
STAG: Smart Tools and Applications in Graphics (2019)
M. Agus, M. Corsini and R. Pintus (Editors)

MTV-Player: Interactive Spatio-Temporal Exploration of
Compressed Large-Scale Time-Varying Rectilinar Scalar Volumes

J. Díaz1, F. Marton2, and E. Gobbetti2

1Digital Care Research Group, UVic-UCC, Spain
2Visual Computing Group, CRS4, Italy

Figure 1: Real-time exploration. Our multiresolution compression-domain GPU volume rendering architecture supports interactive random-access exploration
of massive time-varying rectilinear scalar volumes on commodity platforms. From left to right: 10244 Isotropic Turbulence simulation (4 TB) compressed to 70.1
GB (0.34 bps, PSNR 67.9 dB); 10244 Forced MHD Turbulence simulation (4 TB) compressed to 70.7 GB (0.34 bps, PSNR 52.51 dB). (2048×512×1536)×4000
Channel Flow simulation (23.4 TB) compressed to 416.8 GB (0.34 bps, PSNR 57.51 dB).

Abstract

We present an approach for supporting fully interactive exploration of massive time-varying rectilinear scalar volumes on
commodity platforms. We decompose each frame into a forest of bricked octrees. Each brick is further subdivided into smaller
blocks, which are compactly approximated by quantized variable-length sparse linear combinations of prototype blocks stored in
a data-dependent dictionary learned from the input sequence. This variable bit-rate compact representation, obtained through a
tolerance-driven learning and approximation process, is stored in a GPU-friendly format that supports direct adaptive streaming
to the GPU with spatial and temporal random access. An adaptive compression-domain renderer closely coordinates off-line data
selection, streaming, decompression, and rendering. The resulting system provides total control over the spatial and temporal
dimensions of the data, supporting the same exploration metaphor as traditional video players. Since we employ a highly
compressed representation, the bandwidth provided by current commodity platforms proves sufficient to fully stream and render
dynamic representations without relying on partial updates, thus avoiding any unwanted dynamic effects introduced by current
incremental loading approaches. Moreover, our variable-rate encoding based on sparse representations provides high-quality
approximations, while offering real-time decoding and rendering performance. The quality and performance of our approach
is demonstrated on massive time-varying datasets at the terascale, which are nonlinearly explored at interactive rates on a
commodity graphics PC.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image Generation—Computer
Graphics [I.3.7]: Three-dimensional graphics and realism—Coding and Information Theory [E.4]: Data compaction and
compression—Compression (Coding) [I.4.2]: Approximate methods—

1. Introduction

Interactive visual exploration of very large time-varying datasets is
crucial to understand scientific simulation results [WF08, SBN11].
One very common representation is the sequence of time-varying
rectilinear scalar volumes. Such data routinely has thousands of time
steps and billions of voxels per frame [LPW∗08, Iri06]. Meeting

interactivity constraints when rendering such data is very hard, es-
pecially when showing animation. In order to cope with bandwidth
constraints, all current GPU-based solutions mix and match mul-
tiresolution data representations, compression, out-of-core methods
and data streaming to enable the interactive visualization of mas-
sive volumetric datasets. With the notable exception of the adaptive

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

J. Díaz, F. Marton, & E. Gobbetti / MTV-Player

variable-rate approach of Marton et al. [MAG19], however, all cur-
rent solutions either amortize the updates of a rendering working-set
over multiple frames, introducing unwanted dynamic effects, or use
differential encodings which restrict random access and non-trivial
backward/forward/accelerated temporal exploration of time-varying
sequences (see Sec. 2).

In this paper, we explore the feasibility of adapting state-of-the-art
compressed octree-based solutions to offer spatio-temporal random
access without incremental updates. The resulting system strives to
provide total control over the spatial and temporal dimensions of the
data, supporting the same exploration metaphor as traditional video
players (hence the name MTV-Player for Massive Time-varying
Volume Player).

By encoding frames in a I/O and GPU-friendly compressed for-
mat supporting high-compression rate with tolerance-driven error
control, we strive to stream to GPU and render dynamic scenes with
1Gvoxel/frame. To achieve this goal, each frame is independently
encoded, and decomposed into a forest of bricked octrees, which
are used as culling and I/O units. Each brick is further subdivided
into smaller blocks, which are compactly approximated by variable-
length sparse linear combinations of prototype blocks stored in a
data-dependent dictionary learned from the input sequence (Sec. 3).
At run-time, an adaptive compression-domain renderer closely co-
ordinates off-line data selection, streaming, decompression, and
rendering, starting from an out-of-core GPU-friendly representation
that supports adaptive streaming to the GPU with spatio-temporal
random access (Sec. 4).

Our contributions are manifold. First, we introduce a carefully
designed I/O and GPU-friendly compact representation. Second, we
show how a tolerance-driven variable-rate codec scheme can support
scalable dictionary learning on massive datasets. Third, we show
how our variable-rate encoding based on sparse representations pro-
vides scalable high-quality approximations, while offering real-time
transient decoding within an interactive renderer. Finally, we de-
scribe how the codec can be integrated in an out-of-core real-time
rendering capable to fully stream and render dynamic representa-
tions without relying on partial updates. The major limitations of the
method, shared with other compression-based approaches, are the
non-negligible encoding time and the upper bound on achievable
quality dictated by the need to meet run-time bandwidth constraints
for giga-voxel-sizes working sets. Our results show, however, that ex-
cellent quality results can be achieved on time-varying datasets with
billions of voxels per frame and thousands of time-steps, making
the method of immediate practical interest.

2. Related Work

This section briefly reviews the work that is most closely related
to our approach. For additional information, we refer the reader to
the following surveys on modeling and visualization methods for
time-varying volumetric data [WF08], compression-based direct
volume rendering [BRGIG∗14] and GPU-based large-scale volume
visualization [BHP15].

