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Abstract—We propose a simple yet efficient steganalytic algorithm for
watermarks embedded by two state-of-the-art 3D watermarking algo-
rithms by Cho et al. The main observation is that while in a clean
model the means/variances of Cho et al.’s normalized histogram bins
are expected to follow a Gaussian distribution, in a marked model
their distribution will be bimodal. The proposed algorithm estimates the
number of bins through an exhaustive search and then the presence
of a watermark is decided by a tailor made normality test or a t-test.
We also propose a modification of Cho et al.’s watermarking algorithms
with the watermark embedded by changing the histogram of the radial
coordinates of the vertices. Rather than targeting a continuous statistics
such as the mean or variance of the values in a bin, the proposed
watermarking modifies a discrete statistic, which here is the height of the
histogram bin, to achieve watermark embedding. Experimental results
demonstrate that the modified algorithm offers not only better resistance
against the steganalytic attack we developed, but also an improved
robustness/capacity trade-off.

Index Terms—Polygonal meshes, data embedding, watermarking, ste-
ganalysis.

1 INTRODUCTION

D Igital watermarking is the process of embedding dig-
ital signals into digital media such as images, audio,

video, or 3D models. In a relationship analogous to that
between cryptography and cryptanalysis, as a counterpart
to watermarking, steganalysis aims at the detection of water-
marks hidden into digital signals.

Thus far, numerous excellent watermarking techniques
for inserting watermarks into 3D models have been pro-
posed [1], [2], [3], [4], [5]. For a more exhaustive comparison
of 3D watermarking methods, we refer the reader to the
survey in [6]. These algorithms are primarily concerned with
the robustness of the watermark, targeting applications such
as proof of ownership and copy control, while the unde-
tectability of the embedded watermark does not seem to be
a major concern in their evaluation. That also means that 3D
model steganalysis is an underdeveloped area and, to the
best of our knowledge, there are only a few works [7], [8] in
the literature proposing steganalytic algorithms specifically
targeting 3D model watermarking. In contrast, the domain
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of 2D image watermarking has been greatly influenced over
the years by the various proposed steganalytic methods [9],
[10], [11], [12], [13].

The thesis motivating this paper is that 3D steganalysis
can have a similar positive influence on the development of
the field of 3D watermarking in at least two ways. Firstly, by
opening new applications domains where the understand-
ing of the anti-steganalytic properties of the watermark are
either absolutely essential, e.g., covert communication, or
at least extremely important, e.g., proof of ownership and
copy control through invisible watermarking. Secondly, by
motivating the development of improved watermarking al-
gorithms, which are quite likely to have superior properties
not only regarding the undetectability of the watermark but
also its robustness.

1.1 Overview

Steganalytic approaches are classified into two categories:
specific and universal. The former detects the presence of a
message embedded by particular watermarking algorithms,
while the latter aims at message detection regardless of the
embedding algorithms used. In this paper we propose a spe-
cific steganalytic algorithm for determining the presence of a
watermark hidden by Cho et al.’s mean and variance based
algorithms [14], which are major 3D watermarking tech-
niques with considerable impact on subsequent research [4],
[5]. The proposed algorithm exploits the alteration of the
model’s natural statistics caused by Cho et al.’s watermark
insertion method. More specifically, watermarking with Cho
et al.’s method makes the distribution of the means and
variances of the normalized histogram bins bimodal, while
it is expected to be Gaussian before watermarking.

We also propose a blind 3D watermarking algorithm
with improved undetectability and robustness performance
over Cho et al.’s. The new algorithm embeds the water-
mark into the histogram of the radial coordinates of the
mesh vertices, as Cho et al.’s does. The main difference
is that instead of embedding each watermark bit inside a
continuous statistics of the model, e.g., the mean or the
variance of a normalized histogram bin, we embed it inside
a discrete statistic, that is, the difference in the number of el-
ements of two adjacent bins. Experimental results show that
the proposed discrete statistic offers improved performance
against both the proposed steganalytic attack and standard
watermark removal attacks.
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The main contributions of the paper are:

• A steganalytic algorithm specifically designed
against the two watermarking algorithms proposed
by Cho et al. [14], which outperforms the universal
steganalysis proposed in [8].

• A new 3D watermarking algorithm which is more
robust than two state-of-the-art techniques [7], [14]
in terms of undetectability against the proposed ste-
ganalytic attack, offers a better distortion/capacity
trade-off and it is robust against standard watermark
removal attacks such as smoothing, noise insertion,
subdivision and simplification.

These two contributions introduce to the field of 3D wa-
termarking a new approach into the development of new
algorithms, which is analogous to the standard paradigm
in image watermarking. In that paradigm, watermarking
algorithms are developed through a competition between
steganographers and steganalysts.

The main limitation of the proposed steganalytic method
is its narrow application domain, that is, it is tailored to
work against Cho et al.’s watermarking algorithms. Never-
theless, we reasonably expect that the method can also be
used against any other method embedding watermarks by
changing the means or variances of specific attributes of the
model.

1.2 Related Work

Similarly to image watermarking, 3D watermarking tech-
niques are broadly classified into two categories: spatial-
based and transform-based. In the spatial domain, Yeo et
al. [15] propose a fragile watermarking method which per-
turbs a vertex ensuring that predefined hash functions have
the same value on it. One of its drawbacks is the causality
problem, due to its heavy dependence on the order of traver-
sal of vertices. Lin et al. [2] address this issue using vertex-
order-independent hash functions. To increase robustness,
Yu et al. [16] and Cho et al. [14], instead of inserting the
watermark into a single vertex, embed each watermark bit
into a group of vertices. Bors [17] uses a neighborhood
localized measure to select the vertices that give small
embedding distortion and watermark these vertices by local
perturbations. Aiming at robustness against mesh editing
or pose deformation, Yang et al. [4] propose a Laplacian
coordinates based algorithm where the watermark bits are
hidden by altering the histogram of the lengths of the
Laplacian vectors.

