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ARTICLE INFO ABSTRACT

Shape analysis of cell nuclei is becoming increasingly important in biology and
medicine. Recent results have identified that large variability in shape and size of nu-
clei has an important impact on many biological processes. Current analysis techniques
involve automatic methods for detection and segmentation of histology and microscopy
images, but are mostly performed in 2D. Methods for 3D shape analysis, made possible
by emerging acquisition methods capable to provide nanometric-scale 3D reconstruc-
tions, are still at an early stage, and often assume a simple spherical shape. We introduce
here a framework for analyzing 3D nanoscale reconstructions of nuclei of brain cells
(mostly neurons), obtained by semiautomatic segmentation of electron micrographs.
Our method considers two parametric representations: the first one customizes the im-
plicit hyperquadrics formulation and it is particularly suited for convex shapes, while
the latter considers a spherical harmonics decomposition of the explicit radial repre-
sentation. Point clouds of nuclear envelopes, extracted from image data, are fitted to
the parameterized models which are then used for performing statistical analysis and
shape comparisons. We report on the analysis of a collection of 121 nuclei of brain
cells obtained from the somatosensory cortex of a juvenile rat.
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All active and passive transport processes in and out of the nu-
cleus take place via the nuclear pores.

1. Introduction

In biology, the nucleus is a membrane-enclosed organelle
found in eukaryotic cells, including the ones composing the
brain. It is considered the control center of the cell, since, in
particular, it organizes activities by regulating gene expression.
The nuclear envelope, consisting of an inner and outer mem-
brane separated by peri-nuclear space and perforated by nuclear
pores, encloses the nucleus and separates it from the cytoplasm.

*Corresponding author: Mail: marco.agus @kaust.edu.sa;
**Corresponding author: Mail: corrado.cali@kaust.edu.sa;

Recently, the analysis of proteins associated with the nuclear
envelope in rat hippocampal neurons provided evidence that the
shape of nuclei is an important factor influencing the nucleo-
cytoplasmic exchange of macromolecules and ions, in particu-
lar calcium, which is a key regulator of neuronal gene expres-
sion [1]. Moreover, the size and shape of nuclear envelopes can
vary not only among species, but also within species and even
within a single individual, depending on cell types and other,
even transient, conditions. Geometrically, the cell nucleus has
been often studied as a spherical structure [2], but this approxi-
mation is increasingly proving way too coarse for a number of
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Fig. 1. Method overview: from 3D nanoscale reconstructions of neuron nuclei obtained from electron microscopy image stacks, we fit specific surface

representations to derive parameter sets for shape analysis and classification.

applications [1]. The analysis of shape properties is thus gain-
ing importance in biology and medicine, since shape variability
can provide indicators of different conditions and can provide
hints for classifying cells.

A major field in which cell nucleus analysis is considered of
paramount importance is computer-aided diagnostics [3], where
a series of methods have been developed for automated 2D de-
tection and segmentation on microscopy images, with the aim
of providing support for various quantitative analyses, includ-
ing calculating cellular morphology, including size, shape, or
texture. However, most of nuclear analysis is performed di-
rectly on 2D images and only few efforts have used 3D recon-
struction, in particular for studying the dynamics of nuclear in-
foldings in response to neuronal activity [4]. It is only very
recently, with the emergence of digital acquisition methods ca-
pable to provide 3D reconstructions at nanometric resolution
scale [5], that collections of 3D shape measurements of nuclei
are starting to become available. There is a clear need to de-
velop shape analysis frameworks to support domain scientists in
performing 3D quantitative measures, classification and cluster-
ing operations, e.g., for associating different shapes to different
nuclear conditions.

In this paper, we analyze digital 3D reconstructions of nu-
clei of brain cells that were obtained by segmenting serial elec-
tron micrographs at nanoscale resolution. We propose a shape
analysis framework based on surface parameterizations, which
provide simple but effective representations of nuclear envelope
shapes. The parameters can be used for providing measures,
features, and indicators for shape classification. To this end,
we considered the hyperquadrics [6] implicit representation of
convex shapes (see Fig. 1) using a formulation that provides us
increased control in fitting the discrete point clouds represent-
ing the nuclei shapes as identified by image segmentation (see
Sec. 4.1), and a more general function decomposition based on
spherical harmonics [7], that provides ways to derive rotation-
invariant shape descriptors (see Sec. 4.2). We show how the
fitting for both parametric models can be computed using con-
strained optimization methods. For the hyperquadrics implicit
representation we then create an explicit radial representation
by sampling, which can be used for tessellation and shape com-
parison.

Our framework makes it possible to obtain parametric repre-
sentations of shapes that can be used for measuring sizes, per-

forming comparisons and for classifying nuclei to cell types and
various conditions.

This article is an invited extended version of our STAG 2018
contribution [8], which was limited to the presentation of the
hyperquadric approach. We here provide a more thorough ex-
position, but also significant new material, including the de-
scription of the acquisition method, the presentation of a re-
fined pipeline supporting multiple fitting models, a general-
ized spherical harmonics solution, and additional qualitative
and quantitative results. Also, we extended the classification
options by comparing and evaluating the accuracy of different
machine learning dimension reduction techniques.