Data compression for GPU-accelerated direct volume render-
ing State-of-the-art solutions are based on compressing and stor-
ing data in multiresolution out-of-core structures such as octrees

[CNLE09, Eng11, GIM12, RTW13], bricks [TBR∗12], hierarchi-
cal grids of bricks [HBJP12, FSK13] or hierarchical tiled 3D
grids [MAG19], followed by an adaptive loading of the compressed
data on the GPU, where a fast decompression is performed on-
demand during rendering. In particular, sustaining a 10 frames/s ani-
mation on 1K3 working sets requires uploading, decompressing, and
rendering at least 10 Gvox/s. To this end, a wide variety of compres-
sion methods have been used. Early successful approaches used sim-
ple hardware-accelerated fixed-rate codecs [Cra, YNV08, IGM10]
that allow random access, but limit achievable compression and
rate-distortion performance [FM07, PK09]. Vector quantization so-
lutions [SW03, KE02, GG16, YZW∗17] have also demonstrated
real-time performance, but their quality is limited by dictionary
size [AEB06]. Several more advanced codecs, in particular based
on Wavelets [Lin14, AFdMSP18] and tensor approximation solu-
tions [SIM∗11,BRLP18] have demonstrated the capability to achieve
excellent performance, especially when combined with advanced
entropy coding methods. Due to their parallel decoding complexity,
at low bit rates, even the fastest methods [TBR∗12] are far from
being able to sustain real-time streaming of large dynamic volumes
on current hardware generation [MAG19]. For this reason, interac-
tive systems are typically forced to amortize decompression over
multiple frames, which is not a suitable solution for time-varying
data [MAG19]. Park et al. [PGEK17] have proposed to improve per-
formance by proposing a saliency-aware codec, in order to distribute
coding efforts into areas deemed more important, but their approach
does not allow changes of the transfer function on-the-fly. Sparse-
coding methods, which represent volume blocks as sparse linear
combinations of prototype blocks from a learned overcomplete dic-
tionary, have shown to achieve state-of-the-art compression while
supporting real-time decoding, as demonstrated by the COVRA ar-
chitecture [GIM12]. As the dictionary is learned from the data, the
number of terms needed for good approximation at low bit rates is
much lower than with fixed bases such as wavelets, so that state-of-
the-art rate-distortion performance can be achieved without recur-
ring to complex entropy coding methods. Tensor decomposition is
also learned from data, but it imposes limitations on decoding local-
ity and achieves a much lower decoding speed [SIM∗11, BRLP18].
COVRA, however, used a fixed-rate approach, which is sub-optimal
for datasets that exhibit wide spatial variations in data complex-
ity, a common feature in many simulations. More recently, Marton
et al. [MAG19] have proposed a variation which improve over
COVRA’s fixed-rate scheme through a constrained variable-rate
encoder which adapts bit rates within fixed-size pages, as well as
with a better bit allocation scheme. In this work, we show how a
tolerance-driven approach leading to an unconstrained variable-rate
encoding can significantly improve over fixed-rate schemes and pro-
vide also superior results in terms of rate-distortion with respect to
page-constrained schemes. As the drawback of these methods is the
lengthy dictionary learning time, we also propose a faster training
scheme based on a hierarchy of coresets.

Time-varying data exploration Visualizing time-varying datasets
has usually been addressed with temporal-coherent compression
techniques [SJ94, GS01, LMC02, WWS03, WWS∗05], where data
of previous time-steps are needed to process a specific one. This
extra amount of information imposes a rigid constraint in terms
of memory and bandwidth usage that limits the maximum size of

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

J. Díaz, F. Marton, & E. Gobbetti / MTV-Player

the input data and difficult random access to specific time-steps.
Thus, the free temporal exploration like the one provided by tradi-
tional video players that we seek with our approach is difficult to be
obtained. Random access to single time-steps is improved by com-
pressing voxels with respect to reference key-frames [Wes95,MS00,
WGLS05, She06, KLW∗08, MRH10, WYM08, SBN11, JEG12], but
restrictions on the maximum size of data are still present, even when
combining both approaches [FM07, NIH08, WYM10, CWW11]. A
different way to partially overcome the limitations of the temporal-
coherent compression architectures is based on encoding each
frame of the sequence individually by using 3D compression meth-
ods [GIM12, TBR∗12, PLK∗18, MAG19]. With no temporal depen-
dency, full random access to single time-steps is guaranteed. As
in the COVRA architecture [GIM12], our technique encodes vol-
ume blocks using a sparse representation based on a dictionary
learned by means of the K-SVD algorithm [AEB06]. However, in-
stead of using a fixed-rate compression scheme, our variable-rate
encoding provides a better tradeoff between quality and compres-
sion ratios. Moreover, COVRA relies on incremental updates, and
dynamic datasets are visualized only by fully pre-caching dynamic
data on the GPU, while we support full-frame updates and unlimited-
length sequences. More examples of per-frame based approaches
are the wavelet-based compression rendering architecture presented
in [TBR∗12], which includes run-length and entropy encoding, or
the recent method by Pulido et al. [PLK∗18] that allows the remote
visualization of multi-terabyte data employing as well a wavelet-
based compression scheme. High quality explorations of single
time-steps are obtained in both cases but a free temporal exploration
of the sequence can not be achieved in real-time. The recent work
of Marton et al. [MAG19] also supports high-quality exploration of
massive time-varying datasets in both desktop and mobile devices
using a variable-rate encoding scheme based on sparse coding with
fixed-size pages, using a hierarchy of grids. This feature allows a
fast parallel decompression on the GPU but it is not well-suited for
datasets with big empty regions, where many pages might not be
completely filled, producing a non-optimal memory footprint of the
compressed data. To address this issue, we employ here a sparse
octree representation with variable sized bricks.

3. Constructing the compact multiresolution out-of-core
representation

Our method is based on the off-line transformation of a time-varying
rectilinear scalar volume into a compressed representation stored
off-line in a format that supports random access to individual frames,
quick coarse determination of the portions required for a particular
image, efficient streaming to GPU and rendering of those portions.
As illustrated in Fig. 2, each time step is spatially split into subvol-
umes of the same size, which constitute the unit for coarse culling,
I/O and rendering. For finer level culling and compression, a mul-
tiresolution hierarchy of bricks is computed for each subvolume,
compressed and stored in an octree with a GPU-friendly format that
can be transferred from GPU to disk using batched asynchronous
host to device copies (see Sec. 4).

In order to build the compact representation, we choose an error-
driven approach in which each brick of size B is further subdivided
into smaller blocks of size M, which are compactly approximated

T0 Tn

TEMPORAL

SUBDIVISION

SPATIAL

SUBDIVISION

COMPACT

DATA

(forest of
 octrees)

Figure 2: Compact representation of the data. First, the input sequence is
temporally subdivided into the individual time-steps (T0, ..., Tn). Then, each
one is spatially split into subvolumes of the same size, which will be used
for coarse culling and as I/O units to move data from disk to GPU. Finally,
a multiresolution hierarchy is computed for each subvolume, compressed
and stored in an octree with a GPU-friendly format that can be culled
and selectively transferred from GPU to disk using batched asynchronous
host-to-device copies.

up to a prescribed error tolerance by sparse linear combinations of
prototype blocks stored in a data-dependent dictionary D, learned
from the entire sequence using a process driven by the same error
tolerance used for the encoding. Such an adaptive approach over-
comes the problems of fixed-rate schemes, which often lead to poor
reconstructions of high-variation regions. All the computation is
performed in a scalable way, without limits dictated by the input
data size. The parameters guiding the process are the brick size
B, which determines the octree granularity, the compressed block
size M ≤ B, the desired coreset size C, which bounds the amount
of memory used for training, the dictionary size K ≥ M3, and a
threshold ε ≥ 0 to bound the reconstruction error of each block.