Frequency analysis based algorithms can achieve excel-
lent results on both watermark robustness and impercep-
tibility. By using the spectral analysis by Karni et al. [18],
Ohbuchi et al. [19] propose an algorithm embedding the
watermark into the low frequencies of Karni et al.’s de-
composition. This method is non-blind, thus requiring the
availability of the original model during watermark ex-
traction. Praun et al. [1] propose a robust, non-blind wa-
termarking method using an edge collapse based multi-
resolution decomposition. Kanai et al. [20] propose a non-
blind method for semi-regular meshes based on the mod-
ification of wavelet coefficients, while Uccheddu et al. [21]
extend this approach to be a blind one.

Closely related to watermarking are steganographic
methods. While the distinction between watermarking and
steganography is not sharp, the term steganography is
largely used when we favor large embedding capacity,
usually at the expense of robustness, while watermark-
ing schemes are evaluated principally on their robustness.
Cayre et al. [22] introduce a steganographic algorithm treat-
ing each triangle as a two-state object, depending on the
position of the projection of a vertex onto its opposite edge.
The maximum capacity this method can achieve is 1 bit
per vertex. Inspired by this idea, Wang et al. [23] increase
the embedding capacity while minimizing the embedding
distortion via using a multi-level hiding procedure. Sub-
sequently, they [24] extend their prior work [23], taking
into account texture information during embedding. Two
steganographic methods include Chao et al. [25] and Yang et
al. [26]. All the above mentioned steganographic approaches
can achieve high capacity and low distortion, but the main
limitation is their weak robustness, that is, they cannot with-
stand malicious attacks aimed at destroying the embedded
message.

The area of steganalysis has been primarily developed
on images. Fridrich et al. [27] and Ker [28] propose methods
specific for the detection of LSB replacement. Farid [29]
proposes a universal approach which uses a wavelet-like
decomposition to build higher-order statistical models of
natural images. Other universal steganalytic approaches for
images include Xuan et al. [30], Wang et al. [12] and Lie et
al. [10].

Compared to image steganalysis, 3D steganalysis is a
more challenging task since the typical 3D models are more
complex objects, having arbitrary topology and irregularly
sampled geometry. As such, 3D steganalytic techniques are
seriously underdeveloped and considerable research effort
is required before approaching a level of maturity similar
to that of image steganalysis by solving the various open
problems in the field. Farid’s method for image steganaly-
sis [29] has been extended in [8] to 3D meshes. In Yang et
al. [7], a specific 3D steganalysis is proposed based on the
observation that the natural statistics of the 3D model are
disturbed by Cho et al.’s mean based embedding. The cur-
rent paper is an extended version of [7] and includes a new
watermarking scheme with smaller distortion compared
to [7], [14] and better steganalytic properties that make
it practically undetectable by the developed steganalytic
attack. The embedding algorithm is based on histogram
shape modification, similarly to some existing image wa-
termarking algorithms [31], [32].

2 STEGANALYTIC ALGORITHM
In this section, we first briefly describe the two watermark-
ing algorithms by Cho et al. [14] and then present in detail
the proposed steganalytic attack against these two methods.

2.1 Cho et al.’s Watermarking Algorithms
Both mean-based and variance-based variants of Cho et al.’s
method embed the message by perturbations of the radial
coordinates of the vertices in a spherical coordinate system.
Mean-based watermarking: First, the radial coordinates of
all the vertices are computed with respect to the barycenter
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Fig. 1. Scatter plot of the mean valuesM = {mk : 1 ≤ k ≤ K} (three left figures) and the variance values {vk : 1 ≤ k ≤ K} (three right figures)
for the clean Bunny with K = 100 bins, and the marked Bunny with correct estimate K = 100 bins and with incorrect estimate K = 110 bins.
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Fig. 2. Q-Q plot of the mean valuesM = {mk : 1 ≤ k ≤ K} for the clean Rabbit (left), the marked by Cho et al.’s method with 100 bins (middle)
and the marked by the proposed discrete variant of the method with 100 bits (right).

of the set of vertices of the 3D mesh model. Then, a K
bin histogram of the radial coordinates is constructed and
the elements in each histogram bin are normalized in the
interval [0, 1]. Let B̂k = {ρ̂k,j : j = 1, 2, 3, ...} denote the
k-th (1 ≤ k ≤ K) bin of the normalized radial coordinates
ρ̂k,j . They embed a -1 (+1) watermark bit in that bin by
perturbing the mesh vertices to make the mean value mk

mk =
1

|B̂k|

∑
j

ρ̂k,j (1)

smaller (respectively, greater) than 1/2. Here, | · | stands for
the number of elements in a set.
Variance-based watermarking: Similarly, the variance-
based version of the algorithm starts with building a K bin
histogram of the radial coordinates, but the elements ρ̂k,j
in each bin this time are normalized into [-1, 1] rather than
[0,1]. Finally, a -1 (+1) watermark bit is embedded into each
normalized bin B̂k by perturbing the mesh vertices to make
the variance

vk =
1

|B̂k|

∑
j

ρ̂2k,j (2)

smaller (respectively, greater) than 1/3, assuming that the
mean of the elements ρ̂k,j is zero.

2.2 The Proposed Steganalytic Algorithm
Our steganalytic algorithm is based on the observation that
the mean-based and variance-based embeddings of Cho et
al.’s algorithm result in a 2-clustering of the set of the mean
valuesM = {mk : 1 ≤ k ≤ K} or variances V = {vk : 1 ≤
k ≤ K}, respectively, (see Fig. 1). For brevity, we will denote
either of these two sets asM/V when the distinction is not
necessary.
Estimation of K: The main challenge towards a fully au-
tomatic steganalytic attack against Cho et al.’s methods is

finding the number K of histogram bins that was used in
the phase of watermark embedding. If a wrong value of K
is picked for the reconstruction of the histogram bins for
the purposes of steganalysis, then the distribution ofM/V
will be indistinguishable between watermarked and clean
models. That is, with an incorrect K , the two clusters C and
C̃ ofM/V will not be well separated even for watermarked
models (see Fig. 1).

