
TDM Edge Gateway: a flexible
microservice-based edge gateway architecture for

heterogeneous sensors?

Massimo Gaggero1[0000−0003−3309−5854], Giovanni
Busonera1[0000−0003−3266−7857], Luca Pireddu1[0000−0002−4663−5613], and

Gianluigi Zanetti1[0000−0003−1683−7350]

CRS4 - Center For Advanced Studies, Research And Development In Sardinia,
Loc. Piscina Manna, Edificio 1, 09050 Pula (Ca), Italy

{massimo.gaggero,giovanni.busonera,luca.pireddu,gianluigi.zanetti}@crs4.it
http://www.crs4.it

Abstract. How to effectively handle heterogeneous data sources is one
of the main challenges in the design of large-scale research computing
platforms to collect, analyze and integrate data from IoT sensors. The
platform must seamlessly support the integration of myriads of data
formats and communication protocols, many being introduced after the
platform has been deployed. Edge gateways present a solution to this is-
sue. These devices, deployed at the edge of the network, near the sensors,
communicate with measurement stations using their proper protocol, re-
ceive and translate the messages to a standardized format, and forward
the data to the processing platform. Edge Gateways can also support
applications with low remote connectivity guarantees through local data
buffering and preprocessing. In this work we present the TDM Edge
Gateway architecture, which we have developed in a concrete problem
scenario – in the context of the “Tessuto Digitale Metropolitano” re-
search project – to meet the requirements of being self-built, low-cost,
and compatible with current or future connected sensors. The archi-
tecture is based on a microservice-oriented design implemented with
software containerization and leverages publish/subscribe Inter Process
Communication to ensure a modularity and resiliency. Costs and con-
struction simplicity are ensured by adopting the popular Raspberry Pi
Single Board Computer.

Keywords: Edge computing · Smart cities · Iot · Sensor networks ·
MQTT · Publish Subscribe · Embedded · FIWARE.

? This work was supported by the TDM project funded by Sardinian Regional Author-
ities under grant agreement POR FESR 2014-2020 Azione 1.2 (D. 66/14 13.12.2016
S3-ICT).

2 M. Gaggero et al.

1 Introduction

In recent years the spread of internet-connected devices has proven to be an
important and bountiful source of data for the development of new services in
different application domains in industry and research. However, research appli-
cations often suffer from the frequent use of closed and proprietary components
and the impossibility to freely export the acquired data. At the same time, there
are examples of research and non-profit projects that have successfully created
large sensor networks supported by volunteers that build, install and operate
sensor stations on their own premises [23]. While volunteer project participants
cover deployment and maintenance costs, they receive in return the results and
services provided by the research – such as environmental monitoring, weather
and power-consumption forecasting, visualization tools and time-series statistics.
The adoption is favoured by low costs and ease of customization and program-
ming, factors that are motivating the adoption of microcontroller-based devel-
opment board as hardware platforms for such use cases. However, using these
kinds of devices poses important issues to the data collecting infrastructure from
the point of view of security, reliability and, especially, device heterogeneity.

In this paper we describe a novel architecture of an Edge Device that is de-
signed to effectively address the issue of device heterogeneity in distributed data
acquisition networks for research. Its primary purpose is to translate sensor-
specific data to a standard FIWARE-compliant data model [11] and form bridge
between the sensor’s native communication protocols and the computing plat-
form. Different application scenarios are supported:

– edge device with no user interaction for data acquisition in buildings, plants
and farmlands;

– edge station in private home with local data viewing and possible interaction
with central facility;

– edge network gateway for wireless broadband communication in areas where
no cable broadband link are available;

– mobile edge gateway that can provide store-and-forward capabilities for re-
source constrained sensors.

Primary requirements for this Edge Gateway are flexibility and robustness. The
Edge Gateway must guarantee seamless integration of future sensors and appli-
cations without affecting those already present. The adoption of a microservice-
oriented approach provides the required modularity [9]: the various functionality
provided by the device is distributed in different separate micro applications,
each only implementing one service. Microservices are delivered by means of
lightweight software containers packaged with all the required files and libraries.
Microservices and containerization also provide robustness: a broken module
does not directly affect the whole system or taint others executable context,
while incompatible libraries are kept separated among different containers (the
executable environment is insulated) [19]. Another point of robustness in our
design is represented by the use of the publish/subscribe [27] paradigm for data

Flexible Edge Device – preprint 3

exchange between microservices. This asynchronous communication pattern al-
lows the different applications to work even if there are no sender or receiver
modules alive. Again, module failures are not propagated by means of socket
errors, timeouts or service unavailability. At the same time, the addition or re-
moval of microservices does not require a system reboot or a message-routing
reconfiguration.