3.1. Dictionary learning

In our approach, an over-complete dictionary D of prototype blocks
is trained using a tolerance-driven method from the input data and
each block bi of the original volume is represented by a sparse linear
combination of prototype blocks. To do this, each block bi of size
m = M3 is first mapped to a zero-mean column vector y ∈ Rm by
subtracting its average ȳ. Since we target error-constrained variable-
rate compression, the dictionary is computed by jointly optimizing
the columns of the dictionary and the sparse representation given
the error tolerance ε according to the objective function:

min
D,λi

∑
i

wi ‖yi−Dλi‖2
2 (1)

subject to:

∀i,‖λi‖0 is the minimum such that ‖yi−Dλi‖2
2 ≤ ε

2 (2)

where wi represents the weight of each training sample and ‖λi‖0
is the number of non-zero entries of λi. A variation of the K-SVD
algorithm [AEB06] is used to train the dictionary D, where each

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

J. Díaz, F. Marton, & E. Gobbetti / MTV-Player

prototype block is mapped to a unitary column vector di ∈ Rm. All
di are initialized randomly and maintained at zero mean.

The K-SVD method alternatively iterates between two sub-
problems solved by heuristic greedy methods: sparse coding, which
finds the best λi given a fixed dictionary, and dictionary updating.
For sparse coding, we employ the batch-OMP algorithm [RZE08],
while for dictionary updating we employ the Approximate K-SVD
algorithm [RZE08], which we modified to take into account training
sample weights, similarly to previous work [GIM12, MAG19], in
order to reduce the complexity of dictionary learning by perform-
ing it on a weighted subset of the original samples (i.e., a coreset)
instead of on all the input samples.

Instead of building a single coreset of size C, we extract a hierar-
chy of coresets at different resolutions Cn =C,Cn−1 = C

2 ,Cn−2 =
C
4 , ...,C0, where n is the number of sub-sampling levels (6 in this
paper). Using this hierarchy of coresets, training is performed with
the iterative refinement process shown in Algorithm 1, which applies
the iterative K-SVD method to larger and larger coresets, in contrast
to previous work [GIM12, MAG19], that uses a non-hierarchical
approach. Using coresets of reduced size in the first loops and larger
ones as refinement proceeds makes it possible to have the dictionary
quickly converge to a coarse but valid solution and to concentrate
efforts on the last fine-tuning steps, improving convergence and
accelerating the training process.

It is important to note that extracting a coreset hierarchy does
not require multiple streaming passes, as multiple coresets can be
obtained by generating multiple streams in parallel at different sam-
pling rates. Moreover, in order to further reduce I/O bottleneck, we
generate coresets by randomly selecting a number of frames F in
the input sequence using Halton sampling for the time dimension
until the number of blocks contained in the selected frame set is
significantly larger than the coreset size (16 times in this paper), and
only construct the coreset from these frames.

Algorithm 1 Dictionary Training
1: Input: Coreset hierarchy C, tolerance ε , refinement loops N
2: Output: Overcomplete dictionary of prototype blocks D
3: D← [1,random, ...,random]

4: for l = 1 to max_level(C) do
5: Ỹ← blocks(Cl)
6: W̃← weights(Cl)
7: for i = 0 to N do
8: // Dictionary refinement
9: λ ← batch_OMP(Ỹ, ε)

10: D← update_dictionary_entries(D, W̃, λ)

11: end for
12: end for

3.2. Dataset encoding

Given the computed dictionary D, each frame is transformed, in
parallel, into a forest of octrees, such that the number of octrees
is no less than a predefined number (64 in this paper), and that
each octree, once uncompressed, has a footprint smaller than the
maximum transient GPU memory required for rendering (256MB
for the examples in this paper). Having a forest of small octrees
simplifies coarse-grained culling and memory management in the
run-time phase (see Sec. 4). The encoding process is massively

BRICK

N
O

D
E

N
O

D
E

LEVEL 1 LEVEL NROOT

T
Y
P
E

FIRST

IDX

CHILD

DATA
IDX HISTOGRAM

B
R

IC
K

B
R

IC
K

B
R

IC
K

B
R

IC
K

LEVEL 1ROOT

S

B

1AVG
bias &
scaling

A

B

1

S

B

N
ID

X
 D

IC
E
N

T
R
Y

C
O

E
F
F

ID

X
 D

IC
E
N

T
R
Y

C
O

E
F
F

ID
X

 D
IC

E
N

T
R
Y

C
O

E
F
F

BLOCK 1 (B1) BLOCK 2 (B2)

Num. bits 32|32 32|32 4|12

Num. bits 32 642 30

NODE

COMP.
DATA

OCTREE

N
O

D
E

NODE

SPARSITY
& AVG

N
O

D
E

N
O

D
E

COEFF
bias &
scaling S

B

n
A

B

n

4|1210|6 10|6 10|6

Figure 3: Encoded format. Each octree is stored in breadth-first order (and
Morton order inside each level) to support efficient partial GPU uploading
up to a run-time-determined levels. The first data segment stores the octree-
structure using 128 bits per non-empty node, while the second data segment
stores a variable-bit-rate representation of each non-empty brick, composed
of a header plus a quantized sparse representation of its blocks.

parallel and requires minimum memory, as it can be performed in
parallel for all bricks that compose each octree.

The off-line storage of each octree of bricks, illustrated in Fig. 3,
is designed to be compact, GPU-decodable, and whose visible por-
tion can be directly transferable to the GPU up to the required levels
using few batched host to device copies (see Sec. 4). The represen-
tation consists of two parts: the octree structure itself, and the data
for the non-empty bricks.

In the octree structure portion, each node is encoded in 128 bits
containing an index to its compressed data brick (32 bits), the node
type (2 bits: inner, leaf or empty node), the index of the first child in
the nodes list (30 bits) and a binary histogram (64 bits) computed
bottom-up from the bricks of the children, that is used for transfer-
function-based culling. In case of leaf or empty nodes, the index to
the first child is set to 0. The compressed data is encoded as a list of
bricks sorted by levels.