Consequently, the first step of the proposed steganalytic
algorithm finds an estimate of K obtained by an exhaustive
search through all possible values. Using a standard clus-
tering algorithm based on Expectation Minimization (EM),
for each K∗ we classify the elements of M/V into two
clusters C and C̃ by fitting a mixture of two Gaussians
N (µK∗,i, σ

2
K∗,i), i = 1, 2 [33]. We estimate the degree of

separation between C and C̃ by the Bhattacharyya distance
DK∗ [34] between the two Gaussians of the mixture model

DK∗ =
1

4

(µK∗,2 − µK∗,1)2

σ2
K∗,1 + σ2

K∗,2

+
1

2
ln

(σ2
K∗,1 + σ2

K∗,2)

2σK∗,1σK∗,2
(3)

and estimate K by

K = arg max
K∗

{DK∗ : K∗ ∈ [Kmin, Kmax],K∗ ∈ N} (4)

subject to
abs (|C| − |C̃|)/K ≤ ε. (5)

Kmin and Kmax define the range of K we would like to
consider; here we fix Kmin = 30 and Kmax = 500. ε in Eq. 5
is a user-specified constant preventing the selection of a very
uneven clustering with respect to the size of the two clusters.
The justification of the constraint is the assumption that the
watermark bits follow a uniform random distribution [35],
and hence we expect |C| ≈ |C̃|. Without the constraint,
the distance maximization in Eq. 4 might return as optimal
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a clustering consisting of a small cluster containing a few
outliers and a large cluster with all the other values.

Given the estimate of K , we employ a tailor made
normality test or a standard t-test to make a steganalysis
decision, that is, to decide whetherM/V are samples from
a single Gaussian, in which case we have a clean model, or
they come from a mixture of two Gaussians, in which case
we have a watermarked model.

Normality Test: Even though standard normality tests
exist, here we use a test specifically designed for the extreme
cases we deal with. Indeed, since K is selected for making
the distribution of M/V as bimodal as possible, a less
sharp test may reject the normality assumption even in clean
meshes.

We make use of the Q-Q plots, which plot the quantiles
of two distributions against each other. The first distribution
is the empirical distribution of M/V and the second is the
standardized normal distribution. If two distributions are
linearly related, here if M/V are linearly related to the
normal distribution, the points in the Q-Q plot are nicely
modeled by the reference line [36]

y = σ · x+ µ

where µ and σ are the mean and the standard deviation of
M/V .

We check if the reference line is a good model of the
points of the Q-Q plot by comparing it with the least square
linear fit of these points. That is, we compute the angle of
these two lines

θ = abs (arctan(σ)− arctan(s)) (6)

where abs (x) stands for the absolute value of x; s denotes
the slope of the least square linear fit, and compare it against
a threshold θT . If θ > θT , we assume that the reference line
is not a good model of the Q-Q plot, hence M/V is not
Gaussian and the mesh is marked. Fig. 2 shows the Q-Q
plots, the reference line and the least square linear fit for
M of the clean and a marked Rabbit model. To reduce the
impact of outliers in M/V , we compute the least square
linear fit from the points in the range [-0.5, 0.5] of the normal
distribution in the Q-Q plot, the gray area in Fig. 2.

t-test: In contrast to the normality test which assumes
that the set M/V of a clean model follows a single Gaus-
sian distribution, t-test is based on the hypothesis that the
two clusters C and C̃ are independent random samples
from Gaussian distributions with equal means. The main
observation is that while C and C̃ of unmarked models
should have certain overlap, C and C̃ of marked models are
expected to be clearly separated. Consequently, the rejection
of the hypothesis of equal means would imply a marked
model.

Thus, in this second variant of the steganalytic algo-
rithm, the steganalytic decision is based on a t-test with
significance level α, with null hypothesis that the data in
C and C̃ of M/V are independent random samples from
normal distributions with equal means and unknown vari-
ances, against the alternative that the means are not equal.

3 MODIFIED WATERMARKING ALGORITHM
In a bid to improve the anti-steganalytic properties of Cho
et al.’s algorithms [14], we developed a watermarking algo-

rithm utilizing discrete rather than continuous statistics of
the histogram of the radial coordinates. Each watermark bit
wi ∈ {−1,+1} is embedded into a pair of bins (Bk,Bk+1)
and its value depends on whether the bin B̂k is shorter or
taller than B̂k+1, that is, on the sign of the difference of the
number of elements in the two bins |B̂k| − |B̂k+1|. The em-
bedding process manipulates the difference |B̂k|−|B̂k+1| by
considering the triplet of neighboring bins (Bk,Bk+1,Bk+2)
and possibly transferring among them some elements, care-
fully selected to minimize embedding distortion.

In a second modification to Cho et al.’s algorithms,
the origin O of the spherical coordinate system is not the
barycenter of the vertex set, but it is instead a point chosen
to improve the trade-off between embedding distortion and
robustness.

Compared to the watermarking method proposed in [7],
the two main improvements in our current approach are:

• Instead of transferring elements between two bins
(Bk,Bk+1), the embedding process transfers ele-
ments among three bins (Bk,Bk+1,Bk+2). By consid-
ering triplets rather than pairs of bins, we are able to
select the to-be-modified elements from a larger set,
further reducing the embedding distortion. Notice
that as the exact amount of embedding distortion de-
pends on a multitude of factors, such as the the value
of K and the specific sequence of watermark bits,
the use of three-bin watermarking does not always
guarantee lower embedding distortion. However, the
experiments have shown that, on average, the three-
bin watermarking offers a significant reduction of the
distortion as compared to the two-bin method.

• While [7] uses an empirically found point on the
principal axis as the origin O of the spherical coordi-
nate system, the current method finds O by solving
an optimization problem, resulting in a more evenly
distributed histogram of the radial coordinates. Such
optimized histogram is able to carry more watermark
bits than the one in [7], since it has more embeddable
pairs of bins (see Eq. 11). In addition, embedding
over more even histograms can reduce the number
of element transfers, reducing embedding distortion.
Indeed, when |Bk| < |Bk+1| occurs in a less evenly
distributed histogram, we have to transfer more ele-
ments in order to achieve |B̂k| > |B̂k+1| and encode
a watermark bit.

3.1 Watermark Embedding

The embedding process is described in detail as follows.