The original framework was developed around a specific im-
plicit representation, hyperquadrics, that was chosen after vi-
sual assessment of neural nuclei envelopes according to do-
main scientists indications. It proved to be more accurate than
the usual spherical approximation for identifying convex neu-
ronal nuclei. However, it was not optimal for concave and other
contorted shapes. By generalizing the framework by including
the spherical harmonics basis decomposition [9], and deriving
a parameterization of the explicit radial surface, we achieve in-
creased performance on complex cases.

Here, we demonstrate the method on a collection of 121 brain
cell nuclear envelopes. The input data came from semiauto-
matic segmentation of electron micrographs of a sample of so-
matosensory cortex of a juvenile rat coming from layers VI and
II/III. We provide preliminary results of fitting performance of
the proposed parametric models, as well as a discussion of a
preliminary shape analysis performed by domain scientists with
our framework.

2. Related work

We aim at creating a 3D shape analysis framework based on
an implicit surface parameterization to be used for the study
of 3D shapes obtained from nanoscale cell nuclear envelopes
reconstructions. We discuss here the state-of-the-art in nuclei
detection, shape analysis in neuroscience, and implicit repre-
sentations in visual computing.

2.1. Cell nuclei segmentation

Accurate detection of individual cell nuclei in microscopy
images is an essential and fundamental task for many biological
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studies. A comprehensive review of cell detection and segmen-
tation algorithms can be found in [3]. The accuracy of segmen-
tation and reconstruction determines the quality of morphology
features extracted and is in some cases crucial for identifying
and grading diseases. Broadly, three popular strategies are used
for nucleus/cell segmentation:

(a) separate the foreground from the background, and split
the object groups into individual nuclei or cells [10, 11];

(b) identify markers of nuclei or cells, and then, expand the
markers to the object boundaries [12, 13, 14];

(c) generate a sufficient number of region candidates, and
then, select the best ones as final segmentation [15, 16, 17].

Very recently, Ram et al. [18] presented a cell nucleus detec-
tion system using the fast radial symmetry transform (FRST),
to be used in fluorescence in-situ hybridization (FISH) images
obtained via confocal microscopy. To the best of our knowl-
edge, all published models are based on 2D segmentation of
cell nuclei. Our method fits parametric representations to 3D
reconstructions of cell nuclear envelopes. It extends a generic
implicit surface model in a way that proves to be a simple but ef-
fective 3D parametric representation, expressive enough to per-
form statistical analysis and shape comparisons of rodent brain
cell nuclear shapes.

2.2. Implicit representations in visual computing

A parametric representation of shape allows for the defini-
tion of geometrical objects using a few parameters and incor-
porating prior knowledge. Because implicit surfaces can be de-
signed so that the algebraic distance to them can be quickly
computed by evaluating a simple differentiable function, they
are better suited to fitting 2D and 3D data that the most com-
mon explicit models [19]. Implicit geometry has been used
extensively for various applications, ranging from constructive
solid geometry [20], to geometric modeling [21], to real time
ray tracing [22, 23], to molecular dynamics [24, 25]. One of
the most common implicit representations is the superquadric,
introduced by Barr [26] and then widely applied to many prob-
lems, such as object representation [27], shape recovery [28],
image segmentation [29], and object modeling [30].

Superquadrics are, however, constrained to represent
symmetrical-section volumes. This limitation was removed by
Hanson [6] with the introduction of the hyperquadric primitives,
which include quadrics and superquadrics as special cases. Hy-
perquadrics are not symmetric and support taperings and dis-
tortions that are not normally present within the conventional
superquadric framework. The application of hyperquadrics can
be mainly found in shape recovery [31], but also in fitting mod-
els to sparse data [32]. Their 2D versions were used for 2D
segmentation of nuclei shapes in nuclei observed with an epi-
fluorescence microscope [33].

In this paper, we customize the hyperquadrics formulation
for building a 3D shape analysis framework targeted to 3D
nanoscale representations of brain cell nuclear shapes. We fur-
ther generalize the approach by considering spherical harmon-
ics, which have often been employed for representing spheri-
cal functions [34], but not previously in the context of nuclear
shape fitting.

2.3. Shape analysis in neuroscience

The availability of 3D reconstructions of brain structures is
driving the development of various frameworks for shape anal-
ysis in order to classify and account for variability to be as-
sociated to different structures and conditions. For a recent
overview of the main methods employed in the analysis of brain
structures, we refer reader to [35]. In general, shape analysis
methods are mainly targeted to the full cortex acquired with
MRI methods [36]. Recently, a study for 3D morphological
analysis of asymmetric neuronal morphogenesis in developing
zebrafish has been proposed [37], but wider application of shape
analysis studies of brain structures at nanometric resolution are
still lacking [5].

In the context of the specific analysis of nuclear envelopes,
Queisser et al. [1] developed a tool to retrieve the 3D view of
cell nuclei from laser scanning confocal microscopy data. Their
method extracts surface information of the membrane by creat-
ing an isosurface with a marching tetrahedra algorithm com-
bined with a modified Dijkstra graph-search algorithm, and it
has been used to show how synaptic activity induces dramatic
changes in the geometry of the cell nucleus [4]. Recent meth-
ods on 3D morphometric analysis consider frequency decom-
position frameworks [38], or functional spaces like Wesserstein
space [39], or Random Markov Fields [40], and they are mostly
used for studying hippocampi shapes [40] or full cortex affected
by Alzheimer’s disease [39].

Here we focus on 3D reconstructions of brain cell nuclei,
and, to the best of our knowledge, our method is the first attempt
of 3D shape analysis based on implicit parameterization.