This Edge Gateway has been developed, tested and its deployment in re-
search context is currently underway withing the context of the “Tessuto Digi-
tale Metropolitano”1 (TDM) research project, which aims to develop innovative
applications for Smart Cities in the fields of Weather Safety and Nowcasting,
Citizen Energy Awareness, and Large Dataset Visualization for Cultural Her-
itage. These vertical applications depend on a mixture of data from different
sources – from satellites to meteorological radar, and particularly to weather,
air and energetic sensors distributed over the Metropolitan Area of Cagliari. To
facilitate the recruitment of volunteer sensor deployers to the project, the sen-
sors platform was chosen to be low-cost, ready-made and available, open source
and open hardware. Moreover, given that all the developed code, documentation
and Reference Designs have been made available to the public as open source,
the creation and adoption of new sensors and the interest of diverse research
fields are encouraged too. Thus, the Edge Gateway must bridge a multitude of
sensor formats and protocols to our Lambda-architecture platform for storage
and processing. One distinctive feature of TDM Edge Gateway is that it is na-
tively FIWARE compliant. FIWARE is “a curated framework of Open Source
platform components to accelerate the development of smart solutions”. It pro-
vides a common set of Open Source APIs for data exchange, the Next Generation
Service Interface, software components for IoT and Big Data integration, and a
large set of harmonized data models. Given the portability and interoperability
they provide to the infrastructure for Smart Cities and Smart Solutions, the
FIWARE NGSI API has also been adopted by the Open and Agile Smart Cities
(OASC) network for the integration of services among the cities taking part in
the initiative [12].

The rest of the paper is structured as follows. In Section 2 we describe the
context of self-built sensors and research projects that rely on them. In Section 3
we describe the architecture of our Edge Gateway and its components, while the
developed system, its testbed and deployment is explained in Section 4. Section 5
discusses the state of the art of this specific research field and Section 6 concludes
the manuscript summarizing its contribution and proposing future developments.

2 Low-Cost, Self-Built Smart Sensors

Online development platforms for open source projects – e.g., GitHub2 – host a
myriad of projects for weather stations and metering devices based on boards like
Arduino, NodeMCU [21] and Raspberry Pi. The WiFi network capabilities and

1 http://www.tdm-project.it/
2 https://github.com/open-source

4 M. Gaggero et al.

the availability of a large set of open source communication libraries allow users
to interact with the devices with nothing more than a smartphone and a web
browser, while the acquired data can be forwarded to remote cloud infrastruc-
tures for further storage and analysis. There are several examples highlighting
the possibilities offered by these platforms. For instance, Luftdaten project [23]
was started in the OK lab Stuttgart with the goal of monitoring air quality in the
entire city through a network of user-volunteered devices. The project provides
detailed instructions on how to self-build a compatible measurement station and
join the project. The device’s design is based on the low-cost NodeMCU board.
The core is the widely used WiFi-capable ESP8266 microcontroller and the open
source firmware provides supports a large set of sensors like fine dust, temper-
ature, humidity and barometric pressure. The user-friendliness and low-cost of
their design has a enabled voluntary participation to the project to reach excel-
lent coverage over much of central Europe and show various outposts across the
globe, from North America to Australia. Another example arises from applica-
tions in agriculture, where such low-cost devices have been used for field mon-
itoring and food chain tracking [26]. The work points out the importance and
challenges of Wireless Sensor Network (WSN) in farmlands and greenhouses and
the need for the cloud or fog computing paradigm to address the data analysis
phase. A survey of WSN node platforms, wireless protocols and typical hard-
ware requirements for applications in agriculture is presented as well as some
real-world deployment issues as the impact of temperature and humidity to the
node communications. Moreover, the paper discusses the problem of security
and interoperability at different levels. Another example are smart home con-
trollers for home environmental comfort. They use temperature, humidity and
luminosity sensors to control HVAC systems or curtains but their data, relayed
to a Cloud platform, can be also used for research on environment and energy
efficiency [1]. In [25] is introduced a distributed low cost wireless sensor network
(WSN) used as data center temperature monitoring system. Each node of the
sensing system is composed by two temperature sensors connected to a ESP8266
that acts both as the DHT11 interface and as the wireless communication unit.
Moreover, the ESP8266 performs some preprocessing jobs before sending data
to an external cloud facility. From the point of view of Electrical Metering, the
IotaWatt [16] is a device that monitors up to 15 channels. One is reserved for
voltage measures whereas the remaining 14 can be used to acquire voltage or
power measures. The latter are actually obtained by using a current transformer
passive sensor. The IoTaWatt is based on the ESP8266 and is able to connect to
a local WiFi for logging data to an external server. The capability of these sensor
to send the data to remote Clouds and their spread in houses and public build-
ings (many of these sensors are used for education purposes) makes these device
very attractive for research purposes in fields like Urban Computing, Weather
Forecasting and Now-casting, agriculture [26] and citizen Energy Awareness.