Step 1: The first step is to compute the origin of the
spherical coordinate system. Let (xi, yi, zi) be the Cartesian
coordinates of the i-th vertex of a polygonal mesh with N
vertices. We compute the barycenter (xc, yc, zc) of the vertex
set and obtain its principal axis v after applying Principal
Component Analysis (PCA) to it. The origin O = (x̄, ȳ, z̄) of
the spherical coordinate system is a point on the principal
axis, that is, on line passing through (xc, yc, zc) with the
direction v

(x̄, ȳ, z̄) = (xc, yc, zc) + t̄ · v. (7)
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t̄, which is computed through an exhaustive search, mini-
mizes the total variation in the heights of triplets of neigh-
boring bins

t̄ = arg min
t∈[tmin,tmax]

K−2∑
k=1

abs (|Btk| − |Btk+1|)+

abs (|Btk| − |Btk+2|)+
abs (|Btk+1| − |Btk+2|).

(8)

[tmin, tmax] defines the range we would consider for t and
is computed so that the resulting (x̄, ȳ, z̄) candidates are
within the bounding box of the 3D model; abs (x) denotes
the absolute value of x.

Unlike [7] which uses an empirically selected point as
the origin of the spherical coordinate system, the proposed
watermarking method chooses for origin a point that gives
a histogram with smooth variation of bin frequencies. As
mentioned earlier, the two advantages are: (i) more embed-
dable triplets of bins and (ii) lower embedding distortion.

Following a standard notation [37], the spherical coor-
dinates of the vertex (xi, yi, zi) are denoted by (ρi, φi, θi),
where 1 ≤ i ≤ N , ρi ∈ [0,+∞), φi ∈ [0, π] and θi ∈ [0, 2π).

Step 2: We build a histogram with K bins B = {Bk : 1 ≤
k ≤ K} for the radial coordinates P = {ρi : 1 ≤ i ≤ N}.
The bin Bk is the subset of P

Bk = {ρi : ρmin + (k − 1) ·∆ρ ≤ ρi < ρmin + k ·∆ρ} (9)

where ρmin and ρmax are the minimum and the maximum
of P , and

∆ρ = (ρmax − ρmin)/K (10)

is the range size of each bin. We also assume that ρmax ∈
BK .

Step 3: Starting from the second bin B2, we arrange
adjacent bins into pairs (B2,B3), (B4,B5), . . . , (Bk−2,Bk−1)
and hide a watermark bit into each embeddable pair of bins.
A pair is embeddable if

|Bk|+ |Bk+1|+ |Bk+2| ≥ 1 (11)

Notice that no watermark bits are carried by the bins B1 and
BK . That means that both end vertices of the projection on
the principal axis do not move during embedding, increas-
ing the robustness under blind extraction. If K is odd, the
bin pairing process requires to exclude one more bin; here
BK−1.

A watermark bit wi is embedded in an embeddable pair
(Bk,Bk+1) by transferring some elements among the bins
of the triplet (Bk,Bk+1,Bk+2) via increasing or decreasing
their values. More specifically, to encode/insert wi = −1,
we move elements from the bins Bk and Bk+2 into Bk+1

until, if possible,

|B̂k+1| − |B̂k| ≥ nthr, (12)

where B̂k is the k-th watermarked histogram bin and nthr ≥
1 is a user specified integer threshold used to control the
robustness/distortion trade-off. Specifically, we increase the
values of nleft elements ρi of Bk according to

ρ+i = ρk+1
min +

∆ρ

arg min
n∈N,n≥5

{n : ρk+1
min + ∆ρ/n < ρk+1

max}
, (13)

and decrease the values of nright elements ρi of Bk+2 ac-
cording to

ρ−i = ρk+1
max −

∆ρ

arg min
n∈N,n≥5

{n : ρk+1
max −∆ρ/n > ρk+1

min }
, (14)

pushing them into Bk+1. Here, ρ+i and ρ−i are the new
radial coordinates and ρk+1

min and ρk+1
max are the minimum

and the maximum in Bk+1, respectively. The denominator
of the fraction in Eq. 13 is an integer, chosen such that ρ̂i
is inside the range of the existing elements of Bk+1, that is,
ρk+1
min < ρ+i < ρk+1

max, and it is as near to ρk+1
max as possible.

Similarly, Eq. 14 makes ρ−i as near to ρk+1
min as possible.

To minimize the embedding distortion, the nleft elements
ρi of Bk and nright elements ρi of Bk+2 to be moved into
Bk+1 are chosen as those minimizing the distortion measure

nleft∑
i=1,ρi∈Bk

abs (ρi − ρ+i ) +

nright∑
i=1,ρi∈Bk+2

abs (ρi − ρ−i ). (15)

Since Bk+2 will be used to carry the next watermark bitwi+1

and thus the histogram’s even distribution property needs
to be maintained, we only consider a subset of Bk+2 when
moving elements. Here, d|Bk+2|/8e out of |Bk+2| elements
can be moved, i.e., nright ≤ d|Bk+2|/8e.

Finally, we move elements into Bk+1 according to the
following two cases:
Case 1: If |Bk+1|−|Bk| ≥ nthr, then nleft = 0 and nright = 0,
meaning no alteration is required.
Case 2: Else we repeatedly transfer an element from Bk
or Bk+2 into Bk+1, incrementing nleft or nright by one,
respectively, and we stop when Eq. 12 is satisfied. Notice
that this simple incremental process minimizes Eq. 15 and
no global optimization over all the elements of Bk and Bk+2

is required.
The embedding process for wi = +1 is very similar and

the details are omitted.
Step 4: After embedding the watermark bits into the

radial coordinates, we convert the spherical coordinates
(ρ̂i, φi, θi) to the Cartesian coordinates (x̂i, ŷi, ẑi) according
to Eq. 16 

x̂i = ρ̂i · cosφi · sin θi + x̄

ŷi = ρ̂i · sinφi · sin θi + ȳ

ẑi = ρ̂i · cos θi + z̄

, (16)

where ρ̂i stands for the watermarked ρi, producing the
watermarked 3D model.

3.2 Watermark Extraction
The watermark extraction process is straightforward and
can be performed with no reference to the original 3D
model.