In the data portion, non-empty bricks are compactly stored with-
out gaps in breadth-first order (and Morton order inside each level),
to make it possible to rapidly move from disk to the GPU only a
part of the data when the maximum resolution is not required. The
data storage for non-empty bricks contains the sparse representation
of the contained blocks, which is computed by the same batch-OMP
approach used in the dictionary encoding. Compression is achieved
by storing for each block only the index and value of the non-empty
coefficients λi and by quantizing their values, as well as the average
value. Each brick encoding thus contains two float values (32 bits
each) representing the bias and scaling for dequantizing the average
value ȳ of each contained block, and other two for the coefficients
λi of all blocks. The dequantization header is followed by two data
segments. In the first segment, which contains one entry per encoded
block, we encode a pair with the sparsity si of each block and the
quantized average of the block. The sparsity (i.e., the number of
non-zero coefficients) uses 4 bits/block for a maximum sparsity
of Smax = 15, while the average uses 12 bits/block. In the second

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

J. Díaz, F. Marton, & E. Gobbetti / MTV-Player

segment we encode each block as a sequence si (16-bit codes), with
the upper 10 bits providing the index of the prototype block in the
dictionary, and the lower 6 bits dedicated to the corresponding quan-
tized coefficient value. This encoding supports dictionaries with
1024 entries, which have proved adequate in all our tests. It should
be noted that the maximum sparsity constraint is easily achieved by
limiting the number of iterations in the batch-OMP sparse coding
step for dictionary learning and dataset encoding.

4. GPU accelerated rendering

In this paper, we strive to demonstrate the feasibility of a novel
compression-domain out-of-core DVR approach supporting full
spatio-temporal random access without incremental updates. We
therefore designed an adaptive renderer built around on-demand
streaming to GPU of compressed frame portions. By design, the
renderer does not use any form of temporal coherence and does
not use key-framing. We assume that data is stored offline locally
on SSDs, and we exploit their performance in a GPU renderer
that transfers memory mapped data to the GPU at each rendering
asynchronously and in very few batches. This makes it possible
to quickly and freely achieve random access and non-trivial back-
ward/forward/accelerated temporal exploration of time-varying se-
quences.

4.1. Adaptive loading and rendering scheme

The process followed to render a single time-step is shown in Algo-
rithm 2.

Algorithm 2 Process to render a single time-step
1: Input: Time t, view V , projection P, transfer function T F , dictionary D
2: Output: Updated frame buffer
3: clear_frame_buffer()
4: Ot ← Forest of octrees of frame t
5: for each subtree oi ∈ Ot in front-to-back-order do
6: if is_visible(oi , V , P, T F) then
7: (idx,data_ranges)← adaptive_selection(oi , V , P, T F)
8: (idx,data_ranges)← merge_batches(idx,data_ranges)
9: async_host_to_device_memcpy(idx)

10: async_host_to_device_memcpy(data[data_ranges])
11: dec_bricks_tex3D← gpu_decoded(lea f s, D)
12: gpu_ray_casting_and_compositing(dec_bricks_tex3D)

13: end if
14: end for

As each frame is encoded independently into a forest of octrees
of bricks, we traverse front-to back each octree root of the current
time-step using a simple grid ordering and determine whether the
octree is potentially visible from the current view using the current
transfer function parameters. This step requires only the computed
bounding box and the stored value histogram of the root node. If
the octree is proved invisible, it is skipped and rendering proceeds
by evaluating the next one in front-to-back order. Otherwise, we
prepare data transfer by computing, from the index data and the
current viewing configuration, a spatial index of the data required
for rendering the octree. We perform this phase within a recursive
traversal of the index tree, collecting into a small array a compact
spatial index of the potentially visible portion of the tree, whose leaf
nodes point to associated data bricks. During this traversal, we main-
tain the minimum and maximum index of the data bricks per level,

which determine the portions of the data array that are required for
rendering. As the data array is stored in breadth-first order (and Mor-
ton order inside each level), this range efficiently culls out the data
that is too refined or out-of-frustum. After collection is completed,
we reduce the number of disjoint data ranges to a maximum of three,
by iteratively merging nearby data ranges of different levels starting
from the smaller gaps. Merging stops when the number of ranges is
less than four and the next removed gap is larger than 25% of the size
of the merged data ranges. At the end of merging, the different data
ranges are assumed to be relocated contiguously, and the references
in the index tree are updated accordingly. Rendering can then be per-
formed by moving the index tree and the compressed brick data to
GPU using few async_host_to_device_memcpy calls (up
to a maximum of four per octree, including the index). It should
be noted, in addition, that by using a different CUDA stream per
subtree, we can effectively obtain concurrency and overlap between
transfer and computation.

Once the data is in device memory, we decompress all vol-
ume bricks covered by the subtree into 3D texture memory using
a fast CUDA-based GPU decoder (see Sec. 4.2). Decompressed
data is then accessed by a GPU ray-casting algorithm, that tra-
verses the current spatial index using standard stackless raycasting
schemes [CNLE09, GIM12] and samples voxel values from the
temporary decoded 3D texture with hardware texture filtering. The
raycaster is implemented in a single CUDA kernel, which renders
the octree to a viewport of the frame buffer that strictly encloses
the projection of the octree’s bounding box. The octree raycasting
procedure starts from the color and opacity fetched from the frame
buffer, and follows the ray accumulating colors and opacity until
maximum opacity is achieved or the ray leaves the subtree. Since
octrees are rendered in front-to-back order, this approach supports
visibility culling through early ray termination. After rendering all
the visible octrees in a frame, the frame-buffer contains the final
composited image for the volume.

4.2. GPU decompression

The GPU decompression phase must transform our variable-rate
representation of bricks into uncompressed data stored in a 3D
texture. This is achieved through a combination of several CUDA
kernels. Given the fact that bricks and blocks have a variable size, we
opted for a linear GPU memory layout for compressed data, which
provides an easy sequential access to the brick’s data, given the
availability of offsets to the start point of each brick. Before starting
GPU decompression, the CPU renderer uploads to the GPU three
buffers: the compressed data representation, the starting offsets of
the compressed bricks and their corresponding destination positions
in the 3D texture. Decompressing a block requires to know where
it starts. Each brick has a header containing the sparsity of all its
encoded blocks, thus before decompression all the starting positions
of the blocks are evaluated with a prefix-sum algorithm. The kernel
assumes that all the bricks are layered along the X axis, one after
another, and the kernel grid reflects this brick distribution, see Fig. 4.
The grid kernel blocks have the same size of the compressed blocks,
and the threads within each block cooperate using shared mem-
ory to decode two compressed blocks at a time. The kernel work
is subdivided in two stages: fetching data to shared memory and

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

J. Díaz, F. Marton, & E. Gobbetti / MTV-Player

BLOCKS (Bi)
OFFSETS &
LENGHTS O

/L
 B

1

O
/L

 B
2

O
/L

 B
N

O
/L

 B
1

O
/L

 B
N

Brick 1

O
/L

 B
1

O
/L

 B
N

O
/L

 B
1

O
/L

 B
N

Brick 2 Brick N-1 Brick N

H
e
a
d

e
r

C
.

B
1

C
.

B
N

C
.

