
The RAPI Read Aligner API

Luca Pireddu, Gianluigi Zanetti
CRS4, Pula, Italy

Email: luca.pireddu@crs4.it

Web site URL: https://github.com/crs4/rapi.git

License: MIT

In work related to NGS data, read aligners are one of the most fundamental pieces of analysis software.
In fact, the extensive attention dedicated to the problem has resulted in a number of effective alignment
programs, many of which are continuously updated with improvements to alignment quality and efficiency.
Aligners are typically packaged as command-line programs that expect to receive three main arguments:
the path to the indexed reference sequence, the path to the input read file in Fastq format, and the path
to the output file in SAM or BAM format. This simple interface makes a number of assumptions: that all
the required data files (reference, input and output) are accessible on locally mounted file systems; that
the data are in the formats that the aligner supports; and that the use case supports executing a new
process each time an alignment is required. Although these assumptions may appear to be reasonable,
they are actually extremely limiting to work aimed at exploring novel programmatic ways to use aligners
– e.g., interactive analysis, scripting and, more ambitiously, research to advance the standard sequencing
pipeline’s data flow architecture.

A more flexible approach would be to have read aligners define an API and package their functionality
as a library, potentially in addition to the standard command line interface. We propose to the NGS
community a general solution: a standard read aligner application programming interface, that can be
implemented with any underlying read mapping technology: the Read Aligner Application Programming
Interface (RAPI). For maximum compatibility the RAPI is defined in C. It includes generic functions
and data structures to support typical alignment operations: index a reference sequence, load and unload
the reference, map reads to the reference, interpret the results. Further, RAPI includes Python bindings,
making it simple to load an aligner implementing the interface as a Python module and using it in a script
or an interactive Python session. The project also includes a reference aligner interface implementation
that wraps the BWA-MEM [1] aligner. This aligner plug-in is used in the Seal project [2] to compute
sequence alignments on the Hadoop distributed computing platform. The fact that RAPI does not
make any assumptions about the source or destination of the data makes it possible to easily integrate
scalable computing and data storage technology developed for the Big Data computing problems, such
as the Hadoop Distributed File System, into an alignment workflow. Since RAPI also does not make
any assumptions about the data formats, it also facilitates using advanced column-oriented file formats,
such as AvroParquet, that offer many advantages over conventional file formats in terms of storage
efficiency and the ability to selectively read columns of a data set. Finally, since RAPI standardizes
the aligner interface, one could parametrize the aligner to use within a RAPI-based pipeline, swapping
aligner without changing any of the code.

In summary, we propose to the NGS community a standard aligner application programming interface.
The interface defines function calls for alignment operations while remaining agnostic to the file system,
data format, and any specifics internal to the aligner. The standard interface makes it simple and safe to
harness aligner plug-ins to prototype and create novel functionality. Of course, the interface is released
under an open source license and we welcome feedback and contributions from the community.

References
[1] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 2013.

[2] Luca Pireddu, Simone Leo, and Gianluigi Zanetti. Seal: a distributed short read mapping and duplicate removal tool.
Bioinformatics, 27(15):2159–2160, 2011.