Flexible Edge Device – preprint 5

2.1 Heterogeneity issues

Connected sensors represent a large source of information for Big Data analysis,
due to the high numbers of installed devices, and due to the possibility of cover
large areas with a high resolution. At the same time they represent for Big
Data platforms a source of added complexity. Scalability, fast data access and
real-time computation (i.e. in Lambda Architectures) usually require a common
message format for data received from remote sensors. This in turn involves
standardization of the devices used as measurement stations that means the
adoption of same vendor, model and type devices or a customization of their
firmware, where possible. This constitutes an access barrier for citizens, hobbyists
and students who wants to join research projects, reducing the potential number
of the sensors. On the other hand, to implement specialized endpoints for the
different message formats increases the complexity and the costs of the collecting
infrastructure, reduces the range of supported devices and inherently leads to
another access barrier. A solution to the “standardize vs specialize” problem is
represented by the insertion at the edge of the network and between sensors and
the cloud of a bridging or gateway device. Edge Gateways are devices provided
of enough computation and storage resources to intercept, collect and translate
the messages received from the local sensors and forward them to the cloud
facility in a common format using a common network protocol. This allows to
address IoT heterogeneity issues and overcome some common sensor resource
restrictions like lack of temporary storage, data pre-processing, compression,
encryption and strong authentication, ability to cope with network disruption. In
addition, Edge Gateways can host more resource intensive services like database,
data visualization tools and data processing.

However, the introduction of the Edge Gateway in the architecture is a cost in
terms of development, maintenance and added hardware. Nevertheless, a proper
choice of the hardware platform can limit the additional costs of the Edge Gate-
way. ARM-based Single Board Computers like those of the Raspberry Pi have
proven to have enough processing, memory and storage resources to be used as
low-cost, energy-efficient computation nodes [14][5] and they are readily avail-
able on the marketplace. Costs in complexity can be reduced while reaching
the goal of flexibility adopting for the software architecture a modular approach
and technologies that allow that like lightweight virtualization, insulation and
asynchronous communications.

3 TDM Edge Gateway Architecture

The TDM Edge Gateway follows a microservice-based design. The function-
ality it provides is distributed across separate micro-applications deployed as
Docker [7] containers on the edge device. Data exchange between microservices
is performed asynchronously through the publish/subscribe MQTT [22] proto-
col. MQTT is also used to forward data from the Edge Gateway to the acqui-
sition and processing platform using an encrypted and authenticated channel.
In addition, data is also written to a local InfluxDB instance. From here it can

6 M. Gaggero et al.

be queried by applications running directly on the Edge Gateway, such as the
dashboard.

Fig. 1: Edge Gateway Architecture

TDM Edge Gateway microservices are divided into three roles: handlers, con-
sumer or dispatcher and ancillary services. These are described in the following
paragraphs.

Handlers. Handlers are the microservices that receive, translate and store the
data that arrives from sensors and stations. Handlers are specialized for each
type of sensor or station – rather than having a single service that deals with
the heterogeneity of transmission protocols and message formats. Sensors and
sensor stations may be remote, transmitting data via network, or they may be
directly connected to the Edge Gateway. The handler’s main tasks are to:

– establish and maintain communications with the sensor;
– receive and write data to the local InfluxDB database;
– translate the sensor message from the native to the cloud format;
– publishing the translated messages to the local MQTT broker.

By publishing the data on the MQTT bus, the handlers make the data available
to the any other subscribed microservices on the Edge Gateway, making easy
to insert additional functionality. Handler services are further divided in sen-
sor handlers, which deal with sensors directly attached to the Edge Gateway,

Flexible Edge Device – preprint 7

and station handlers, which deal with remote stations equipped with one or
many sensors (i.e. weather stations with sensors for wind, rain and atmospheric
particulate). Edge Gateways can easily support multiple stations (i.e. stations
in different rooms or apartment in a building). They are data producers and
MQTT publishers.

Fig. 2: Data Flow in Station Handler

Dispatcher. The dispatcher forwards all messages passing through the MQTT
broker to the data processing platform. It is a real-time consumer of the all the
data published on the MQTT bus – since it is subscribed to all the MQTT topics.
The dispatcher is also a publisher to the MQTT broker on the data processing
platform.