B
2

H
e
a
d

e
r

C
.

B
1

C
.

B
N

O
ff

 B
r1

O
ff

 B
r2

O
ff

 B
rN

-1
O
ff

 B
rN

COMPR.
DATA

BRICKS (Bri)
OFFSETS

H
e
a
d

e
r

H
e
a
d

e
r

C. B1-BN

C
.

B
1
-B

N

DEC.
GPU
GRID

GPU Block

DEC. 3D TEX

Po
s

B
r1

Po
s

B
r2

Po
s

B
rN

-1

Po
s

B
rNDEC. BRICK

POSITIONS

Figure 4: Memory layout for GPU decoding.

voxel computation. The brick id is identified by the thread position
along X , while the block id depends on the x,y,z thread coordinates.
From these coordinates, the brick and block starting offsets and the
block sparsity S can be loaded from the corresponding buffers. The
compressed block representation (S pairs of bytes containing index
and coefficient) is then cooperatively fetched and stored in shared
memory. Decompressing a voxel is just a matter of loading its cor-
responding values from the indexed dictionary words and linearly
combining them with the coefficients present in shared memory.
Due to the fact that this compact representation is valid for all the
voxels of the block, two adjacent voxels along X can be decoded
using the same index-coefficient pairs, and can be written to output
memory with a single write-4-bytes operation, since each voxel is
stored in two bytes in the output texture (as we use a 16-bit format
for rendering). Decoding two voxels per thread just involves loading
two adjacent compressed block representations within the shared
memory of a kernel block, but improves decoding performance.

5. Implementation and results

Our approach has been implemented as an experimental software
running on Arch Linux using C++, OpenGL and NVIDIA CUDA
7.5. It has been tested with a variety of time-varying massive
volumetric datasets. In this paper, we show the results obtained
with a Forced Isotropic Turbulence (IsoTur) simulation (pressure
field 10244, float: 4 TB), a Forced MHD Turbulence (MHD) sim-
ulation (pressure field, 10244, float: 4 TB) and a Channel Flow
(Channel) simulation (pressure field, (2048×512×1536)×4000,
float: 23.4 TB). All benchmark datasets are publicly available cour-
tesy of the Johns Hopkins Turbulence Database (JHTDB) initia-
tive [LPW∗08].

5.1. Dictionary learning and encoding performance

We learned dictionaries for the three datasets on a PC with an In-
tel Core i7-3820 CPU @ 3.60 GHz and 32 GB RAM. The PC is
equipped with two Samsung 840 EVO SSDs 500 GB mounted in
RAID0 and with an ext4 file system, for a total available capacity of
871 GB.

In all our tests, we used a K-SVD block size M = 6, a brick size of
B = 32 voxels, and a dictionary size K = 1024. We experimentally
determined that a coreset size of C = 256 MVoxels is sufficient for
learning high-quality dictionaries, and that increasing the coreset
size does not substantially increase compression quality, while in-
creasing learning time. For this reason, all the results in this paper
have been computed with C = 256 MVoxels. For each dataset, 16
frames were selected using Halton sampling in the time dimension.
The coresets have then been built by randomly selecting from these
frames a reduced number of blocks. The coresets for the different
datasets contain 17.2 GVoxels for IsoTur and MHD, and 26.8 GVox-
els for Channel. Extracting coresets from data on the SSD took about
15 minutes for the first two datasets, and about 23 minutes for the
last one, without any difference if extracting only a single coreset or
a full coreset hierarchy, since time is dominated by the streaming
passes on the input. Dictionary training has been performed using
100 iterations for the tolerances presented in Table 1, which have
been selected to produce per-frame dataset sizes compatible with
real-time streaming performance. Training times are independent
of the dataset sizes, since they are performed on coresets. When
training using the large coreset the times range from 54m49s to
1h45m depending on tolerance. When using the iterative refinement
process with hierarchical coresets of Algorithm 1, training times are
reduced to 11m10s for the coarsest tolerance to 27m2s for the finest
tolerance without any reduction in dictionary quality.

In terms of encoding performance, the processing stage has a
complexity similar to the COVRA encoder [GIM12]. We measured
an encoding speed ranging from 4.9 to 7.3 MVoxels/s, leading to a
frame encoding time of 3.5-5.5 minutes/frame for IsoTur and MHD
and 4.4-6.6 minutes/frame for Channel on a single machine.

5.2. Compression rate and distortion

In order to provide a context for the evaluation of our work, we
compare our results with a fixed-rate version of the same code, as
well as with a recently introduced state-of-the-art solution based on
Elastic Sparse Coding (ESC) [MAG19], which is also capable of
real-time performance, and represents the current state-of-the-art
in compression for real-time rendering. As Marton et al. [MAG19]
have already compared ESC with the major real-time and non-
real-time codecs, including COVRA [GIM12]), ASTC [NLP∗12],
Hierarchical Vector Quantization (HVQ) [SW03], CudaCompress
wavelet codec (CC) [TBR∗12], ZFP [Lin14], and SZ [DC16], we
do not repeat all the benchmarks here. As a reference, we include
results obtained with the ZFP [Lin14] codec (V 0.5.4), which is a
de-facto standard for compression of floating-point volumetric data.
For ZFP, we used the fixed accuracy mode, which usually yields the
best signal-to-noise ratios, and varied the absolute error tolerance
(-a) to obtain the desired bit rates.

Numerical results are presented in Table 1. Compression rate

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

J. Díaz, F. Marton, & E. Gobbetti / MTV-Player

IsoTur (4 TB) MHD (4 TB) Channel (23.4 TB)
MTV-Player VAR, Smax=15, K=1024, M=6 T 0.08 T 0.055 T 0.041 T 0.07 T 0.049 T 0.038 T 0.005 T 0.004 T 0.0025

Size(GB) 70.1 91.06 111.37 70.73 92.95 111.68 416.74 487.22 649.18
bps 0.34 0.44 0.54 0.34 0.45 0.54 0.34 0.40 0.53

PSNR(dB) 67.95 69.96 71.24 52.51 54.44 55.56 57.51 58.62 60.33
MTV-Player FIX, Smax=15, K=1024, M=6 S 3 S 4 S 6 S 3 S 4 S 6 S 3 S 4 S 6

Size(GB) 69.73 85.11 115.87 69.73 85.11 111.68 408.60 498.70 678.92
bps 0.34 0.41 0.56 0.34 0.41 0.56 0.34 0.41 0.56

PSNR(dB) 64.39 66.09 68.43 49.40 50.94 52.98 53.37 54.98 57.33
ESC [MAG19] same bps, K=1024, M=8 S 9 S 12 S 15 S 9 S 12 S 15 S 9 S 12 S 15