Given a marked mesh, we compute the set of water-
marked radial coordinates and construct a histogram with
K bins B̂ = {B̂k : 1 ≤ k ≤ K}. We form the pairs of
bins (B̂2, B̂3), (B̂4, B̂5), (B̂6, B̂7), · · · and count the number
elements |B̂k| in each bin. Finally, the watermark bits ŵi are
sequentially extracted from each pair (B̂k, B̂k+1) by

ŵi =

{
−1 if |B̂k+1| ≥ |B̂k|
+1 otherwise

. (17)
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TABLE 1
Comparison between the universal steganalysis in [8] and the proposed specific steganalysis with ε = 0.15 applied on: Cho’s et al.’s methods; their
variants with β = 10% of the bins left intact; Yang et al.’s watermarking [7]; the proposed watermarking. The fourth column shows the accuracy in

the estimation of K and the fifth the accuracy of the final steganalytic decision. In the fifth column, the left and right subcolumns, where applicable,
show the accuracy rates corresponding to the tailor made normality test and the t-test, respectively.

Method #Bits #Marked 3D Accuracy of K Steganalytic accuracy
[8] (against six watermarking methods) 64 556 N/A 80.32%

[8] (against mean-based) 64 359 N/A 80.93%
[8] (against variance-based) 64 353 N/A 92.96%

Mean-based (original) 64 443 96.84% 98.52% 92.93%
100 386 96.63% 97.91% 95.94%

Mean-based (variant with β = 10%) 64 443 96.84% 98.29% 81.64%
100 386 96.63% 97.66% 94.96%

Variance-based (original) 64 443 98.65% 99.32% 82.62%
100 443 93.00% 97.18% 86.57%

Variance-based (variant with β = 10%) 64 443 98.65% 99.32% 80.14%
100 443 93.00% 96.84% 85.33%

[7] (using mk) 64 439 0.23% 59.93% 49.71%
100 426 0 57.45% 51.89%

[7] (using |Bk| − |Bk+1|)
64 439 88.00% 70.82% 80.89%
100 426 93.40% 73.78% 96.06%

Ours (using mk) 64 443 0.23% 65.99% 51.36%
100 443 0 61.34% 50.23%

Ours (using |Bk| − |Bk+1|)
64 443 0.68% 60.16% 51.02%
100 443 0.45% 69.13% 50.23%

0 2 4 6 8 10 12 14 16 18 20

Angle Threshold 3T

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
ti
on

A
cc

u
ra

cy

Mean-based
Variant of Mean-based
Variance-based
Variant of Variance-based
Ours (using mk)
Ours (using jBkj! jBk+1j)

0 2 4 6 8 10 12 14 16 18 20

Angle Threshold 3T

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
ti
on

A
cc

u
ra

cy

Mean-based
Variant of Mean-based
Variance-based
Variant of Variance-based
Ours (using mk)
Ours (using jBkj! jBk+1j)

Signi-cance Level ,

0.45

0.55

0.65

0.75

0.85

0.95

D
et
ec
ti
on

A
cc
u
ra
cy

10!31 10!30 10!29 10!28 10!27 10!26 10!25 10!24

Mean-based
Variant of Mean-based
Variance-based
Variant of Variance-based
Ours (using mk)
Ours (using jBkj! jBk+1j)

Signi-cance Level ,
0.4

0.5

0.6

0.7

0.8

0.9

1

D
et
ec
ti
on

A
cc
u
ra
cy

10!31 10!30 10!29 10!28 10!27 10!26 10!25 10!24

Mean-based
Variant of Mean-based
Variance-based
Variant of Variance-based
Ours (using mk)
Ours (using jBkj! jBk+1j)

Fig. 3. Plot of the detection accuracy with respect to the angle threshold θT (two left figures) and with respect to the significance level α for the t-test
(two right figures) for the following methods: Cho et al.’s mean- and variance-based watermarking, their variants and our proposed watermarking,
where 64 (left) and 100 (right) bits are embedded into the clean models.

4 EXPERIMENTAL RESULTS
The performance of the proposed steganlytic algorithm
against the original Cho et al.’s methods including their
variants with some bins left in purpose unmarked and the
improved version proposed here is validated in Sections 4.1
and 4.2, respectively. Note that while many steganalytic
approaches [27], [29] have been proposed for digital images,
to the best of our knowledge, [8] is the only steganalytic
methods for 3D models available in the literature. Conse-
quently, we compare the proposed method against the 3D
steganalysis in [8] only.

4.1 Steganalytic Algorithm Validation
We validated the steganalytic algorithm on a test set consist-
ing of 445 clean models, mostly from Princeton’s University
repository [38], and their marked counterparts. As some 3D
meshes are unable to carry the watermark for certain values
of K , we might have different numbers of marked models
for different K’s. The results, using a fixed value of ε = 0.15
in Eq. 5, are summarized in Table. 1. The sensitivity of the
parameter ε will be discussed at the end of this subsection,
while accuracy rates with ε treated as a variable are shown
in Fig. 4.

As a first observation, we notice that the proposed
method for estimating the number of bins K achieves high

accuracy rates for both of Cho et al.’s algorithms. For ex-
ample, the accuracy rate for the estimation of K reaches
as high as 98.65% for the variance based method when
embedding 64 watermark bits into the clean models. Due
to the successful estimation of K , the final steganalytic deci-
sions are also highly accurate and in particular, as expected,
the proposed specific steganalytic methods outperform the
universal algorithm [8].

Normality Test: Fig. 3 plots the detection accuracy with
respect to the angle threshold θT , measured in degrees, for
Cho et al.’s methods for watermarks of sizes 64 and 100 bits,
respectively. The figure implies that satisfactory steganalysis
rate (e.g.,≥ 95%) can be obtained when we set the threshold
θT to any value within the interval [2, 3] for the mean based
watermarking and any value within [2, 13] for the variance
based watermarking.

