps
before analysis are the more crucial. The most frequent errors
are related to order entry, patient/specimen misidentification,
sample collection, inappropriate container, handling, storage
and transportation, sorting and routing, pour-off, aliquoting
and centrifugation [21].

Automation, lean and sigma strategies also applied to the
preanalytical phase showed their efficacy [24] [25] [26] [27]
and this approach was considered also from pre-preanalytical,
introducing a series of systems like BCROBO [9] and EOS
Lab.E.L R© [10], with good results in clinical contexts [28].
Inpeco ProTube [11] system provides support to patient secure
identification and correct sample preparation, recording a
series of traceability events, which we consider as input for
our analysis.

III. PROCESS MINING FOR WORKFLOW DISCOVERING

As reported by literature, Process Mining has the aim “to
discover, monitor and improve real processes (i.e., not assumed
processes) by extracting knowledge from event logs readily
available in todays (information) systems” [29]. It is a young
discipline, placed in the middle between Business Intelligence
and Business Process Management and useful to bridge the
gap between them: classical data mining concepts are enriched
with a process model-driven approach, with several use cases

related to process model discovering from data, bottlenecks
detection, performance evaluations.

In the previous sections, we highlighted the importance of
the laboratory pre-analytical phase, and how it can be im-
proved through the adoption of technologies able to automatize
some critical steps, ensure the traceability of all produced
and exchanged data, obtaining a fully-traced workflow of the
pre-analytical phase itself. In this context, Process Mining
techniques can help to perform a detailed analysis of the
workflow, starting from its logs, which can be seen as the input
of the analysis. Event logs, sequentially recorded, are grouped
into activities, which are in turn related to a workflow (process)
case: a case groups all the events and activities belonging to
the same workflow instance.

Different types of Process Mining [30] can be used to
analyze a workflow, according to how events are used:

• discovery aims to infer a process model from event logs,
without a-priori information;

• conformance compares an existing model (inferred or
theoretical) with actual event logs, checking the confor-
mance between reality and the model itself;

• enhancement improve, extending or repairing, the a-priori
model using logs to obtain a better conformance between
model and reality or adding new aspects and point of
views.

Determining if workflow event data are following the the-
oretical model or not is among the most important questions
Process Mining can answer to: indeed, it often happens that,
even if the event data have been produced starting from a
conceptual schema, the reality is different and not all workflow
cases follow the theoretical model as expected. The so called
Discovery type of Process Mining provides techniques to mine
a workflow model from event logs, obtaining in this way a
representation of the real process, which can be compared



to the theoretical one. Both theoretical and mined workflow
models can be then analyzed using the Conformance Process
Mining type, which tells us if the reality conforms to the model
and viceversa.

Several algorithms and approaches can be followed to start
a Process Mining analysis; in this section we will briefly
describe the one of interest for the scope of our work, the
Heuristic Miner. The goal of this algorithm is to mine a model
of the workflow(process) by analyzing its event data in two
steps: the first one looks for activities dependencies, the second
one determines how an activity depends from the previous and
the following. Looking the two phases from the point of view
of the mined diagram model, the first one determines the arcs,
while the second one determines the split or join gateways,
which can be parallel or exclusive (AND/OR gateways). Some
thresholds can also be applied in order to filter infrequent
arcs or gateways. As for the algorithms, same multiplicity of
notations is present in literature for workflow model repre-
sentations. All workflow models shown in the following of
this paper will be represented according the Business Process
Models and Notation (BPMN), a well-known standard for
business process modeling, based flowchart representation a
simple to read, easily understandable by all business stake-
holders. The main components of a BPMN diagrams are the
activities, the arcs and the parallel and exclusive gateways,
represented respectively with a “+“ and a “X“ sign.

A complete list of tools for Process Mining can be found in
[31]. The main open source framework for Process Mining is
ProM [31], representing the state-of-the-art, with about three
hundreds algorithms/tools: the GUI is user-friendly, but it is
not so easy to use it as a back-end for an external application.
Another under development open source tool is PMLAB [32]
[33], which provides a Python-based scripting environment for
process mining, while the more used commercial solution is
Disco [34].

These tools cover a large spectrum of applications, but
our research interests (dealing with healthcare informatics and
computational support to a wide range of bio-medical projects
and connected to manage and analysis of large datasets with
distributed computing technologies) required a flexible and
modular solution, scalable and based on indipendent modules:
for these purposes we developed pyMine, a open source
Python library for Process Mining, soon available as an open-
source project.

The analysis and the results presented in this paper have
been obtained using pyMine modules for heuristic mining and
conformance checking.

IV. RESULTS

The study analyzes the laboratory pre-preanalytical
workflow, through the use of process mining applied to
event logs coming from two different laboratories, site A
and site B (details about event number are in the following
table). Given the theoretical model, our first objective was
the discovery of the models deriving from the two sites’
events and the comparison with the expected behavior, to

quantify the ”coverage” in two actual clinical settings of real
workflows trajectories respect expected path.