Size(GB) 51.10 65.70 78.84 51.10 65.70 78.84 299.41 384.96 461.95
bps 0.35 0.45 0.54 0.35 0.45 0.54 0.35 0.45 0.54

PSNR(dB) 67.39 68.57 69.27 51.81 52.99 53.92 57.09 58.53 59.50
ESC [MAG19] same size, K=1024, M=8 S 13 S 17 S 22 S 13 S 17 S 22 S 13 S 17 S 22

Size(GB) 69.58 87.83 110.26 69.58 87.83 110.26 407.68 512.39 646.06
bps 0.48 0.60 0.76 0.48 0.60 0.76 0.48 0.60 0.76

PSNR (dB) 68.77 69.61 70.22 53.34 54.40 55.46 58.87 59.92 60.63
ZFP [Lin14] A 2.75 A 1.125 A 0.625 A 2.00 A 1.00 A 0.5 A 0.125 A 0.0625 A 0.0312

bps 0.36 0.42 0.53 0.36 0.49 0.68 0.36 0.49 0.67
PSNR(dB) 49.24 58.92 63.36 42.67 46.65 50.92 49.24 53.53 58.04

Table 1: Compression rate and distortion. The compared codecs are MTV Player with tolerance-driven variable-rate encoding, MTV Player with fixed rate
encoding at similar bits per output sample, Elastic Sparse Coding (ESC) [MAG19] with similar bits per output sample, Elastic Sparse Coding (ESC) [MAG19]
with similar output file storage size, and ZFP [Lin14] at similar target bit rate. For ZFP, we used the fixed accuracy mode, which usually yields the best
signal-to-noise ratios, and varied the absolute error tolerance (-a) to obtain the desired bit rates.

Figure 5: Perceptual quality assessment. The SSIM values are the average of the grayscale SSIM of each color channel.

is measured in bits per output sample (bps), while quality is
measured with peak signal to noise ratio (PSNR), defined as
10log10

(maxi xi−mini xi)
2

1
N ∑i(xi−yi)2 , where xi is the original voxel value, yi is

the approximated one and N the total number of voxels.

Each dataset has been compressed using our codec with three
different tolerances using the variable-rate encoder, as well as with a
fixed-rate version of the encoder, where the target sparsity has been
set to the average value found by the variable-rate encoder, in order
to match the achieved bit rate. Parameters for ESC and ZFP have

been also set to provide a similar compression. Since the storage
approach is different, for ESC, we provide two results: one in which
we match the target bits/output voxel, and one in which we match
the target size.

The new variable-rate codec scales well and provides consider-
able improvement in terms of PSNR with respect to the fixed-rate
solution. The codec is also very competitive with respect to ESC.
It should be noted that ESC is bitrate-driven and is thus capable of
meeting hard storage constraints for each frame, while our codec

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

J. Díaz, F. Marton, & E. Gobbetti / MTV-Player

Figure 6: Representative frames of the accompanying video. Our rendering architecture supports interactive spatial exploration, modification of the transfer
function parameters, playing the sequence forwards and backwards at various speeds, and full random access to individual frames.

is tolerance driven, and uses an adaptive bit rate, which gives more
freedom but, at the same time, requires some tuning to control output
size. Moreover, ESC uses non-overlapping bricks, while we repli-
cate data at brick boundaries in order to make bricks self-contained.
Our storage format is thus a bit heavier. ZFP, used here as a reference
implementation, does not appear to perform that well at such ex-
treme compression rates (close or below 0.5 bps). On the other hand,
using a near-lossless setup, it could be employed in the encoder
to speed-up data accesses. This is compatible with the findings of
Marton et al. [MAG19].

The improved results in terms of average and maximum errors
lead to improved perceptual quality during volume exploration with
respect to fixed-rate solutions. Fig. 5 illustrates the visual quality
obtained for our benchmark datasets, comparing fixed rate with
variable rate encoding at the same compression rate of 0.34 bps. The
images were taken at extreme closeups, using representative trans-
fer functions with both transparent and opaque materials, as in the
accompanying video. Note that despite the high compression rates,
the essential parts, as well as details of a certain feature size can be
visualized in all datasets, and that the variable-rate version is more
similar to the original. As for all block-based compression tech-
niques, artifacts appear as discontinuities among adjacent blocks,
but are only clearly visible in the fixed-rate version. Deblocking
techniques could be applied to further improve visual quality, at the
expense of decoding and/or rendering time [MIDG14].

We also numerically assessed the visual quality provided by
both encoding schemes by using the Structural Similarity met-
ric [WBSS04], which is known to have a good correlation with
perceptual quality. As in previous work [RWS09], we compute the
grayscale SSIM of each color channel and use the mean as an overall
distortion measure. The results obtained with the images of Fig. 5
demonstrate very good results even at such a high compression, as
it has been verified that the point at which a human observer cannot
determine that compression has been used hovers around an SSIM

value of 95 [FWAP13]. Moreover, variable rate encoding provides
better visual quality than the fixed-rate one, with SSIM values that
increase by 4-9% depending on the dataset, which are considered
noticeable differences.

5.3. Interactive exploration

We evaluated the rendering performance of our framework on a
number of interactive inspection sequences of our three dynamic
datasets, using the dataset configurations selected in Table. 1. The
tests have been performed on the same desktop PC used for dictio-
nary training, equipped with a NVIDIA GeForce 980 GTX with
4GB of video memory.

The qualitative performance of our adaptive GPU ray-caster is
illustrated in the accompanying video. Because of video frame
capture constraints, the sequence is recorded using a window size
of 1024× 576 pixels. In all recorded sequences, we used a 0.5
voxel/pixel accuracy. Representative frames are in Fig. 1 and Fig. 6.
As shown in the video, the system is fully interactive. It is possible
to translate, rotate, and scale the volumes, to change the transfer
function while playing back animations at various speeds, mov-
ing back-and-forth in time, and jumping at different time-steps.
Frame rates are generally well above 20Hz, varying from 8Hz for
medium-range closeups where most of the full dataset is visible at
high resolution to above 26Hz for overall views or extreme closeup
views of models, where we can better exploit level-of-detail and
view culling to reduce upload, decode, and render overhead. Data
loading is performed in parallel with the decoding and rendering
kernels. GPU profiling reveals an occupancy of 41% for decoding
and 59% for rendering a single frame. As we do not exploit tempo-
ral coherence, performance does not change depending on whether
animations are played backwards and forwards, or when they are ren-
dered at higher speed. Moreover, thanks to the lack of incremental
updates, no dynamic artifacts (e.g., partial refinements) are visible
in the animation. Such a streaming architecture is, however, limited

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

J. Díaz, F. Marton, & E. Gobbetti / MTV-Player

Figure 7: Example of application to urban CFD simulation. Frames from an interactive sequence of spatio-temporal exploration of the vorticity field around
buildings at a urban scale.

by the amount of data that is streamed, decoded, and rendered on a
per-frame basis. See accompanying video for more details.