By choosing a value of θT = 2.8 and θT = 5.2,
the proposed steganalytic method detects the existence of
watermark with accuracy rates of 98.52% for Cho et al.’s
mean based algorithm and 99.32% for the variance based
algorithm when embedding 64 bits, see Table. 1.

t-test: To justify the use of the tailor made normality
for the final steganalytic decision, we compare it against
the standard t-test. Fig. 3 plots the detection rates obtained
by the t-test versus the significance level α. We notice
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Fig. 4. The accuracy rate plotted against the parameter ε, using the tailor
made normality test, for 64 (left) and 100 (right) watermark bits.

that when embedding 100 bits we can obtain a detection
accuracy above 95%; however, that rate is still inferior the
one achieved by the tailor made normality test and, more-
over, the highest accuracy rates correspond to extremely
small values of the confidence α, raising numerical stability
concerns. When embedding 64 bits, the t-test is not able
to achieve detection rates above 95% and starts degrading
when we use very small values of α.

For a direct comparison of the accuracy rates obtained by
the two approaches, in Table 1 we also report the accuracy
rates of the t-test for optimal values of α.

Variants of Cho et al.’s: The high detection rates of the
proposed steganalytic algorithms are a direct consequence
of the clear separation between the clusters C and C̃ (see
Fig. 1) in a marked model, when of course the correct
value of K is used. Thus, as a quick fix to the problem
of improving the steganalytic properties of Cho et al.’s
algorithms, one natural idea is to leave a percentage β of
the histogram bins intact, i.e., unmarked, to enervate the
degree of separation and hence to frustrate the proposed
steganalysis. We refer to the algorithms obtained by this
technique as the variants of the originals. Fig. 2 (right)
illustrates the Q-Q plot of the mean values of the Rabbit
model watermarked by the variant of Cho et al’s mean
based method with 100 watermark bits and β = 10%.

Fig. 3 shows the accuracy rates obtained on the variants
of Cho et al.’s with β = 10%, using exactly the same
steganalytic algorithm we applied on the original. We notice
that in conjunction with the tailor made normality test the
algorithm is very robust in handling the variants, achieving
detection rates very similar to those obtained for the original
algorithms. On the other hand, we also notice that the
range of values of the threshold θT giving near optimal
results has been narrowed. The t-test, again, significantly
underperformed the tailor made test.

Parameter Sensitivity: The estimation of K involves the
use of a parameter ε which prevents false choices of K
resulting from clusterings consisting of one small cluster
of outliers and a much larger cluster with all other values
of M/V . The use of that parameter ε is justified by the as-
sumption that the watermark bits are i.i.d. random variables
following the Bernoulli distribution with p = 0.5, that is, 0.5
probability for either a +1 or a -1 bit, which is generally
true in practical applications. To test the robustness of the
algorithm against the choice of ε we repeated the tests
treating ε as a variable. The results, obtained with the use
of the tailor made normality test, are shown in Fig. 4 and

TABLE 2
Model details and parameter setting.

Model #Vertices nthr

Bunny 34835 44
Rabbit 70658 40
Venus 100759 28

Dragon 50000 75
Horse 112642 100

confirm that the proposed steganalysis is largely insensitive
to the choice of ε.

4.2 Watermarking Algorithm Validation

We evaluated the proposed watermarking algorithm on a
small representative set of well-known 3D models, con-
sisting of the Bunny, Rabbit, Venus, Dragon and the Horse,
see Fig. 5. The validation tests include embedding distortion,
embedding capacity and watermark robustness. The size of the
models and the watermarking parameter used are listed in
Table 2.

To measure the amount of distortion caused by the
embedding of the watermark we utilized two widely used
quantitative measures: the root mean square error (RMSE)
with respect to the bounding box diagonal and the MSDM2
distance [39] between the original and the marked models.
Notice that the MSDM2 distance correlates better with hu-
man vision than the Hausdorff distance. The computations
were done with the Metro tool [40] and Mepp1, respectively.
Regarding the robustness of the watermark, we used the
standard measure of the correlation coefficient

C(w,w′) =

∑
i(wi − w̄) · (w′i − w̄′)√∑

i(wi − w̄)2 ·
∑
i(w
′
i − w̄′)2

(18)

where w̄ and w̄′ are the means of the inserted watermark
sequence w and the extracted sequence w′, respectively.

Embedding Distortion: Fig. 7 plots the RMSE and
MSDM2 distances against the number of histogram bins K .
We notice that the values of both error measures are low,
showing that the proposed watermarking causes only slight
distortions to the original carrier models. We also observe
that an increase in the value of K generally leads to a
decrease of the embedding distortion. The reason is that by
increasing K we decrease the bin width ∆ρ (see Eq. 10) and
hence decrease the modulation of the radii ρi when they are
transferred from one bin to an adjacent.

To gauge the visual significance of the distortion, Fig. 6
shows several marked models for K = 400. Any distortion
caused by the watermark insertion is hardly noticeable;
however, after zooming in we might be able to observe some
artifacts in the smooth areas of the model. Fig. 8 shows back
to back close-ups of the clean and the watermarked Bunny
and Rabbit.

Embedding Capacity: The theoretical maximum length
of a watermark bit sequence that can be embedded is
b(K − 2)/2c. However for large values of K this maxi-
mum capacity is usually unachievable because some triplets

1. http://liris.cnrs.fr/mepp/
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Fig. 5. Original cover mesh models (left to right): Bunny, Rabbit, Venus, Dragon and Horse.

Fig. 6. Watermarked mesh models under K = 400 (left to right): Bunny, Rabbit, Venus, Dragon and Horse.
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Fig. 7. Embedding distortion measured by RMSE (left) and MSDM2
(right) for K = 200, 300 and 400.

Fig. 8. Close-ups of the original and watermarked Bunny and Rabbit
models. For each mesh group, the left and right figures show the original
and marked models, respectively. The watermarked models are those in
Fig. 6.

(Bk,Bk+1,Bk+2) do not contain any radii, i.e., |Bk| +
|Bk+1| + |Bk+2| = 0, making the pair (Bk,Bk+1) non-
embeddable.

Watermark Robustness: The proposed method is robust

Fig. 9. From left to right: results of attacking the marked Bunny model
by adding A = 0.50% noise, carrying out 50 iterations of Laplacian
smoothing (λ = 0.02) and performing 8-bit quantization.

against distortionless operations such as vertex reordering,
translation, rotation, uniform scaling and their combina-
tions, due to the invariance of the histogram of the radii
ρi under such transformations.