Ancillary Services. A number of ancillary services run on the Edge Gateway
to provide supporting functionality for application microservices and for user
interaction. The Mosquitto [10] Open Source lightweight MQTT broker provides
the internal publish/subscribe MQTT bus. Indeed, Mosquitto is a core com-
ponent of the system as it provides the flexible and scalable interconnection
between message handlers and dispatchers. Second, the Open Source time series
database Influxdb [15] is used to locally store data received from sensors and
stations connected to the Edge Gateway. While real-time data can be retrieved
by other services on the edge device using the MQTT internal bus, services that
require deferred access or that need to process data in batches can query the
Influxdb database. The final ancillary service, the Grafana [13] Open Source
web-based dashboard, is an example of this use case. It is provided to visualize
data stored in the local Influxdb database – potentially as customized graphs,
gauges and entire dashboards – and also to set-up alarms.

8 M. Gaggero et al.

Fig. 3: Data Flow in Dispatcher

3.1 Software Containers

Individual microservices are run on the Edge Gateway in separate Docker con-
tainers. Deploying these components as containers enables us to better leverage
the microservice architecture, allowing each one to be independently developed,
updated, or deployed while providing better protection against compromising the
functionality of other microservices and of the system as a whole. The adoption
of software containers for our use case does not impose any significant overhead
in terms of computing resources [4, 6], particularly since the services are long-
running. Using Docker container images does impose a slight storage overhead
as compared to native software installation due to the write-only layered image
storage approach – which can easily result in some degree of file duplication
– but that effect is controlled by compiling the images carefully. In addition to
minimizing storage requirements, minimizing container image sizes also improves
container download and start-up time [8], thus accelerating software updates. In
our Edge Gateway, the container-based services are composed with the Docker
Compose tool. It creates and manages the entire deployment consisting of the
container-based microservices, an isolated internal virtual network to connected
them, the external service endpoints, and persistent volumes. It also automati-
cally downloaded the containers images if they are not already cached locally on
the Edge Gateway.

4 Implementation

4.1 Edge Gateway Hardware and Operating System

The hardware specifications Raspberry Pi Ver. 3 Model B+ (RPi) used for our
implementation are outlined in table 1. The RPi runs Arch Linux for Raspberry

Flexible Edge Device – preprint 9

Pi 3 [3]. We customized the default OS image to simplify its installation, con-
figuration and maintenance by inexperienced users – e.g., high-school students,
hobbyists. The resulting tdmimage is prepackaged with Edge Gateway’s docker-
compose definition file, all the Docker-related components required to run it, and
a number of utility scripts to help manage the Edge Station. The Edge Gateway
is programmed to automatically configure its internal WiFi device as an Access
Point on the first boot after installation to facilitate the configuration of the
system by the user. The Edge Gateway is accessed via SSH and settings must
be edited in a single configuration file. After the initial configuration – which
includes appropriately configuring the device to connect to the domestic network
– the system forces the user to change the default password and automatically
disables the WiFi Access Point mode.

SoC CPU ISA Cores Clock Memory
Broadcom

BCM2837B0

64-bit ARM

Cortex-A53

ARMv8-A

AArch64

4 1.4 GHz 1 GB

(shared)

Networking
Ethernet 1Gbps WiFi 802.11.b/g/n/ac Bluetooth 4.2

Storage
microSD card

Peripherals
4 x USB 2.0 40 x GPIO HDMI I2S CSI

Table 1: Raspberry Pi 3 Model B+

4.2 Handlers

The handler microservices in the Edge Gateway act as the interface between the
myriad of possible sensors and the data processing platform. Our handlers on
the Edge Gateway translate the various incoming message formats to a common
Fiware-compliant model. Once converted, the Fiware messages are published on
the Edge Gateway’s internal MQTT bus. The handler microservices are imple-
mented in Python and use few other external libraries for communication and
local storage.

The current Edge Gateway implementation includes the following handler
microservices:

SFDS handler: for the Stuttgart Fine Dust Sensor [23];
IotaWatt handler: for the IotaWatt Energy Monitor [16];
Device handler: for Edge Gateway telemetry and directly connected sensors;

These are better described in the following paragraphs.

10 M. Gaggero et al.

SFDS station handler. The SFDS station handler microservice implements
communications and data acquisition from the Stuttgart Fine Dust Sensor –
hence the name. SFDS stations are equipped with a battery of sensors, includ-
ing temperature, humidity, barometric pressure, wind and rain, and PM2.5 and
PM10 particulate levels. These stations can be configured to HTTP POST data
to an arbitrary InfluxDB database. We leverage this feature by implementing a
compatible interface in the SFDS handler. Thus, the SFDS station is configured
to send its data to the Edge Gateway as if the latter was an InfluxDB instance;
the SDFS station handler running on the Edge Gateway accepts the POST re-
quests in InfluxDB format, acquires the data and then does it processing. SFDS
messages on the Edge Gateway are published on the MQTT bus with the topic

WeatherObserved/esp8266-XXXX.DHT22

where WeatherObserved is the message type, esp8266-XXXX is the unique iden-
tifier of the transmitting station and DHT22 is the ID of the sensor that gener-
ated the data.