3. Method overview

The full pipeline of the proposed shape analysis framework is
schematized in Fig. 1. The first stage is data acquisition, which
is carried out by digital imaging of brain samples using elec-
tron microscopes is followed by nuclear 3D shape reconstruc-
tion and parametric model fitting. Finally, the shape parameters
are used for performing analysis and classification. The rest
of the methods section details the various components of the
pipeline and presents the proposed parametric models in detail.

3.1. Data acquisition

A number of automated serial electron microscopy tech-
niques have recently been developed, driven by the need of
imaging large portions of the brain from different species.
State-of-the-art EM setups can nowadays automatically cut se-
rial sections and image them to produce aligned stacks with
minimal human supervision. The use of electron micrographs
also makes it possible to visualize even the finest lamelliform
processes.

The general workflow for 3D reconstruction and visual anal-
ysis of brain structures is represented in Fig. 2. It begins
with sample preparation and 3DEM [41] imaging. Acquisi-
tion of biological tissues can be performed automatically at a
z-resolution of 5-50 nanometers depending on the cutting tech-
nique [41]. After imaging, image stack needs preprocessing
prior the 3D reconstruction of the various cellular structures.



4 Preprint Submitted for review / Computers & Graphics (2019)

‘¢

Stack
Registration

Electron
Microscope

Sample
Preparation

Visualization
& Analysis

Surface
Reconstruction

Labelling

Fig. 2. Reconstruction workflow: from brain samples, high resolution micrographs are acquired through automatic cutting, aligned, and labelled through
manual or semi-automatic segmentation techniques. Finally, high resolution surfaces are reconstructed from labelled volumes and used for visualization

and analysis.

First, the image stack needs to be aligned [42]. Following
image registration, the stack is then segmented by means of
manual or semi-automatic segmentation techniques [43]. Au-
tomated and semi-automated segmentation techniques reduce
tremendously the time and effort needed to generate a first-pass
three-dimensional model. Finally, the model then needs to be
proofread and corrected manually to achieve best results. The
created dataset is composed of high-resolution, segmented im-
age stacks that can be visualized, explored and analyzed with a
variety of tools based on either volume data representation, or
surface mesh generated from the segmentations.

Many neuroscientists take advantage of commercial or free
software solutions [44, 45] to perform the reconstruction. In
our case, we currently rely on available semi-automatic solu-
tions, such as ilastik [45] that aims for a segmentation accu-
racy comparable to what is obtainable with manual tools [44].
The specific pipeline employed to generate the data used in this
work was designed by combining the complementary strengths
of ilastik and TrakEM?2 [46], since ilastik is good for quickly
finding the gross features and processes of a cell, while the man-
ual approach of TrakEM?2 is good for specifying exact bound-
aries and finer details. A practical solution was also designed
for dealing with large datasets on a single machine by subdi-
viding them in piecewise chunks to fit with the ilastik semi-
automated segmentation module called “carving,” which was
accordingly refactored [47]. The semiautomatic segmentation
method was used to label EM images, while surface reconstruc-
tion was performed on labelled masks by using marching tetra-
hedra [48]. Finally, for each reconstructed nuclear envelope
surface, the vertices were collected as input point clouds for the
shape analysis framework.

3.2. Problem statement

Given a 3D point cloud representing a closed shape of a cell
nucleus, we can define our fitting/analysis problem as finding
the parameters of a surface model which better approximates
the point cloud. In general, the fitting/analysis method is com-
posed of three tasks:

e define and compute the parameters of the chosen represen-
tation;

e evaluate fitting by tessellating the fitting surface through
an explicit representation;

e use the extracted parameters for statistical computations
and analysis, and create a predictive model for classifying
different cell nuclei at varying conditions.

3.3. Shape modeling

In this work we considered two different parameterizations
of nuclear shapes: the first one was chosen starting from qual-
itative assessment of nuclear shapes performed by domain sci-
entists, that led to the hypothesis that implicit closed hyper-
quadrics [6] could provide effective representations of convex
nuclear envelopes. In addition, a more general explicit parame-
terization was derived by considering the general spherical har-
monics decomposition to represent the radial surface p = p(6, ¢)
in spherical coordinates. The latter has been chosen since it has
the advantage that the various components form an orthonor-
mal basis for functions defined on the unit sphere, and in theory
they should provide a compact description of shapes with fewer
coeflicients.

3.3.1. Hyperquadrics representation

Given a 3D surface, a surface representation can be defined
implicitly as the function H(x,y, z) such that the points of the
surface respect the equation H(x,y,z) = 1. Hyperquadrics are
implicit models defined by a sum of an arbitrary number of lin-
ear terms raised to powers, generating shapes whose bounding
polytopes have an arbitrary number of faces [49]. A hyper-

Fig. 3. Hyperquadrics examples: at varying of parameters of equation (1),
various surfaces can be represented.

quadric model is thus defined by the set of points satisfying:
H(x,y,9) = ) IH(xy, 2l = 1, (M
i=1

where H;(x,y,2) = a;x + b;y + ¢;z + d;.
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|Hi(xnyz)| < 1

Fig. 4. Hyperquadric definition: for each component, all points of the
surface are contained between the plane strip represented by equations
Hi(x,y,z) = 1 and Hi(x,y,2) = -

At varying of parameters defining the individual components,
different convex shapes can be represented (see Fig. 3). The re-
quirements for having closed surfaces are that the exponents
v; are positive, and that ||[H;(x,y,z)]| < 1. The geometric
meaning is that for each component, all points of the surface
are contained between the plane strip represented by equations
Hi(x,y,z) = 1 and H;(x,y,2) = —1 (see Fig. 4).