Event logs for the two sites
Site A Site B

Total Events Total Cases Total Events Total Cases
221316 28308 299761 42462

TABLE I
NUMBER OF EVENTS

The process has been modeled according to system require-
ments before the installation, identifying these macro activities
(the BPMN diagram of the theoretical model is shown in
Figure 2):

• IDENTIFICATION: query and retrieve of patients in-
formation;

• SEARCH ORDERS: query and retrieve of patient or-
ders;

• TRANSCODING ERROR: atomic activity indicating
that an error occurred while computing the required tubes
for the orders retrieved;

• VERIFY ORDERS: this activity is performed if some
orders have to be filtered (according to the site configu-
ration) or have some peculiarities (i.e. timed repetitions)

• LABELING: production of the labels;
• LABELING SET OPTIONS: configurations for the

labeling;
• RELABELING: sample relabeling;
• ALT TUBE: choice of different tube type;
• CHECKOUT: confirmation that all tubes or part of them

are filled and ready for transport;
• ABORT: interruption of the process caused by the oper-

ator
Each event belongs to an activity and is structured as

follows:
• case ID: unique identifier of the case to which the event

is referred;
• timestamp: reference timestamp of the event;
• operator: numerical identifier for the person who per-

formed the action related to the event;
• activity: definition of the action the event belongs to;
• lifecycle: indication of the lifecycle attribute of the activ-

ity (i.e. START, END);
• resources: list of unique identifiers associated to the

devices involved in the action related to the event.
Processing the two datasets with heuristic mining tech-

niques, we obtained the mined models for the two sites A and
B shown in Figure 3: in the diagrams the arcs in red indicate
all mined paths not allowed by the theoretical model. In order
to evaluate how the mined models reflect the event data used
to infer them, the Fitness Indicator [35] has been calculated,
as the ratio of the cases accepted by the total number of the
cases. Site A model obtained a fitness of 0.9994, while site B
model fitness was 0.9950: these values indicate that the two
models correctly represent real-life event logs.



Fig. 2. Theoretical BPMN model of the Laboratory pre-preanalytical workflow.

At this preliminary level of study we can only comment the
difference of topology between the two sites A and B: site
A has a lower variability in terms of pathways than site B;
furthermore, even if the most frequent path is the same in
the two sites, in case of site A the percentage of cases that
follow this path in relation to the total number of cases is
higher than in site B. Another different behavior between
A and B comes to light when comparing their topology to
the theoretical model: site A model is very similar to the
theoretical one, while this is not true for site B. Indeed, site
A and theoretical model differ just in two paths, covered by
a few cases (only 320 on 28308), while site B presents about
15000 cases following unexpected paths. This is confirmed
by computing the Fitness Indicator of the two datasets on the
theoretical model: site A presents a value of 0.9565 and site
B a value of 0.3990.
Site B results must be further investigated. Possible reasons
of such a topology discrepancy between B and the theoretical
model could be:

• there is excessive noise in the data set;
• there are behaviors of the devices or the operators that

are considered impossible by the theoretical model;
• the theoretical model is missing parts of the real work-

flow.

Analyzing the number of site B cases associated with the
unexpected paths, some of these trajectories could fall in the
first two categories, while the high incidence of those related to
the VERIFY ORDERS activities suggests to us that probably
these paths are effectively ”legal” and they should be added
to the theoretical model.

V. RELATED WORKS

The myriad of perspectives connected to workflow defi-
nition and analysis is very well depicted in [36], which is
a systematic literature review of workflow research articles
published between 1995 and 2008, but also presents specific
questions about methods for workflows analysis and connected
evaluation metrics and about workflow definition and basic
components. Starting from a first selection of 6221 articles,
in the fields of engineering, basic sciences, healthcare and
social sciences, the authors observed the absence of a unique
definition of workflow (always varying according the different
studies interests) and outlined a conceptual framework of
workflow-related terms, depicted in Figure 4, with two levels,
pervasive and specific, respectively presenting three (context,
temporal and aggregate factors) and five (actors, artifacts,
actions, characteristics and outcomes) components.

Fig. 4. Workflow elements model, based on analysis of workflow definitions
[36].



Fig. 3. BPMN mined models of the pre-preanalytical workflow for site A (above) and site B (below). Red arcs indicate all mined paths which are not allowed
in the theoretical model. Frequencies for both nodes and arcs are shown; the most frequent paths are drawn with thicker lines.

Other important factors emerging from the article are the
prevalence of qualitative approaches in the examined publica-
tions and the difficulties of representing the dynamic behavior
of healthcare reality through a flow-chart or a model. Process
Mining can offer significative solutions to these issues, as

explained in the IEEE Task Force on Process Mining Man-
ifesto [29] and in the main reference book in the field [30].
A complete review about literature related to the application
of process mining in healthcare can be find online in [37]:
the 59 papers are divided according to two types of process



mining, discovery (51 papers) and conformance (8 papers). To
create a common framework for healthcare applications, [38]
defines a healthcare reference model, organizing the classes
of possible data for modeling of processes, the relationships
potentially connecting them and some criteria to evaluate and
improve event logs quality.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented an example of application of
Process Mining techniques to automatically extract workflow
models from events log coming from two real pre-preanalytical
laboratory automation and traceability system sites: two mod-
els were discovered analyzing data from two real clinical
sites, A and B. The results highlight the added value of
the process mining approach, in terms of both discovering
of undesired behaviors in the real workflow and providing
guidance in the refinement of the theoretical model. Process
Mining tools help to build quantitative and objective models
of reality. The progressive automation of healthcare processes
will make available an increasing amount of data and the
extensive application of process mining strategy will help to
o extract value from the latter.

Our work is continuing along two complementary direc-
tions. On one side, we are refining the process mining tools,
with the algorithmic refiniments and extension converging in
the pyMine framework. On the other, we are working with
clinicians to extend the boundary of the analysis, considering
wider processes with human and device actors, as for example
the overall Laboratory testing process, with the aim to add
some context information in order to guide the modeling
with questions about the real system behavior (performance,
bottlenecks, evolutions, and improvements).
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