Distributed stream processing for genomics pipelines
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Introduction

Personalized medicine is in great part enabled by the progress in data acquisition technologies for mod-
ern biology. These same technologies however are transforming biology into a data-intensive science,
as the acquisition techniques that permit the observation of finer details of biological machinery gener-
ate ever larger dataset sizes. Genomics is the champion example of this phenomenon, with modern
sequencing machines having a production capacity in the order of a terabyte of uncompressed data per
day, which need to be computationally processed to allow the extraction of useful information. Conven-
tional processing workflows are composed by independent, shared-memory tools which communicate
by means of intermediate files. With increasing data sizes this approach is showing its limited scala-
bility and robustness characteristics — problems that make it unsuitable for large-scale, population-wide
personalized medicine applications.

In this work we propose the adoption of the stream computing architecture to make the genomics
pipeline more scalable, and fault-tolerant. We decompose the first processing phases for lllumina se-
quencing data into two distinct and specialized modules (preprocessing and alignment) and we loosely
link them through Kafka streams. This approach allows for easy composability of the modules and their
integration with already existing pipelines. The proposed solution is experimentally validated on real data
and shown to scale almost linearly.

Methods

The standard primary processing procedure when resequencing with lllumina sequencing machines con-
sists of: 1) reconstructing reads from BCL files; 2) filtering reads based on machine quality checks; 3)
sorting reads by sample (for multiplexed runs); 4) read alignment. In the state-of-the-art, sequencing
operations are equipped with a conventional HPC cluster with a shared parallel storage system [4].
Within this context, the standard solution is to perform steps 1-3 using Illlumina’s own proprietary, open-
source tool: bcl2fastg2. On the other hand, there is variety of read aligners in widespread use [3],
though BWA-MEM [2] is quite popular among these and has been found to produce some of the best
alignments [1]. These tools only provide parallelism within a single computing node (shared-memory
parallelism). Though shared-memory parallelism is certainly beneficial to accelerating analysis, it is in-
sufficient for large-scale operations. Processing the data produced by a single run of a modern sequencer
can easily takes several hours if working on a single computing node.

Our method builds scalable, robust and easily composable tools by distributing the work over multiple
collaborating computing nodes. More specifically, we use distributed processing of continuous streams
of sequencing data. Moreover, our solution maintains compatibility with the already established tools by
generating output the standard format CRAM — which is particularly space-efficient and thus well suited
to large-scale applications. The software we created for this work builds on Apache Flink and Apache
Kafka. Apache Flink is a framework for distributed (i.e., multi-node) stream data processing. With stream
processing data is processed as soon as it arrives at the step — rather than waiting for the previous step
to finish. Data flows between successive steps of a pipeline without intermediate files. On the other
hand, Apache Kafka is a connector/queue service that allows us to connect multiple processes — e.g.,
multiple Flink programs — to each other.

The Flink-Kafka-based pipeline is implemented as two modules. The first module (preprocessor)
reads as input raw lllumina data and performs BCL conversion, filtering and demultiplexing. The second
module implements the alignment step in Flink, using the Read Aligner API (RAPI [5]) which provides
Java bindings for the BWA-MEM aligner. The two modules are connected by a Kafka broker. The output
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consists of aligned reads in CRAM format — though more complex pipelines could be formed by chaining
additional Kafka brokers and processing modules.

We evaluated the performance and scalability of our Flink-Kafka pipeline on a human genome dataset,
running on the Amazon Elastic Compute Cloud (EC2) and comparing it with the conventional pipeline.
Hardware. We ran our experiments using up to 12 instances of type i3.8xlarge that are equipped with:
32 virtual cores (Xeon E5-2686 v4, 45 MB cache); 244 GiB of RAM; 4 x 1.9 TB NVMe SSDs; 10 GbE.
Input dataset. We used 1/4 of the output from an Illlumina HiSeq 3000 run, with 12 human genomic
samples and using a single multiplexing tag per fragment. Data size: 47.8 GB of raw data scattered over
47,050 gzip-compressed BCL files plus 224 filter files (QC pass/fail).

We ran our pipeline with varying number of nodes n, from 1 to 12. The setup included a single Kafka
broker while all other nodes ran both preprocessing and alignment modules. The baseline workflow was
implemented with bcl2fastg2 — bwa-mem — samtools (the latter for conversion of SAM to CRAM). The
exact scripts are available at https://github.com/crs4/2017-flink-pipeline. As mentioned
previously, the conventional pipeline only exploits shared-memory parallelism and hence ran on a single
node.

Results

The runtimes measured in our experiments (Table 1) show that on a single node our pipeline is 11%
slower than the baseline due to the overheads caused by Flink and the communication layer. However,
as the number of nodes increases, our pipeline achieves near optimal scalability, as shown in Figure 1.
The relative scalability (i.e., compared to our runtime on a single node) is 10.6 on 12 nodes, whereas
the absolute one (i.e., compared to the faster baseline) is 9.5 on 12 nodes. This result is particularly re-
markable since the runtime on 12 nodes is below 15 minutes, and the constant costs of the frameworks
begin to have a significant impact on the total runtime.
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