Watermark robustness was also evaluated against com-
mon malicious attacks, such as noise addition, smoothing,
quantization, subdivision and quadric edge collapse. We tested
against these attacks, fixing K = 400 and varying strength
of the attack, following the mesh watermarking bench-
mark [41]. Fig. 9 shows the marked Bunny model under
various attacks.

Noise Addition: Random noise was added to all vertex
coordinates (xi, yi, zi) according to (resp. yi, zi)

x′i = xi + ai · d̄ (19)

where d̄ is the average radial coordinate, and ai is a uni-
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Fig. 10. Robustness against different types of attacks. From left to right: the figures show the correlation coefficients for noise addition, smoothing
and quantization.

formly random number in the interval [−A,A]. We tested
on four different levels of noise : A = 0.05%, 0.10%, 0.25%
and 0.50% of the average of the radial coordinates. For each
level, we conducted five experiments with different seeds,
generating five distinctive noise patterns. Fig. 10 (left) the
average correlation coefficient with respect to the level of
noise.

We notice that even for a noise level as high as 0.25%, the
correlation C(w,w′) has a value that is larger than 0.75 for
all the test models expect Venus. Notice that a noise attack
at the level of 0.25% will degrade significantly the visual
quality of the carrier model, meaning that even though the
watermark may be removed, the model will be of no use
to the attacker. We also notice that the Bunny and Rabbit
models appear to be exceptionally robust against the noise
attack, retaining a C(w,w′) ≈ 0.92 even when the noise
level reaches A = 0.25%. We believe that this is due to the
fact that Dragon is the least spherical shape and thus, its
radii histogram has the highest variance.

Smoothing Attack: To evaluate robustness against smooth-
ing, we applied to the marked models 10, 30 and 50 iter-
ations of Laplacian smoothing [42], fixing the deformation
factor at λ = 0.02. The results are shown in Fig. 10 (mid-
dle). The correlation coefficients for the Bunny and Rabbit
models are above 0.98 and equal to 1, respectively, even
after 30 smoothing iterations. Again, the results imply that
the proposed watermarking method is able to survive mesh
smoothing as well.

Quantization Attack: We quantized the marked models
at 8, 9, 10 and 11 bits and tried to retrieve the embedded
watermark from the quantized marked models. Fig. 10
(right) shows the correlation coefficients. As expected, the
robustness decreases with the level of quantization, how-
ever, the correlation coefficients are satisfactory even for a
relatively coarse quantization. In particular, the correlation
coefficient of the 11 bit quantization is equal to 1 in four out
of the five test models.

Subdivision Attack: We subdivided the watermarked
models using the open-source software MeshLab 2. Table 3
lists the correlation coefficients for five test models. We see
that the proposed watermarking is robust against the inter-
polating Midpoint and Butterfly subdivision schemes, with
the correlation coefficient equal to 1 after three subdivision

2. http://meshlab.sourceforge.net/

TABLE 3
Correlation coefficients for various watermarked models after

subdivision. We used 3 iterations for Midpoint and Butterfly subdivision
and 1 iteration for the Loop’s LS3 subdivision.

Model Butterfly Midpoint LS3
Bunny 1.0 1.0 0.99
Rabbit 1.0 1.0 0.97
Venus 1.0 1.0 0.72

Dragon 1.0 1.0 0.73
Horse 1.0 1.0 0.97

TABLE 4
Correlation coefficients for various watermarked models simplified at

different reduction rates.

Model 10% 20% 30%
Bunny 1.0 1.0 1.0
Rabbit 1.0 1.0 0.98
Venus 1.0 1.0 0.92

Dragon 1.0 1.0 1.0
Horse 1.0 0.95 0.94

steps, while it is less robust against subdivision with the
approximating Loop scheme.

Simplification Attack: We evaluated the robustness of the
algorithm against simplification with the quadric edge col-
lapse algorithm implemented in Meshlab. As Table 4 shows,
the correlation coefficients range from 0.92 to 1, indicating
that our proposed watermarking algorithm is quite robust
even when 30% of the vertices have been removed.

Watermark Overwriting: Given a marked 3D model, one
could attempt to embed a new watermark, overwriting the
old one. From the perspective of the owner of the 3D model,
the insertion of a new watermark with the same number
K of histogram bins and the same origin O would replace
the old watermark, erasing it completely. However, being
equivalent to running the embedding algorithm twice, wa-
termark overwriting would most probably lead to a model
with higher distortion as compared to simply discarding
the marked model and inserting the new watermark on the
original clean model.

From an attacker’s perspective, while the ability to over-
write the watermark would enable unauthorized use of the
model, the main technical challenge is that both the bin
number K and the origin O are unknown to them and
although algorithms for estimating them can be developed,
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Fig. 11. Experimental comparison between Yang et al.’s method [7], Cho
et al.’s method [14] and the proposed method in terms of embedding
distortion measured by the RMSE (left) and the MSDM2 distance (right)
when embedding 100, 150 and 200 watermark bits.
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Fig. 12. Experimental comparison between Yang et al.’s method [7], Cho
et al.’s method [14] and the proposed method in terms of robustness
against noise addition attacks (left) and Laplacian smoothing attacks
with λ = 0.02 (right), when embedding 200 watermark bits.

accuracy could be a problem. For example, Table. 1 shows
that the accuracy of the estimates of K obtained by the
proposed steganalytic method is unsatisfactory.

4.3 Comparison of Watermarking Algorithms
Finally, we compare the proposed watermarking against the
algorithms by Yang et al. [7] and Cho et al. [14] in terms of
embedding distortion and robustness against both common
malicious attacks and steganalysis. We also compared to [8]
for evaluating the anti-steganalysis performance. In all our
experiments, for the Yang et al.’s and Cho et al.’s methods
we use the parameter settings recommended in [7], [8]
and [14].

Embedding Distortion: Fig. 11 (left) shows that our algo-
rithm generally produces lower RMSE and MSDM2 dis-
tances than Yang et al.’s [7] and Cho et al.’s [14], implying
smaller amounts of distortion.

Watermark Robustness against Malicious Attacks: Fig. 12
shows that, again, our method consistently obtains higher
correction coefficients than [7] and [14] when the same noise
addition or smoothing attacks are applied, meaning that the
watermark bits are recovered with lower error rates.