3.3.2. Spherical harmonics decomposition

Spherical harmonics are a natural choice of basis func-
tions for representing any twice-differentiable spherical func-
tions [34]. They are an infinite set of complex functions that are
single-valued, continuous, orthonormal, and complete on the
sphere. They are defined as complex functions with respect to
the order / and degree m in the following way:

20+ 1 (- m)!
A (+m)!

Y6, ¢) = ———P/"(cos 0) expim¢ 2)
where 1 and m are integers such that [m| < [/, and P}" are as-
sociated Legendre polynomials [9]. In Fig. 5 the 3D graphic
representations of spherical harmonics up to order / = 3 are
shown. Any spherical function f(6, ¢) can be represented by a
linear combination of spherical harmonics Y}"(6, ¢) as follows:

o 1

FO.9) =) > d'Y)©.9). 3)

1=0 m=-1
This spherical harmonic expansion can be interpreted as the
Fourier transform for functions defined on the sphere, con-
verting spherical scalar signals into their frequency spectrum.
Spherical harmonics have several interesting properties such
as orthonormality, completeness, and coarse-to-fine hierarchy,
which make them an effective choice of basis functions to rep-

resent radial surfaces p(6, ¢) [34].

4. Point cloud fitting

Point cloud fitting consists of finding the optimal values for
the parameters of a given model, which better approximate a set
of points known to be on its boundary. In this section, we de-
scribe our approach to efficiently perform this task, on both the
implicit hyperquadrics model and the radial explicit spherical
harmonics decomposition.

XO
3K o6

Fig. 5. Spherical harmonics: they are complex functions depending on or-
der 1 and degree m, and they represent an orthonormal basis for decom-
posing radial functions.

4.1. Hyperquadrics fitting

Given the equation of the hyperquadrics, each component
can be parametrized with respect to the point cloud to fit. The
original formulation (see Eq. 1) describes each component as a
plane equation represented by coefficients (a;, b;, ¢;, d;), which
are difficult to manage since they can vary indefinitely and they
have no specific physical meaning. Hence, in order to reduce

Fig. 6. Hyperquadric parameterization: the center of mass of the point
cloud C is the origin of the reference system. For each patch H;, plane
strip width r; is parametrized by applying a scale factor o; to the bounding
distance p; which is computed by projecting the point cloud with respect to
the plane normal 7;.

the number of parameters and to have better control of con-
straints, we derived a specific parameterization. We considered
the center of mass of the point cloud C as origin of the refer-
ence system (see Fig. 6). Thus, the components H;(x,y,z) can
be written as

NyiX + Nyy + NyiZ = Fiy 4

where n; = (ny,ny;,ny;) = (cos@;cosb;,sinp; cos §;,sin ;) is
the unit vector representing the plane normal, and 7; is the plane
distance from the center of mass. The latter can be further
parametrized as r; = p;(1 + o), where p; is the bounding dis-
tance for the point cloud with respect to the normal n;, and o; is
a scale factor for stretching or compressing the plane strip (see
Fig. 6). Given that the bounding distance p; can be computed
for each plane with respect to the point cloud, for each patch
H; of the hyperquadrics we can control the width of the plane
strip just by modifying the scale factor ;. Finally, the expo-
nent factor can be written as y; = 2¢ in order to remove the
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norm operation. In this way, each component H;(x, y, z) can be
represented by four parameters:

n(H;) = (¢i,0;, 01, &) 5)

4.1.1. Least-squares problem

Given a point cloud (py, p2, .., Px), the problem of fitting an
hyperquadric surface can be expressed as a non-linear optimiza-
tion problem where the target is to find the optimal parameteri-
zation [I(H) = (n(H,), n(H>), ..., 7(Hy)) that minimizes the dis-
tance of the samples with respect to the surface represented by
implicit function H(x, Yy, z):

K
T(H) = argmin ) d*(py. H). (©)
k=1

where the distance between a given sample p; and the surface
can be computed algebraically,

d*(pi, H) = (H(u, yio ) — D2, )

but better accuracy can be obtained by estimating the Euclidean
distance between the sample p; and the hyperquadric surface
(see Fig. 7). Specifically, considering the first-order Taylor ex-

Fig. 7. Least-squares problem: the optimal implicit parameterization is
found by minimizing the square distance of the input points with respect
to the algebraic surface. Euclidean distance is approximated by using first
order Taylor expansion.

pansion of the hyperquadric function, we have

H(x) ~ H(pi) + VH(pr) - (x = p)s ®)
and imposing H(x) = 1, we get
da(pi, H)
IVH(pol?’

that can be used for computing the cost function. To this end,
we note that the gradient operator can be computed in analytic
form from the hyperquadric definition:

VH(x,y,2) = Z Yilaix + by + ¢z + d)" " ai by, cp). - (10)

d*(pr, H) = lIx = pell* = o)

For solving the constrained minimization problem, we consider
the Levenberg-Marquardt method [50], using as a first guess an
ellipsoid approximation with the plane normals and distances
computed with respect to the oriented bounding box of the in-
put point cloud [51]. For each iteration, bounding distances of
plane strips are computed with respect to the plane normals de-
fined by parameters ¢;,0;, and the scale factors o; are applied
over it.