IotaWatt station handler. The IotaWatt microservice handles interaction
with the IotaWatt Energy Monitor [16]. This station can measure voltage, cur-
rent and power, along with other derived electrical measures, on up to 14 different
electrical channels. Since the IotaWatt station supports sending its data to an
InfluxDB instance, the data transmission mechanism between the station and
the Edge Gateway analogous to the one used for the SFDS station: the stations
is configured to sent its data to a remote InfluxDb database, which is actually
our Edge Gateway. Internal IotaWatt messages are published with the topic

EnergyMonitor/IOTAWATT-1.HVAC

where EnergyMonitor is the type the message, IOTAWATT-1 is the unique iden-
tifier of the transmitting station and HVAC is the channel (HVAC) monitored.

Device handler. The Device handler generates messages with internal teleme-
try from the Edge Gateway system and handles sensors that are physically con-
nected to our device. Thus, this microservice can produce multiple message types.
The Housekeeping message is generated to send internal telemetry data, such as
the kernel running on the device, internal memory, storage and processing re-
sources available and occupied, etc. In addition, the handler reads data from a
HTU21D temperature/humidity sensor that was physically attached to the Edge
Gateway (through the I2C electric bus). An message of type HTU21D is generated
to communicate the data read from this sensor. As with all handlers, the data is
stored to the internal InfluxDB Database and published to the MQTT broker.
The two topics for the device handler messages are:

DeviceStatus/EDGE.HOUSEKEEPING

DeviceStatus/EDGE.HTU21D

Flexible Edge Device – preprint 11

4.3 Dispatcher

As described in Sec. 3, the Dispatcher microservice relays the data acquired by
the Edge Gateway to the data collection platform. The external transmission to
the platform is authenticated by the remote MQTT broker and encrypted with
SSL/TLS certificates. The dispatcher implements dynamic throttling, adjusting
the transmission rate and policy based on the available network bandwidth.
This feature implemented at the level of the Edge Gateway allows the overall
platform to cope with temporary network outages and support widely differing
uplink technologies – e.g., from LTE to ADSL or even GSM – even when using
sensors with very simple transmission logic. Finally, the Dispatcher also adds
Edge-Gateway-related metadata to the outgoing messages, like Edge Gateway
ID, timestamp and position. Further, the message topics are modified to comply
with the requirements of the IoT Fiware component IoTAgent. Specifically, an
API key that identifies the type of devices and the Edge Gateway identifier is
prepended to the internal MQTT topic, /Type/Edge.Station.Sensor. The string
’attrs’ is appended as per Fiware IoT protocol requirements. As an example,

WeatherObserved/esp8266-YYYYYYY.BME280

becomes

/<APIKEY>/Edge-XXXXXXXX.esp8266-YYYYYYY.BME280/attrs

Like the Handlers, the Dispatcher is also implemented in Python.

4.4 Dashboard

The Grafana ancillary service on the Edge Gateway is used to provide a user-
accessible interface to the data recorded data on the local InfluxDB instance.
A convenient web dashboard that summarizes data collected from the standard
handlers described in this Section is provided and preinstalled. Moreover, users
can be easily generate their own views of the data leveraging Grafana’s func-
tionality to plot graphs, charts and create gauge widgets that visualize collected
data. In addition, the Grafana service can also be configured also to send email
alerts in the case of critical events – e.g., measured temperature too high or too
low, unavailability of some sensor. Fig. 4 shows a screenshot of Grafana running
on the Edge Gateway.

4.5 Creating small Docker container images

The size of software container images used in the Edge Gateway implementation
directly affects the time to download and launch the images [8] – which entails
effects on the time to first start the device and to deploy updates. To minimize
their size we have chosen the Alpine Linux image for the ARM64 architecture [2]
as the base for all our container images (about 5 MB in size). The image grows
quickly with the installation of the Python interpreter and external libraries.

12 M. Gaggero et al.

Fig. 4: Screenshot of the Grafana dashboard running on the Edge Gateway.

However, the layered storage approach used by Docker gives us the opportunity
to contain the total size of all the images used by our system by ensuring they
re-use the base layers – which are therefore downloaded and stored only once
– while all the application-specific files are added at the top of the stack. Our
overall layer stack is illustrated in Fig. 5.

To produce efficiently compact top layers for our images a multi-stage Dock-
erfile is used. The building process is split in a building stage and a final stage.
The first image is used to build the application and libraries, and thus contains
all build-time dependencies like compilers, header files, and so on. On the other
hand, the latter image includes only the resulting executables (copied from the
build image) and the runtime dependencies.