6. Conclusions

We have presented a novel approach for supporting fully interactive
exploration with non-trivial temporal access of massive time-varying
rectilinear scalar volumes on commodity platforms. Instead of look-
ing at maximum compression and adaptivity, we streamline the
rendering loop, by using a time-independent codec that produces a
highly compressed format and asynchronously sending to GPU the
required frame portions in few batches, to be decoded and rendered
at interactive speeds. Our variable-rate encoding scheme based on
sparse coding volume blocks using a learned dictionary deals with
bandwidth and memory limitations, while providing competitive
perceptual and signal reconstruction quality at similar compression
ratios with respect to current state-of-the-art fixed-rate or constrained
variable-rate solutions supporting real-time performance. Further-
more, thanks to the scalability at all the stages of the pipeline, the
presented architecture is capable of processing and visualizing mas-
sive datasets, as demonstrated by our results on terascale turbulence
simulations, freely explored by rapidly moving in time, space and
transfer function parameters.

Our current work is aimed at using the approach for the explo-
ration of simulation data, especially in the area of large scale CFD
simulation. Fig. 7 and the accompanying video illustrate our prelim-
inary results, which show the possibility of exploring in real-time
the vorticity field around buildings at a urban scale.

Acknowledgments. The authors would like to warmly thank Peter Lind-
strom for making available his excellent ZFP code. Datasets are courtesy
of the Johns Hopkins Turbulence Database (JHTDB) initiative. The urban
dataset is courtesy of the Architectural Institute of Japan. We also acknowl-
edge the contribution of Sardinian Regional Authorities under projets VIGE-
CLAB and TDM (POR FESR 2014-2020 Action 1.2.2).

References
[AEB06] AHARON M., ELAD M., BRUCKSTEIN A.: K-SVD: An algo-

rithm for designing overcomplete dictionaries for sparse representation.
IEEE TSP 54, 11 (2006), 4311–4322. 2, 3

[AFdMSP18] AMORIM P., FRANCO DE MORAES T., SILVA J., PEDRINI
H.: Out-of-Core Rendering of Large Volumetric Data Sets at Multiple
Levels of Detail: Applications and Computational Techniques. Springer,
01 2018, pp. 191–215. 2

[BHP15] BEYER J., HADWIGER M., PFISTER H.: State-of-the-art in
GPU-based large-scale volume visualization. Computer Graphics Forum
34, 8 (2015), 13–37. 2

[BRGIG∗14] BALSA RODRIGUEZ M., GOBBETTI E., IGLESIAS GUI-
TIÁN J., MAKHINYA M., MARTON F., PAJAROLA R., SUTER S.: State-
of-the-art in compressed GPU-based direct volume rendering. Computer
Graphics Forum 33, 6 (2014), 77–100. 2

[BRLP18] BALLESTER-RIPOLL R., LINDSTROM P., PAJAROLA R.:
TTHRESH: Tensor compression for multidimensional visual data. arXiv
preprint arXiv:1806.05952 (2018). 2

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: Gi-
gaVoxels: Ray-guided streaming for efficient and detailed voxel rendering.
In Proc. I3D (2009), pp. 15–22. 2, 5

[Cra] CRAIGHEAD M.: Gl_nv_texture_compression_vtc. OpenGL Exten-
sion Registry. 2

[CWW11] CAO Y., WU G., WANG H.: A smart compression scheme for
GPU-accelerated volume rendering of time-varying data. In Proc. IEEE
ICVRV (2011), pp. 205–210. 3

[DC16] DI S., CAPPELLO F.: Fast error-bounded lossy HPC data com-
pression with SZ. In Proc. IEEE IPDPS (2016), pp. 730–739. 6

[Eng11] ENGEL K.: CERA-TVR: A framework for interactive high-
quality teravoxel volume visualization on standard PCs. In Proc. IEEE
LDAV (2011), pp. 123–124. 2

[FM07] FOUT N., MA K.-L.: Transform coding for hardware-accelerated
volume rendering. IEEE TVCG 13, 6 (2007), 1600–1607. 2, 3

[FSK13] FOGAL T., SCHIEWE A., KRUGER J.: An analysis of scalable
GPU-based ray-guided volume rendering. In Proc. IEEE LDAV (Oct
2013), pp. 43–51. 2

[FWAP13] FLYNN J., WARD S., ABICH JULIAN I., POOLE D.: Image
quality assessment using the SSIM and the just noticeable difference

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

J. Díaz, F. Marton, & E. Gobbetti / MTV-Player

paradigm. In Engineering Psychology and Cognitive Ergonomics. Under-
standing Human Cognition, vol. 8019 of LNCS. Springer, 2013, pp. 23–30.
8

[GG16] GUTHE S., GOESELE M.: Variable length coding for GPU-based
direct volume rendering. In Proc. VMV (2016), pp. 77–84. 2

[GIM12] GOBBETTI E., IGLESIAS GUITIÁN J., MARTON F.: COVRA:
A compression-domain output-sensitive volume rendering architecture
based on a sparse representation of voxel blocks. Computer Graphics
Forum 31, 3/4 (2012), 1315–1324. 2, 3, 4, 5, 6

[GS01] GUTHE S., STRASSER W.: Real-time decompression and visu-
alization of animated volume data. In Proc. IEEE Vis (2001), IEEE,
pp. 349–572. 2

[HBJP12] HADWIGER M., BEYER J., JEONG W.-K., PFISTER H.: Inter-
active volume exploration of petascale microscopy data streams using a
visualization-driven virtual memory approach. IEEE TVCG 18, 12 (2012),
2285–2294. 2

[IGM10] IGLESIAS GUITIÁN J. A., GOBBETTI E., MARTON F.: View-
dependent exploration of massive volumetric models on large scale light
field displays. The Visual Computer 26, 6–8 (2010), 1037–1047. 2

[Iri06] IRION R.: The terascale supernova initiative: Modeling the first
instance of a starâĂŹs death. SciDAC Review 2, 1 (2006), 26–37. 1

[JEG12] JANG Y., EBERT D. S., GAITHER K. P.: Time-varying data
visualization using functional representations. IEEE TVCG 18, 3 (2012),
421–433. 3

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. In Proc. Graphics
Hardware (2002), pp. 7–15. 2

[KLW∗08] KO C.-L., LIAO H.-S., WANG T.-P., FU K.-W., LIN C.-Y.,
CHUANG J.-H.: Multi-resolution volume rendering of large time-varying
data using video-based compression. In Proc. IEEE Pacific Vis (2008),
pp. 135–142. 3