4.1.2. Explicit radial representation

While the implicit representation recovered in the previous
parts provides a very good shape descriptor, for a number of
tasks, e.g., tessellation, it is handy to also have an equivalent
explicit representation, capable to generate 3D points given a
few parameters. However, given an implicit representation of
an hyperquadric, there is no way to recover an explicit repre-
sentation in closed form. We thus compute, through numerical
optimization, a best fit spherical coordinates formulation

x = p(6, @) sinf cos ¢
y = p(6, ¢) sin 6 sin ¢ (11)
z=p(0,¢)cosb

where the function p(6, ¢) varies according to the angles, and

needs to be computed for a given sampling of the unit sphere.
In our case, we consider a regular sampling, and for each pair of

0
-

NS

p($,0)

» ¢

ﬁ’(¢i' 0

0 10um

Fig. 8. Explicit radial representation: given the implicit representation of
an hyperquadric, the explicit representation is computed by using spheri-
cal coordinates and computing radii on a regular sampling basis.

angles (6, ¢) we solve an optimization problem with Levenberg-
Marquardt to find the optimal radius p such that the algebraic
distance from the implicit function is minimal:

p(8:9) = arg min(H(x,y,2) - 1)%. (12)

Fig. 8 shows a schematic representation of the optimization pro-
cess and the graphic representation of the explicit parameteriza-
tion of an hyperquadric implicit function. The created samples
are used for tessellating the hyperquadrics surface, for evaluat-
ing the fitting errors, and for visual comparisons with respect to
the original shape.

4.2. Spherical harmonics fitting

In the case of fitting a point cloud to a spherical har-
monic decomposition, we define a radial surface representation
PL,..(0, $) in spherical coordinates as a truncated linear combi-
nation of spherical harmonic real components, by limiting the
maximum degree to a specific value L,,,,, in a way to have a

fixed number of coefficients k = (L, + 1)%:

max

L, ]
p60.0) ~ pr,,0.0)= >, ) a'R(¥]'0.0).  (13)
[

=0 m=—

where R (Y;"(H, ¢)) is the real part of the harmonic function.
In order to obtain the SH coefficients @' from the point cloud
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(p1, p2, .-, Pn), We convert the point samples in spherical coor-
dinates (p;, 9;, ¢;) by using the inverse spherical transform

pi= X +Y 422

,‘[ 2,2
0; = arctan(xz++y") (14)
bi

arctan(),
1

4.2.1. Least-squares problem

The least-squares problem that we need to solve for fitting
should minimize the squared distance between the points and
the SH decomposition [34]. We can write equation 13 in matrix
form Ya = R:

Y Yiz o o o Yiall|ad P1
Y2, Y22 Yon||G2| _ |P2 ) (15)

Y1 Yk2 - - Yinlldk n

where y;; = R (Y/"(6;, ¢), a; = @', with j = P+ 1+m+ 1,k =
(Lyax + 1%, and p; = p(6;, ¢;). For smoothing the solution, we
also added a Tikhonov regularization term I" [52], increasingly
penalizing the coefficients as long as the order / increases, in a
way that the least square problem is defined as:

a = argmin(||Ya — R|* + v||IT|%), (16)

leading to the following linear system
(YTY +vC)a = Y'R, (17)
where C =TT
l?(l? +1)?
C= h , (18)

l%mx(lrznax

+1)?

where [; is the spherical harmonics order associated with the
coefficient j. In all results of this paper, we used a small regu-
larization value (v = 1079).

4.2.2. Explicit radial representation

For tessellating, as opposed to the hyperquadric representa-
tion, the Spherical Harmonic decomposition has the advantage
of providing directly an explicit representation which can be
directly used for sampling the approximating shape.

5. Implementation and results

Implementation. Our framework was implemented in C++,
by adapting the levmar implementation of the Levenberg-
Marquardt algorithm as iterative solver [50] for computing hy-
perquadrics parameters (we used OpenMP for parallelizing the
projection computation), and by using eigen library [53] for lin-
ear least square optimization in the case of spherical harmonics
parameters. For the fitting procedure we used the following
constraints for the hyperquadrics patch parameters: —m < ¢; <

7-2<6<% -01<0;<05075< ¢ < 2.5. On the other

Fig. 9. Input nuclei envelopes: the analysis framework was tested on a col-
lection of 97 3D reconstructions of brain cell nuclei extracted from a sample
of layer VI somatosensory cortex of a juvenile rat (Fig. 10).

107

Fig. 10. Dataset acquisition. Left: dataset obtained by imaging a sample
from the somatosensory cortex of a juvenile rat, using a serial block-face
scanning electron microscopy (SBEM) with a 3View module. Right: neu-
ronal nuclei present the dark artifact typical of electrons accumulating in
portions of the sample where there is low density of biological material.