Fig. 5: Container layer stack

Flexible Edge Device – preprint 13

Table 2 summarize the different layer sizes as reported by the Dive3 in-
specting tool. Splitting handlers and dispatcher into simple microservices that
only implement a single functionality results in code that is relatively short
and readable, and facilitates debugging and correcting errors. By creating these
microservices on images that share their base alpine-python image layers, the
storage required by the images is reduced on average by 70%, thus avoiding the
potential pitfall of multiplying the volume if images to transfer and store by the
total number images to be used on the system.

Container Sensors Lines Layer Size Container Size

sdfs Weather/Air 402 20 MB 77.7 MB
iotawatt Energy 354 20 MB 77.7 MB
device Onboard 476 16 MB 73.9 MB
dispatcher Data Relaying 424 11 MB 68.9 MB

alpine-python Base System and Python 58.0 MB

Table 2: Containers overview

4.6 Deployment

A number of Edge Gateways were deployed and tested, first in a laboratory
setting and later in offices and private homes. Fig. 6 depicts the overall architec-
ture of the project TDM infrastructure spanning from sensors to the cloud-based
data processing platform. The Edge Gateways collect and relay to the processing
platform the data generated by sensors and stations. The TDM platform also in-
tegrates data from other sources, like satellite images, weather radar images, and
various other geo-referenced data. Data are archived and indexed by a system
that combines different technologies (i.e., HDFS, SQL and NOSQL databases)
storing data on the most appropriate system depending on its characteristics:
e.g., point-like, images, time-series, etc. Various means are provided to access
and process the collected data. Jupyter4 notebooks are available for ad hoc
queries and analyses. Event-driven and periodic unattended operations can be
performed using the Apache Airflow5 workflow engine or through Grid Engine6

batch computing jobs. Finally, aggregated and processed data are published as
Open Data on the TDM CKAN 7 portal from where they can be downloaded.

Two Open Source Open Hardware sensor and measurement stations plato-
forms were used as a starting sensor set: the SFDS weather and air station

3 https://github.com/wagoodman/dive
4 https://jupyter.org/
5 https://airflow.apache.org/
6 http://gridscheduler.sourceforge.net/
7 https://ckan.org/

14 M. Gaggero et al.

Fig. 6: TDM Cloud Architecture

and the IotaWatt Energy Monitor. To support the three different scenarios for
weather and air measurements – outdoor, indoor, and mobile – and to make sta-
tion construction accessible to low-skill users, we have designed and produced
a single PCB board to distribute to a number of early joiner volunteers. This
board contains all the connectors to integrate the different sensors and mod-
ules to build the three types of station. No soldering is required and a board
can be quickly reconfigured from one scenario to another by plugging and un-
plugging the desired modules. Fig. 7 shows the Indoor station with the board,
the temperature, humidity and barometric pressure sensors, and the ESP12-F
micro-controller. The same image also shows the IotaWatt module in our Com-
puter Room, the TDM Edge Gateway with a directly attached sensor for indoor
temperature and humidity measurements, and the mobile station boarded on a
bike for mobile air quality data acquisition.

5 Related Work

Edge Computing is a hot topic in IoT and BigData analysis driven by the desire
to leverage IoT devices for the wealth of valuable data they can collect and the
fact that scalability, network latency and resiliency concerns make it unviable to
rely solely on centralized computing to collect the data generated by large sen-
sor networks. Pace et al. [24] identified Edge Computing as a way to overcome
the issues that affect Cloud computing in Healthcare applications. Large-scale
patients services can burden the network and thus deteriorate latencies and
break the real-time constraints of critical applications. Moreover, patient data
cannot always be store in Cloud due to privacy and data security concerns. In
addition, speed of data analysis and response is crucial in autonomous and semi-
autonomous decision systems. They propose the BodyEdge complete architecture
for a mobile Edge Gateway for uses in the Healthcare industry. It is composed by
two complementary components: a smartphone-hosted relay node for the Body
Sensor Network devices that cannot directly talk with the Edge Gateway, and

Flexible Edge Device – preprint 15

(a) Indoor Station (b) IotaWatt

(c) Edge Gateway (d) Mobile Station on bike

Fig. 7: TDM Sensors and Edge Gateway

16 M. Gaggero et al.

an Edge Gateway that actually provides the healthcare services and communi-
cations to the far Cloud. Unlike the architecture we propose, BodyEdge modules
seem to be monolithic applications. Microservice-based design or containeriza-
tion are not mentioned, and communication between the modules are described
as client-server.