Anti-steganalysis: When testing how well the proposed
watermarking method resists the developed steganalytic
attack, we applied the steganalysis not only on the distri-
bution of the means of the bins {mk : 2 ≤ k ≤ K − 1},
but also on the more relevant in this case discrete statistic of
differences {|Bk| − |Bk+1| : 2 ≤ k ≤ K − 1}, trying again to
detect a possible bimodality on their distribution.

From Table 1 and Fig. 3, we see that the proposed
steganalytic method can break Cho et al.’s original algo-
rithms [14] with accuracy rates of up to 99%, including

the cases where some bins are left in purpose without
watermark bits. Regarding the watermarking method in [7],
the proposed steganalysis generally does not detect water-
marks with any satisfactory accuracy, the only exception
being when the t-test based normality test is applied to
the statistic |Bk| − |Bk+1|. However, its behavior is unstable
as the steganalytic accuracy varies from 80.89% for 64 bit
watermarks to 96.06% for 100 bit watermarks.

Regarding the watermarking method proposed here,
with accuracy rates in the region 50%-60%, the proposed
steganalytic method fails to detect a watermark, no matter
which of the two tests (tailor made normality test, or t-test)
is used, and no matter which statistic (the means of the bins
mk, or the differences of the heights of neighboring bins
|Bk|−|Bk+1|) is targeted. Moreover, Fig. 4 confirms that this
failure of the steganalytic attack cannot be fixed by suitable
choices of ε.

The above results show that the main objective of the
development of the new watermarking algorithm has been
achieved. Indeed, compared to the original Cho et al.’s
algorithms, the proposed watermarking method exhibits
significantly improved steganalytic properties, at least as far
as resistance against the developed steganalytic attacks is
concerned.

Discrete vs continuous statistics: In [14], the explicitly
stated underlying assumption for the distribution of the
radial coordinates is that the elements of each normalized
bin follow the uniform distribution U(0, 1). Under this
assumption, which is not a requirement for the working of
the algorithm but it is essential for low distortion, the means
of the normalized bins follow the Bates distribution

1

|B̂k|

|B̂k|∑
i=1

U(0, 1).

On the other hand, under the same assumption, in a pair
of adjacent bins of equal width and with n = |B̂k| + |B̂k+1|
elements in total, the number of elements in the first bin
follows the binomial distribution B(n, 1/2) and thus, the
discrete statistic |B̂k| − |B̂k+1| follows the distribution 2 ·
B(n, 1/2)− n.

To compare the suitability of the continuous and the
discrete statistics to carry steganalysis-resistant watermarks
we run the steganalytic algorithm on the test set of clean
models with the real values substituted by random samples
following the theoretical distributions of these statistics. The
results are shown in Fig. 13. The x-axis indexes the models
of the test set, while the y-axis shows the value of the angle θ
in Eq. 6. We notice that in the case of the Bates distribution,
corresponding to the continuous statistic, the values of θ
have low variance and all of them are comfortably below
the θT = 2.8◦ threshold we used for watermark detection.
In contrast, the angles for the discrete statistic have higher
variance, and reach values close to 4◦, meaning that the
watermark detection test will be less accurate in classifying
these models as clean.

Notice that the above test evaluates the suitability of a
statistic as steganalysis-resistant watermark carrier, it does
not evaluate specific watermarking algorithms. Indeed, as
clean only models are used, the test could have been run
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Fig. 13. The angles θ in Eq. 6 for the clean models with data sampled
from the theoretical distributions. The angle values for the continuous
case (Cho’s et. al algorithm) are shown in red and the angles for the
discrete case (proposed algorithm) are shown in blue.

at the design stage, before the development of the water-
marking algorithm. However, in our case we run this test in
retrospect, as a confirmation that the choice of the discrete
statistic in which we based the proposed watermarking
algorithm was an appropriate one.

5 CONCLUSION

As demonstrated by the experimental results, the developed
steganalysis is able to detect the presence of watermarks by
Cho et al.’s algorithms and their variants with an accuracy of
up to 99%. While the proposed steganalytic algorithm was
specifically designed to target Cho et al.’s two watermarking
algorithms [14], the main idea could possibly be applied on
several other algorithms that embed watermarks by altering
a specific statistic of a histogram of the vertex set of the
model.

The proposed watermarking algorithm is based on a
discrete statistic of the histogram of radial coordinates, the
difference in the height of adjacent bins. The experimen-
tal results demonstrate that it outperforms Yang et al.’s
algorithms [7] and Cho et al.’s [14] in terms of robustness
against malicious watermark removal attacks and against
steganalytic attacks, while at the same time it also offers
some improvement in terms of embedding distortion.

In the future, we will work to develop more advanced
steganalytic techniques for detecting the presence of wa-
termark messages embedded in 3D models, and parallelly,
develop 3D watermarking/steganographic algorithms that
not only have better anti-steganalytic behavior, but also offer
improved robustness/distortion trade-offs.

REFERENCES

[1] E. Praun, H. Hoppe, and A. Finkelstein, “Robust mesh watermark-
ing,” in SIGGRAPH, 1999, pp. 49–56.

[2] H.-Y. Lin, H.-Y. Liao, C.-S. Lu, and J.-C. Lin, “Fragile watermarking
for authenticating 3-D polygonal meshes,” IEEE Trans. on Multime-
dia, vol. 7, no. 6, pp. 997–1006, 2005.

[3] S. Zafeiriou, A. Tefas, and I. Pitas, “Blind robust watermarking
schemes for copyright protection of 3D mesh objects,” Visualization
and Computer Graphics, IEEE Transactions on, vol. 11, no. 5, pp. 596–
607, 2005.

[4] Y. Yang and I. Ivrissimtzis, “Polygonal mesh watermarking using
Laplacian coordinates,” Computer Graphics Forum (Proc. Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing, SGP 2010),
vol. 29, no. 5, pp. 1585–1593, 2010.

[5] M. Luo and A. G. Bors, “Surface-preserving robust watermarking
of 3-D shapes,” IEEE Trans. on Image Processing, vol. 20, no. 10, pp.
2813–2826, 2011.
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