Type #Cells | # Vertices | Volume(um?) | Surface(um?)
Neurons 58 9262 715.7 +£102.5 408 + 34.5
Astrocytes 10 9519 354.29 + 63.7 270.8 + 25.8
Endothelium 4 9235 67.08 £21.5 168.2 +41.9
Microglia 12 7780 185.5 + 64.8 1945 +42.1
Oligodend. 4 7225 427 +49.8 288 +£24.1
Pericytes 10 10085 107.2 £ 39.3 159.9 + 28.8
Void(LII/IID) 16 771 440.1 +£253.4 363.8 + 101.7
Unkn(LII/TIT) | 8 658 297 +264 250+ 110.2

Table 1. Nuclei statistics: listing showing the number of nuclear envelopes,
the average number of vertices, the volume size in um?® with the standard
deviation, and the surface size in m? with the standard deviation.

side, the coefficients of spherical harmonics components were
found by solving the linear system in Equation 17 (with regu-
larization factor v = 107°). All fitting sessions were performed
on a PC equipped with two CPU Intel Xeon 2,3GHz and 128
GB RAM and running Windows 8. We also used the parame-
ters derived from the explicit and implicit model for classifying
the nuclei according to standard machine learning methods, that
we implemented using Jupyter notebooks [54] and the scikit-
learn [55] Python library.

Biologic material. Our test set was a collection of 121 3D re-
constructions of brain cells nuclei. Of these, 97 were extracted
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from dense reconstructions coming from a semiautomatic seg-
mentation of nanometric scale electron microscopy stacks, ob-
tained after imaging a volume of brain parenchyma from layer
VI somatosensory cortex of a P14 rat using a serial block-face
scanning electron microscopy (SBEM) with a 3View module
(Fig. 10 left). They were manually assigned to known cell
types (Fig. 9). The additional two groups of 16 and 8 nu-
clear envelopes were instead extracted after imaging two differ-
ent volumes of somatosensory cortex of the same rat. In these
cases, the blocks were extracted from layer II/III. We used them
as testing data for assessing the classifiers built on top of the
shape parameterizations. In the following these nuclear enve-
lope groups will be indicated as void and unknown. The table 1
lists further details about this collection of nuclear shapes.

5.1. Fitting evaluation

Given the collection of nuclear point clouds, we evaluated
the quality of fitting by considering a hyperquadrics implicit
representation containing various number of patches (N =
3,4,5,6), and various explicit spherical harmonics decompo-
sitions (Lyqx = 2,3,5,10,20). In the following, we will denote
the various cases with HQy ¢, and S Hy ¢, where C is the num-
ber of coeflicients.

Table 2 shows the statistics about the nuclear envelopes
which were fitted. Specifically, we compare the two parameter-
izations in two situations: a case with the same number of coef-
ficients (HQ4,16 and S H3 1), and a case with the same average
accuracy (HQs 0 and S Hyo441). For the various cell categories,
we report on the average mean error and on the fitting time.
For each nuclear envelope, we used two evaluation metrics: the
average error for the points in the shape (computed by using
Equation 9), and the percent of points whose distance error is
below 0.5um. Fig. 11 shows boxplots of these error metrics for
the various cell categories using same parameter configurations
in Table 2: in the top two graphs, the two parameterizations
use the same number of coefficients (HQ4 16 and S H3 j6), while
in the bottom graphs the two models have similar average ac-
curacy. From Table 2 and Figure 11, it appears that, for both
representations, the fitting is more accurate for neuron nuclei,
while it is less accurate for shapes with irregular surface like
microglia or pericytes. In general, we can also see that if we
use representations with same number of coefficients, the hy-
perquadrics parameterization is generally more accurate.

For visual reference, Fig. 12 shows some examples of fit-
ting obtained with the implicit and explicit model for various
kinds of nuclear shapes. For each original input shape, we
show tessellations of various fitted representations (either hy-
perquadrics and spherical harmonics), as well as their fitting
errors, colormapped over the original shape through the BuPu
colorbrewer scheme [56] (color scale from O to 0.5 um). From
Fig. 12, it appears that both parametric models are accurate for
convex shapes, like neurons, or astrocytes cells (see on the left
in Fig. 12), while they suffer in cases where the original shapes
are irregular, like microglia or pericytes (see on the right in
Fig. 12). Finally, in Figure 13, we compare the mean fitting
error and the processing time of the two parameterizations, at
varying number of coefficients. We can see that, when using

the same number of coefficients used for generating the para-
metric description, the implicit hyperquadrics formulation ap-
pears to be slightly more accurate than the spherical harmonics
decomposition. On the other hand, the orthonormal basis def-
inition of spherical harmonics decomposition leads to a linear
least square optimization method, which is an order of mag-
nitude faster than the non-linear Levenberg-Marquardt method
used for fitting hyperquadrics representations.

We can also notice that increasing the order of the spheri-
cal harmonics decomposition has diminishing returns, due to
the standard spherical parameterization used in this work. To
overcome this issue, we plan in future to explore more sophis-
ticated reparameterizations involving connectivity and preserv-
ing lengths and surface areas.

5.2. Nuclei analysis

In addition to providing compact models usable for visual-
ization, one of the main motivations of our fitted representations
was that they may be helpful to directly and efficiently support
various analysis tasks. In the following, we describe how our
fitted representations were applied for the classification of nu-
clear shapes to cell types.

5.2.1. Preliminary classification

Domain scientists traditionally classify cells and their nuclear
envelopes through visual assessment of morphological features
visible in electron micrographs. Even when cell morphology
is not visible, the plain nuclei have characteristic features that
indicate the probable cell type. The nuclei of neurons tend to
be almost spherical and are typically largest among all brains
cells.

Interestingly, all neuronal nuclei in our sample showed a dark
artifact that is typical of electron accumulation to areas of poor
conductivity that comes from the lack of biological material, an
effect that is also true for lumen of blood vessels (Fig. 10 right).