In comparison, the AGILE framework for IoT gateways is designed based
on a microservices architecture [8] and its software components are delivered
using Docker containers. Various IoT high-level functionality is provided, such
as device and protocol management, UI and SDK for IoT development, gateway
management UI. Similar our architecture, protocol handlers are implemented in
individual containers and communicate with each other using DBus. Differing
from the TDM Edge Gateway, AGILE specializes handler microservices on sen-
sor communication protocol, instead of sensors types. The primary motivation
behind this different decision is the fact that the TDM station handlers are pri-
marily designed to translate sensors data to a common FIWARE format. It is
not specified if AGILE uses D-Bus publish/subscribe or in one-to-one request-
response mode.

Another architecture for general purpose Edge Gateways, similar to our TDM
Edge Gateway, is the LEGIoT – Lightweight Edge Gateway for the Internet of
Things [20]. The architecture proposed is based on microservices running on
Docker containers and implemented using low-cost Single Board Computers like
Odroid (C1+, C2) and Rasbperry Pi (RPi2, RPi3). It has a modular and flexible
design similar to TDM Edge Gateway. Modules are divided in Northbound, in
charge of communication to the remote end, and Southbound that deal to the
local sensors. Northbound and Southbound modules are activated on-demand to
limit power usage. Received data are saved to a local database and are made
available to other containers. Unlike in our TDM Edge Gateway, the internal
data exchange is performed by a dedicated module using a custom API, while
the TDM design relies on standard asynchronous and agnostic publish/subscribe
mechanisms. A deeper difference between the two designs is that the TDM Edge
Gateway continuously transmits the acquired data, while LEGIoT implements
a “pull” strategy, whereby data are retrieved by the remote end upon activation
of a suitable Northbound module acting as protocol server. Finally, LEGIoT
supports multi-tenancy while TDM Edge Gateway is single-tenant by design,
responding to specific demands of TDM research.

6 Conclusions and Future Work

This paper presents a flexible and scalable microservice-based Edge Gateway
architecture that facilitates integrating heterogeneous sensors in complex IoT
data acquisition applications. The architecture is particularly well suited to re-
search applications, given the possibility to quickly and easily add or substitute
its on-board software components. Indeed, the TDM Edge Gateway architec-
ture was developed and is being used in the context of the “Tessuto Digitale
Metropolitano” project, where it is a component of a research-oriented urban

Flexible Edge Device – preprint 17

technological fabric. The testing and deployment phases confirm the advantages
of the microservice architecture when combined with publish/subscribe data ex-
change protocols.

In future work, as the installed base of the device expands, with deployments
in public buildings, schools and private dwellings, a number of measurement
and performance statistics will be available for future study. The introduction of
auto-tuned transmission policies based on bandwidth statistics and availability is
planned for the dispatcher. From the Edge Computing perspective, we are eval-
uating the integrating computational algorithms for the estimation and forecast
of power consumption, such as those by Massidda et al. [17, 18], as containerized
applications. Finally, feedback mechanisms for home appliances and actuators
are under evaluation.

References

1. Al-Kuwari, M., Ramadan, A., Ismael, Y., Al-Sughair, L., Gastli, A., Benam-
mar, M.: Smart-home automation using IoT-based sensing and monitoring plat-
form. In: 2018 IEEE 12th International Conference on Compatibility, Power Elec-
tronics and Power Engineering (CPE-POWERENG 2018). pp. 1–6. IEEE, Doha
(Apr 2018). https://doi.org/10.1109/CPE.2018.8372548, https://ieeexplore.

ieee.org/document/8372548/
2. Alpine Linux: Alpine Linux Home Page. https://alpinelinux.org/, Online; ac-

cessed 18-April-2019
3. Arch Linux ARM: Raspberry Pi 3 — Arch Linux ARM. https://archlinuxarm.

org/platforms/armv8/broadcom/raspberry-pi-3, Online; accessed 18-April-
2019

4. Beserra, D., Moreno, E.D., Endo, P.T., Barreto, J., Sadok, D., Fernandes, S.: Per-
formance analysis of lxc for hpc environments. In: 2015 Ninth International Con-
ference on Complex, Intelligent, and Software Intensive Systems. p. 358–363. IEEE
(Jul 2015). https://doi.org/10.1109/CISIS.2015.53

5. Cloutier, M., Paradis, C., Weaver, V.: A Raspberry Pi Cluster Instru-
mented for Fine-Grained Power Measurement. Electronics 5(4), 61 (Sep
2016). https://doi.org/10.3390/electronics5040061, http://www.mdpi.com/2079-

9292/5/4/61
6. Di Tommaso, P., Palumbo, E., Chatzou, M., Prieto, P., Heuer, M.L., Notredame,

C.: The impact of docker containers on the performance of genomic pipelines. PeerJ
3, e1273 (Sep 2015). https://doi.org/10.7717/peerj.1273

