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Percolation in Urban Networks

Beijing fragmented network near criticality.

Urban traffic is known to undergo a phase transition when
load goes over some threshold[1]. A different kind of critical
behavior is embodied by the percolation transition, recently
demonstrated for real city traffic[2], in which the effective
topology of the network is progressively fragmented by the
emergence of bottleneck roads, unable to sustain traffic
above some threshold speed. At criticality, the size distri-
bution of the network’s connected components follows a
power law with a specific critical exponent that depends
on the traffic regime[3].
Here we present a set of results produced by: 1) a simple
traffic generation model that is able to mimic some impor-

tant properties of the real phenomenon; 2) random edge percolation data (with and
without spatial correlation) for real cities (OpenStreetMap); 3) UBER data under
different traffic scenarios for a few cities.
We identify the velocity critical threshold by studying the second largest subgraph
of the cluster set: as soon as it reaches the maximum size, that will be the critical
velocity and the cluster sizes will have a power-law distribution. In particular, we focus
on how the percolation critical exponent τ depends on traffic intensity. This exponent
τ governs the behavior of the size scaling ns ∼ s−τ of functional clusters of the traffic
network.

Vehicle Interaction Model
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Our model is able to generate synthetic urban traffic over
real, large-scale, full resolution (OpenStreetMap) networks.
It is vaguely related to Echenique et al.[4], but introduces the
idea of vehicle probability density in place of explicit space-
time trajectories and node queues. The principal difference
is that real edge attributes such as length, direction, speed
limit and the number of lanes are taken into account with
respect to a square lattice of the original model. Some
cities lack speed limits data for a relevant fraction of edges.
Some model properties: 1) Fundamental Traffic Diagram
obtained from real urban data (∼ 200 real time sensors
in Cagliari and Torino, Italy) 2) Constant speed, variable
effective road lengths → variable path lifetime 3) Each
vehicle is represented by a probability density along a path:

Summing it over all vehicles one obtains the total number of equivalent vehicles at
all times for each graph edge. We assume that path origins and destinations to be
proportional to graph node geographic density: this approx. may be not sufficient for
non homogeneously inhabited areas such as skyscrapers near residential single-story
buildings, etc. In our model target velocity is the same for all vehicles and constant in
time, so, in order to describe slowing down, each edge length grows with local density:
Li = L0

i
(ρs−ρt)
(ρs−ρ) ρt ≤ ρ < ρs

Li = L0
i ρ < ρt

Li =∞ ρ ≥ ρs
We assume that the spatial probability distribution for

the k-th vehicle is uniform along its path Pk. The equivalent number of vehicles Nk
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the edgeEi due to path Pk, is proportional to the geographical length Li of the edge itself
and inversely proportional to Pk total geographical length l(Pk): Nk
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thus the total equivalent number of vehicles Ni over the i-th edge, is obtained by
summing contributions due to all paths (vehicles) using Ei: Ni =
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the density on that edge is simply: ρi = Ni
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Vehicle Route Generation / Evaporation
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The network starts as an empty graph with no vehicles. We set
a target traffic load for the simulation (number of coexisting
vehicles on average) and add a path at each timestep if the load
is under the target. Thus traffic is represented by a dynamic set
of paths, one for each vehicle, starting from and terminating in
uniformly random nodes. A new vehicle is created by associating
it to the shortest path (weighted or not) on a dynamic topology
graph, whose edges are switched on or off depending on the local
vehicle density with respect to a threshold. At each timestep
we check which vehicles did reach their destination and their

paths are entirely removed from the network. Removing the old path means that local
vehicle density is recomputed on all affected edges and re-checked against the threshold
to decide if they have to be switched back on. A vehicle reaches its destination after a
time proportional to its effective length, equal to the geodetic distance multiplied by
a slowdown factor derived from the fundamental traffic diagram[1] for typical urban
mobility.

Results
Random percolation with and without correlation - For each urban
network we identify the percolation transition threshold (Beijing pc ∼ 0.75, London
pc ∼ 0.81) for uncorrelated noise. We need to compute this for several cities to
obtain a pc distribution. With no correlation the τ critical exponent is between the
theoretical results for mean field networks (τ = 2.4) and a square lattice τ = 2.05.
Increasing correlation, both pc and τ decrease in a quasi linear fashion. When
comparing random uncorrelated percolation on the urban network graph (Beijing,
14km radius) to GPS data[3], the results qualitatively agree with off-peak traffic,
while long range correlated noise induces a τ value similar to rush-hour conditions.

Percolation threshold pc (left) and critical exponent τ (right) dependence on the spatial correlation length.

Variable spatial correlation on the weighted directed network is obtained by using
a Graph Fourier Transform (PyGSP[5]) with different filter power-law decays.
Simulated traffic structure and percolation for Beijing - The simulated
traffic for Beijing (R=14km) and London (R=14km) produced critical exponents
that slightly differ between the low-traffic and the high-traffic scenarios: the τ value
goes from ∼ 2.1 to ∼ 2.0 respectively. This discrepancy with Ref.[3] for GPS data
in Beijing may be due to the absence of information about most speed limits in the
OSM map (Beijing) and to model deficiencies such as naive route selection. These
two factors could lead to percolation exponent values lower than in the mean field
case τ ∼ 2.4 since urban highways are underused and don’t act as efficient network
shortcuts as they should. Nonetheless, at low traffic, highways display very high
vehicle densities while the whole network is almost free.

Vehicle density per edge for low, average and high traffic scenarios in Beijing.

Real traffic percolation - UBER data for London (R=14km) produced critical
exponent values of about τ ∼ 2.1 for off-peak periods and τ ∼ 2.0 for rush hours
when considering 3 months of data. We plan to repeat this analysis for a few other
cities that offer UBER speed data. This result agrees with our simulator for the
city of London. London is one of the few cities for which the UBER velocity data
is large enough to be used for a percolation analysis.

Stability of the main functional traffic cluster - We finally study the
stability of the largest functional cluster over several realizations of the simulated
traffic by computing the overlap between replicas and we observe that a complex
hierarchy exists. A qualitatively similar result exists for the second and smaller
clusters. This result implies that clusters may have an intrinsic stability and their
shape is not totally random. This is interesting since we can explore all possible
traffic breakup patterns and their relative probability. Moreover, we could think of
practical ways of merging clusters to maintain a larger part of the city connected
at high speed.

Two realizations of largest critical clusters for London and the overlap matrix for 100 traffic replicas.
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