On the other hand, astrocyte nuclei have a more irregular
shape, and are smaller than in neurons. The microglial nu-
clei are again smaller than in neurons and tend to be heavily
squashed.

Statistical analysis is usually applied to the volume and the
surface area of nuclei. For our sample set, the volume size com-
putation showed that neurons had the biggest nuclei, followed
by astrocytes and oligodendrocytes (see Fig. 14 and Table 1).

5.2.2. Classification using parametric representations

We hoped to improve these approximate classifications by
applying our hyperquadrics and spherical harmonics fitting to
nuclear envelope shapes. We used the classical support vector
machine (SVM) [58, 59] with radial basis function for deriving
predictive models. We performed transformation of coefficients
to remove dependencies arising from different orientations. For
hyperquadrics fitting, we first ordered the components accord-
ing to the exponent value, then aligned the plane normal com-
ponents with respect to the first planar patch, and finally con-
verted the angular values to normalized vector coefficients. Af-
ter transformation, for hyperquadric representations composed
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Type HQ416 S H3 16 HQ416 S Hj3 16 HQs 0 S Ho 441 HQs 70 S Hoo 441
Err(um) Err(um) Time(s) Time(s) Err(um) Err(um) Time(s) Time(s)
All 0.353 0.437 57.43 0.021 0.338 0.338 64.53 0.672
Neurons 0.203 0.296 67.17 0.027 0.191 0.266 66.28 0.842
Astrocytes 0.309 0.449 51.00 0.028 0.32 0.368 101.6 0.834
Endothelium | 0.868 0.781 103.59 0.027 0913 0.642 134.29 0.827
Microglia 0.487 0.596 76.88 0.022 0.404 0.39 87.2 0.687
Oligodend. 0.161 0.198 99.8 0.029 0.152 0.176 59.32 0.934
Pericytes 0.524 0.819 74.59 0.021 0.508 0.462 103.01 0.704
Void-LII/ITT 0.554 0.483 6.15 0.002 0.517 0.371 6.563 0.095
Unkn.-LII/IIT | 0.512 0.655 4.286 0.002 0.543 0.454 6.01 0.083

Table 2. Nuclei fitting statistics: we compare hyperquadrics and spherical harmonics in two situations: a cases with the same number of coefficients (HQ4 16
and S H3 16), and a case with the same average accuracy (H Qs> and S Hy441). For various cell categories, we list the mean accuracy error per vertex and

the average processing time.

Type SVM params | Accuracy Scores

cross evaluation accuracy = 0.73

HQs 12 )C/‘:— (ié silhouette score = 0.03
B test evaluation accuracy = 0.5
y=01 cross evaluation accuracy = 0.75

silhouette score = 0.24

test evaluation accuracy = 0.71
cross evaluation accuracy = 0.75
silhouette score = 0.16

test evaluation accuracy = 0.75
cross evaluation accuracy = 0.73

HQu17 C=1

=0.1
HQs2 Z‘: 10

SHsy }C/‘_— 01'1 silhouette score = 0.29
test evaluation accuracy = 0.67
y =107 cross evaluation accuracy = 0.85
SHio C=10 silhouette score = 0.30
test evaluation accuracy = 0.67
y =107 cross evaluation accuracy = 0.84
S H 1 C=10 silhouette score = 0.30

test evaluation accuracy = 0.79

Table 3. Support vector machine classification: Each representation deter-
mined specific classifier parameters during grid optimization. The accu-
racy is reported using three separate accuracy scores.

of N patches, we obtained C = 2N +3(N —1) = 5N -3 rotation-
invariant coeflicients. For spherical harmonics parameteriza-
tion, we applied the rotation-invariant energy descriptors pro-
posed by Kazhdan et al. [7]. For each frequency / of the spher-
ical harmonics decomposition, we computed rotation-invariant
energies {¢,/ = 0, .., L4} starting from coeflicients:

l
a= > llaP. (19)

m=-1

For a spherical harmonics decomposition of order L,,,, we cre-
ated C = L,,,, + 1 rotation-invariant coefficients. In the follow-
ing we will denote the various representations as HQyr and
S Hy g, where R is the number of rotation invariant coeflicients.

To evaluate classification performance, we considered three
cases for hyperquadrics parameterization with number of com-
ponents varying from 3 to 5 (denoted as H(Q3 12,HQ4,7, and
HQs ) and three cases for spherical harmonics parameteriza-
tion with Lmax = 3, 10, 20 (denoted as SH3’4,SH1()711,SH20,21).
For each case, we performed grid-searching for configuring two
hyperparameters for the support vector machine model, specif-
ically the free parameter y of the Gaussian radial basis function
(K(x;,xj) = exp —7||x_xj||2), and the constant C for weighting
the soft margin regularization function.

We carried out the model training on 97 nuclear shapes of
layer VI, while we left out the 24 shapes of layer II/III (Void and
Unknown) for testing accuracy. Table 3 shows statistics of the
usage of SVM model: for each case, we report the set of SVM
hyperparameters y and C, and three scores: the cross evaluation
accuracy which is used for finding the best hyperparameters,
the silhouette score [60] which is calculated by using the mean
intra-cluster distance a and the mean nearest-cluster distance b
for each sample (o = mﬁ(ﬁ), and the model accuracy on test
shapes.