7. Docker Inc: Docker Documentation. https://docs.docker.com/, Online; accessed
20-May-2019

8. Dolui, K., Kiraly, C.: Towards Multi-Container Deployment on IoT
Gateways. In: 2018 IEEE Global Communications Conference (GLOBE-
COM). pp. 1–7. IEEE, Abu Dhabi, United Arab Emirates (Dec 2018).
https://doi.org/10.1109/GLOCOM.2018.8647688, https://ieeexplore.ieee.

org/document/8647688/
9. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin,

R., Safina, L.: Microservices: Yesterday, Today, and Tomorrow. In: Mazzara, M.,
Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer
International Publishing, Cham (2017). https://doi.org/10.1007/978 − 3 − 319 −
67425− 412, https://doi.org/10.1007/978-3-319-67425-4_12

18 M. Gaggero et al.

10. Eclipse Foundation: Eclipse Mosquitto. https://mosquitto.org/, Online; ac-
cessed 30-April-2019

11. Fiware Foundation: Home — FIWARE. https://www.fiware.org/, Online; ac-
cessed 14-May-2019

12. Fiware Foundation: Smart Cities — FIWARE Open Source Platform for Smart
Cities. https://www.fiware.org/community/smart-cities/, Online; accessed 14-
May-2019

13. Grafana Labs: Grafana — The open platform for analytics and monitoring. https:
//grafana.com/, Online; accessed 30-April-2019

14. Hajji, W., Tso, F.: Understanding the Performance of Low Power
Raspberry Pi Cloud for Big Data. Electronics 5(4), 29 (Jun 2016).
https://doi.org/10.3390/electronics5020029, http://www.mdpi.com/2079-

9292/5/2/29

15. InfluxData: InfluxDB 1.7 documentation — InfluxData Documentation. https:

//docs.influxdata.com/influxdb/v1.7/, Online; accessed 30-April-2019
16. IoTaWatt, Inc: IoTaWatt — Open WiFi Electricity Monitor. https://iotawatt.

com/, Online; accessed 29-April-2019
17. Massidda, L., Marrocu, M.: Quantile regression post-processing of weather fore-

cast for short-term solar power probabilistic forecasting. Energies 11(7), 1763
(july 2018). https://doi.org/10.3390/en11071763, http://publications.crs4.

it/pubdocs/2018/MM18a

18. Massidda, L., Marrocu, M.: Smart meter forecasting from one minute to one year
horizons. Energies 11(12) (december 2018). https://doi.org/10.3390/en11123520,
http://publications.crs4.it/pubdocs/2018/MM18b

19. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux Journal 2014 (03 2014)

20. Morabito, R., Petrolo, R., Loscr̀ı, V., Mitton, N.: LEGIoT: A Lightweight Edge
Gateway for the Internet of Things. Future Generation Computer Systems 81, 1–15
(Apr 2018). https://doi.org/10.1016/j.future.2017.10.011, https://linkinghub.

elsevier.com/retrieve/pii/S0167739X17306593

21. NodeMcu Team: NodeMcu — An open-source firmware based on ESP8266 wifi-soc.
https://www.nodemcu.com/index_en.html, Online; accessed 29-April-2019

22. OASIS Open 2015: MQTT Version 3.1.1. https://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/mqtt-v3.1.1.html, Online; accessed 09-May-2019

23. OK Lab Stuttgart: Home — luftdaten.info — Feinstaub selber messen. https:

//luftdaten.info/en/home-en/, Online; accessed 29-April-2019
24. Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., Liotta, A.:

An Edge-Based Architecture to Support Efficient Applications for Health-
care Industry 4.0. IEEE Transactions on Industrial Informatics 15(1), 481–
489 (Jan 2019). https://doi.org/10.1109/TII.2018.2843169, https://ieeexplore.
ieee.org/document/8370750/

25. Saha, S., Majumdar, A.: Data centre temperature monitoring with ESP8266 based
Wireless Sensor Network and cloud based dashboard with real time alert system.
In: 2017 Devices for Integrated Circuit (DevIC). pp. 307–310. IEEE, Kalyani, India
(Mar 2017). https://doi.org/10.1109/DEVIC.2017.8073958, http://ieeexplore.
ieee.org/document/8073958/

26. Tzounis, A., Katsoulas, N., Bartzanas, T., Kittas, C.: Internet of Things in
agriculture, recent advances and future challenges. Biosystems Engineering 164,
31–48 (Dec 2017). https://doi.org/10.1016/j.biosystemseng.2017.09.007, https:

//linkinghub.elsevier.com/retrieve/pii/S1537511017302544

Flexible Edge Device – preprint 19

27. Wikipedia: Publish–subscribe pattern — Wikipedia. https://en.wikipedia.org/
wiki/Publish-subscribe_pattern, Online; accessed 20-May-2019