[Lin14] LINDSTROM: Fixed-rate compressed floating point arrays. IEEE
TVCG 20, 12 (2014), 2674–2683. 2, 6, 7

[LMC02] LUM E. B., MA K.-L., CLYNE J.: A hardware-assisted scalable
solution for interactive volume rendering of time-varying data. IEEE
TVCG, 3 (2002), 286–301. 2

[LPW∗08] LI Y., PERLMAN E., WAN M., YANG Y., MENEVEAU C.,
BURNS R., CHEN S., SZALAY A., EYINK G.: A public turbulence
database cluster and applications to study Lagrangian evolution of velocity
increments in turbulence. Journal of Turbulence, 9 (2008). 1, 6

[MAG19] MARTON F., AGUS M., GOBBETTI E.: A framework for gpu-
accelerated exploration of massive time-varying rectilinear scalar volumes.
Computer Graphics Forum 38, 3 (2019). 2, 3, 4, 6, 7, 8

[MIDG14] MARTON F., IGLESIAS GUITIÁN J., DIAZ J., GOBBETTI E.:
Real-time deblocked GPU rendering of compressed volumes. In Proc.
VMV (2014), pp. 167–174. 8

[MRH10] MENSMANN J., ROPINSKI T., HINRICHS K.: A GPU-
supported lossless compression scheme for rendering time-varying vol-
ume data. In Proc. Volume Graphics (2010), pp. 109–116. 3

[MS00] MA K.-L., SHEN H.-W.: Compression and accelerated render-
ing of time-varying volume data. In Proc. International Workshop on
Computer Graphics and Virtual Reality (2000), pp. 82–89. 3

[NIH08] NAGAYASU D., INO F., HAGIHARA K.: Two-stage compression
for fast volume rendering of time-varying scalar data. In Proc. GRAPHITE
(2008), pp. 275–284. 3

[NLP∗12] NYSTAD J., LASSEN A., POMIANOWSKI A., ELLIS S., OL-
SON T.: Adaptive scalable texture compression. In Proc. HPG (2012),
pp. 105–114. 6

[PGEK17] PARK J., GUTENKO I., E. KAUFMAN A.: Transfer function-
guided saliency-aware compression for transmitting volumetric data.
IEEE Transactions on Multimedia PP (09 2017), 1–1. 2

[PK09] PARYS R., KNITTEL G.: Giga-voxel rendering from compressed
data on a display wall. In Proc. WSCG (2009). 2

[PLK∗18] PULIDO J., LIVESCU D., KANOV K., BURNS R. C., CANADA
C., AHRENS J. P., HAMANN B.: Remote visual analysis of large tur-
bulence databases at multiple scales. J. Parallel Distrib. Comput. 120
(2018), 115–126. 3

[RTW13] REICHL F., TREIB M., WESTERMANN R.: Visualization of big
SPH simulations via compressed octree grids. In Proc. IEEE Big Data
(2013), pp. 71–78. 2

[RWS09] RAJASHEKAR U., WANG Z., SIMONCELLI E. P.: Quantify-
ing color image distortions based on adaptive spatio-chromatic signal
decompositions. In Proc. IEEE ICIP (2009), pp. 2213–2216. 8

[RZE08] RUBINSTEIN R., ZIBULEVSKY M., ELAD M.: Efficient im-
plementation of the K-SVD algorithm using batch orthogonal matching
pursuit. Tech. rep., CS Technion, 2008. 4

[SBN11] SHE B., BOULANGER P., NOGA M.: Real-time rendering of
temporal volumetric data on a GPU. In Proc. IEEE InfoVis (2011),
pp. 622–631. 1, 3

[She06] SHEN H.-W.: Visualization of large scale time-varying scientific
data. Journal of Physics 46, 1 (2006), 535–544. 3

[SIM∗11] SUTER S., IGLESIAS GUITIÁN J., MARTON F., AGUS M.,
ELSENER A., ZOLLIKOFER C., GOPI M., GOBBETTI E., PAJAROLA R.:
Interactive multiscale tensor reconstruction for multiresolution volume
visualization. IEEE TVCG 17, 12 (2011), 2135–2143. 2

[SJ94] SHEN H.-W., JOHNSON C. R.: Differential volume rendering: A
fast volume visualization technique for flow animation. In Proc. IEEE
Vis (1994), pp. 180–187. 2

[SW03] SCHNEIDER J., WESTERMANN R.: Compression domain volume
rendering. In Proc. IEEE Vis. (2003), pp. 293–300. 2, 6

[TBR∗12] TREIB M., BURGER K., REICHL F., MENEVEAU C., SZALAY
A., WESTERMANN R.: Turbulence visualization at the terascale on
desktop PCs. IEEE TVCG 18, 12 (2012), 2169–2177. 2, 3, 6

[WBSS04] WANG Z., BOVIK A., SHEIKH H., SIMONCELLI E.: Image
quality assessment: from error visibility to structural similarity. IEEE TIP
13, 4 (2004), 600 –612. 8

[Wes95] WESTERMANN R.: Compression domain rendering of time-
resolved volume data. In Proc.IEEE Vis (1995), pp. 168–175. 3

[WF08] WEISS K., FLORIANI L.: Modeling and visualization approaches
for time-varying volumetric data. In Proc. Advances in Visual Computing
(2008), pp. 1000–1010. 1, 2

[WGLS05] WANG C., GAO J., LI L., SHEN H.-W.: A multiresolution
volume rendering framework for large-scale time-varying data visualiza-
tion. In Proc. Volume Graphics (2005), pp. 11–19. 3

[WWS03] WOODRING J., WANG C., SHEN H.-W.: High dimensional
direct rendering of time-varying volumetric data. In Proc. IEEE Vis
(2003), pp. 417–424. 2

[WWS∗05] WANG H., WU Q., SHI L., YU Y., AHUJA N.: Out-of-core
tensor approximation of multi-dimensional matrices of visual data. ACM
TOG 24, 3 (July 2005), 527–535. 2

[WYM08] WANG C., YU H., MA K.-L.: Importance-driven time-varying
data visualization. IEEE TVCG 14, 6 (2008), 1547–1554. 3

[WYM10] WANG C., YU H., MA K.-L.: Application-driven compression
for visualizing large-scale time-varying data. IEEE CGA 30, 1 (2010),
59–69. 3

[YNV08] YELA H., NAVAZO I., VAZQUEZ P.: S3Dc: A 3Dc-based
volume compression algorithm. Computer Graphics Forum (2008), 95–
104. 2

[YZW∗17] YU S., ZHANG S., WANG K., XIA Y., ZHANG H.: An
efficient and fast GPU-based algorithm for visualizing large volume of
4D data from virtual heart simulations. Biomedical Signal Processing
and Control 35 (2017), 8–18. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