As reference, in figure 15, we show also how hyperparameter
grid-searching performed for two cases(H s, on the left, and
S Hy 1 on the right). Specifically, we show cross evaluation ac-
curacy for the set of parameters y and C in the grid. From these
accuracies we can infer that in our data the hyperquadric repre-
sentations H Q4 17 and HQs 2, have slightly better classification
accuracy than the low order spherical harmonics representation
S H3 4 (especially the test evaluation score). On the other hand,
when the decomposition order increases, energy descriptors de-
rived from spherical harmonics parameterization obtain higher
scores for all metrics considered (S Hyo11 and S Hy21), leading
to a higher accuracy and a greater cluster separation. Unfor-
tunately, the hyperquadric formulation is limited by not being
symmetry invariant. This probably affects its classification ac-
curacy.

5.2.3. Dimension reduction

In order to provide direct visual representation of the pa-
rameter data, we also considered classical dimension reduction
schemes to reduce the parameter space to 2D. We used three
common dimension reduction approaches:

e Principal component analysis which uses orthogonal
transformations to convert a group of possibly correlated
variables into a group of linearly uncorrelated variables
called principal components. The principal components
are ordered according to the variance [61, 62];

e Multidimensional scaling which positions N-
dimensional objects in a space of usually 2 or 3 di-
mensions by computing a square proximity matrix and by
combining the largest eigenvalues and the correspondent
eigenvectors [63].
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Fig. 11. Fitting evaluation: for two different configurations of coefficients for spherical harmonics(S) and hyperquadrics (H), we provide boxplots repre-
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are indicated with H. On top, we compare the two representations with same number of coefficients (16, for S H3 ;¢ and HQ4 1¢), while on the bottom we
compare representations with similar average accuracy (S Hao 441 and HQs 2).

e T-distributed stochastic neighbor embedding which
models each high-dimensional object by a two- or three-
dimensional point in such a way that similar objects are
modeled by nearby points and dissimilar objects are mod-
eled by distant points. This is obtained by constructing a
probability distribution over pairs of high-dimensional ob-
jects, so objects have a high probability of being picked,
whereas dissimilar objects have a small probability of be-
ing picked, and by defining a similar probability distribu-
tion over the points in the low-dimensional map [64].

Fig. 16 shows the results of dimension reduction methods ap-
plied on hyperquadrics parameterization HQs2, (on the top),
and spherical harmonics with S Hp2; (on the bottom). Visual
representation of hyperquadrics and spherical harmonics appear
to clearly discriminate some classes of cells, while they are not
reliable for separating some other cells. In all approaches, neu-

rons (green) form a well-defined cluster which is clearly sepa-
rated from all other classes. On the bottom part of figure 16,
it appears that the visual representation of spherical harmonics
provides a slightly more accurate separation between the vari-
ous nuclear envelope groups, and this is mostly evident when
using the t-distributed stochastic neighbor embedding (on the
right). Apart from a few outliers, the clusters representing the
various brain cells are clearly separated with small or negligible
overlaps. These results confirm and extend the original classi-
fication performed by domain scientists that was based on the
volume and area of nuclear envelopes.

6. Conclusions

We presented a framework for shape analysis of 3D nuclear
envelopes of brain cells obtained from nanoscale digital recon-
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struction of mouse brain samples imaged with face-block scan-
ning electron microscope. Our method is based on implicit and
explicit parameterizations of 3D surfaces derived by adapting
the classical hyperquadrics formulation [49], and the classical
spherical harmonics decomposition [7].

We tested our framework on a collection of 121 brain nu-
clear envelopes extracted from samples of rat brain. Our results
show that both parametric models can accurately represent con-
vex neural nuclei, while the fitting performances degrade for
other envelopes exhibiting concavities (specifically microglia,
pericytes and endothelium). A comparison of the two parame-
terizations showed that a limited number of hyperquadrics com-
ponents can provide an adequate shape representation, and that
with the same number of coefficients, the hyperquadrics pa-
rameterization provides a slightly higher average. On the other
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Fig. 14. Surface vs Volume: neuroscientists currently employ surface and
volume measures to classify nuclear envelopes.

hand, spherical harmonics fitting can be implemented as a lin-
ear least square optimization method that is orders of magnitude
faster, thus making it usable with larger number of components.
So, for situation where memory is not critical, spherical har-
monics might be a reasonable choice, providing reasonably fast
fitting together with good representation performance.

We also performed a preliminary evaluation of the proposed
parameterizations as predictive models by using standard ma-
chine learning (support vector machines) and dimension reduc-
tion methods (principal component analysis, multidimensional
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for different configuration of SVM parameters y and C. On left for hyper-
quadrics parameterization HQs1;, on the right for spherical harmonics
parameterization S Hy ;.

scaling and t-distributed stochastic neighbor embedding). The
preliminary analysis showed that both parameterizations can be
considered reliable for discriminating neural nuclei shapes, and
that, with the same fitting accuracy, a more accurate classifi-
cation is obtained by considering spherical harmonics energy
descriptors. In the future, we plan to explore different surface
parameterizations to provide a better description of more com-
plicated shapes. Furthermore, we plan to extend the analysis to
other 3D nuclear envelope collections from different conditions,
and will try classifying neurons into subtypes. Furthermore,
since nuclear classification is still done by domain scientists
through visual assessment of the morphology features around
cells, we plan to incorporate this domain knowledge [65, 66]
for creating more sophisticated and accurate classifiers.
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