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Abstract

Shape analysis of cell nuclei, enabled by the recent ad-
vances in nano-scale digital imaging and reconstruction
methods, is emerging as a very important tool to understand
low-level biological processes. Current analysis techniques,
however, are performed on 2D slices or assume very sim-
ple 3D shape approximations , limiting their discrimination
capabilities. In this work, we introduce a compact rotation-
invariant frequency-based representation of genus-0 3D
shapes represented by manifold triangle meshes, that we
apply to cell nuclei envelopes reconstructed from electron mi-
crographs. The representation is robustly obtained through
Spherical Harmonics coefficients over a spherical parame-
terization of the input mesh obtained through Willmore flow.
Our results show how our method significantly improves
the state-of-the-art in the classification of nuclear envelopes
of rodent brain samples. Moreover, while our method is
motivated by the analysis of specific biological shapes, the
framework is of general use for the compact frequency en-
coding of any genus-0 surface.

1. Introduction

During the last decades, we witnessed the proliferation of
high-throughput digital acquisition technologies capable to
provide high-quality 3D representations of real-world scenes
and objects in many application domains. The wide availabil-
ity of massive amounts of 3D data is leading the scientific
community to develop novel data-driven 3D analysis and
synthesis methods. Particularly in biology and medicine,
the shape analysis of cell nuclei is considered of paramount
importance for computer-aided diagnostics, since size and

shape of nuclear envelopes can vary depending on cell types
and other, even transient, conditions [73]. Moreover, shape
analysis is also emerging as a very important tool to under-
stand low-level biological processes. For instance, it has
been shown that even little variations in nuclear shape have
important impacts on the regulation of gene expression [53].

Modern nanometric-scale imaging and reconstruction
techniques based on electron micrographs are starting to
create collections of accurate 3D shape measurements of
nuclei, making it possible to develop and exploit quanti-
tative 3D shape analysis frameworks [7]. Geometrically,
the cell nucleus has been, however, mostly studied on in-
dividual 2D images [73], or using close-to-spherical 3D
structures [15, 2]. These approximations are increasingly
proving themselves as substantially too coarse for a number
of applications [53, 6].

In this work, we introduce a compact rotation-invariant
frequency-based representation of general genus-0 3D
shapes, represented by manifold triangle meshes that we
apply to 3D reconstructions of cell nuclei envelopes (Sec. 3).
To this end, natural bases, and explicitly Spherical Harmon-
ics (SH), provide a particularly powerful tool for represent-
ing shapes in a natural way. Compact and effective rotation
invariant descriptors can be obtained from SH coefficients
and used for classification [29, 60].

Traditionally, the usage of SH descriptors has been lim-
ited by the fact that they are defined over a spherical domain,
and deriving an efficient spherical parameterization of 3D
objects is a challenging problem (Sec. 2). To overcome this
issue, we apply a robust conformal parameterization based
on Willmore flow [11], which makes the entire process reli-
able and efficient for general input shapes.

To our best knowledge, this is the first attempt to exploit
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Willmore flow for shape decomposition.
We have applied our framework to the classification of

digital 3D reconstructions of nuclei of brain cells obtained
by segmenting serial electron micrographs at nanoscale res-
olution [6], demonstrating improved robustness and perfor-
mance over competing techniques (see Sec. 6).

While the proposed method is motivated by a specific
application in biology and medicine, our framework is of
general use, and our frequency-based shape representation
is readily applicable to a variety of applications, such as
remeshing, analysis, on-the-fly tessellation, streaming, and
classification. For example, compactness is controlled by
the number of retained SH coefficients, while remeshing is
easily obtained by sampling on the spherical domain.

2. Related work

The proposed method builds on geometry processing so-
lutions for spherical parameterization of manifold objects,
spherical harmonics decomposition, shape analysis and clas-
sification, and extends and applies them to cell nuclei anal-
ysis. Here, we only review the approaches most closely
related to ours, referring readers to extensive state of the art
reports for a wider overview of related fields [25, 14, 46].

Shape analysis in neuroscience The availability of 3D re-
constructions of brain structures is driving the development
of various frameworks for shape analysis in order to clas-
sify and account for variability to be associated to different
structures and conditions [42, 27]. In general, shape analysis
methods are targeted to the full cortex acquired with MRI
methods [66]. Recent methods on 3D morphometric analy-
sis consider frequency decomposition frameworks [58, 12],
functional spaces [59], Random Markov Fields [72], or defor-
mation maps [55, 18] and are mostly used for studying hip-
pocampi shapes [72] or full cortexes affected by Alzheimer’s
disease [59]. With the emergence of high-resolution imaging
data, shape analysis studies of brain structures at nanomet-
ric resolution scale are starting to appear [24, 7, 6]. In this
context, Queisser et al. [53] developed a tool to retrieve
the 3D view of cell nuclear envelopes from laser scanning
confocal microscopy data that has been used to show how
synaptic activity induces dramatic changes in the geometry
of the cell nucleus [69], while Nandakumar et al. [41] ap-
plied conformal mapping to nuclear shapes obtained through
optical projection tomographic microscopy. Finally, Agus
et al. [1, 2] performed classification of nuclear brain cells
through implicit and explicit parametric representations of
cell nuclei obtained from electronic-imaging data, showing a
significant improvement with respect to previous approaches
based on simple spherical or ellipsoidal fittings. Here, we
improve over existing work by considering a robust spherical
parameterization based on conformal flow, thus resulting in

a dramatic improvement of fitting and classification accuracy
for widely variable nuclear shapes.

Shape classification In the general 3D classification do-
main, the exploitation of large amounts of data by machine
learning strategies has led to significant advances [8, 71].
Many current efforts attempt to work directly on raw data,
be it 2D images [67, 74] or 3D voxelized representa-
tions [32, 36, 28], by designing deep neural networks in
which the modelling is hidden and the feature computation
and filtering of information is automatically performed by
the network. In parallel, in order to simplify classification
and automatic shape generation, attempts to reduce the depth
of networks by introducing meaningful parameterizations or
embeddings of input shapes is gaining interest, since such
parameterizations can simplify the automatic classification
or shape generation (model-based or “shallow” learning)
and reduce the number of training examples [61]. In or-
der to alleviate the overhead that dense voxelizations pose
to deep CNNs, octrees have been proposed [67, 54]. An-
other option to feed 3D data into deep CNNs is the use of
rendered multi-views [64, 52] or geometry images [61, 62].
While results are generally promising, Qi et al. [52] observed
that convolutional neural networks (CNNs) based on multi-
view renderings train slower (due to the required rendering
overhead) but outperformed volumetric CNNs during infer-
ence. They address the problem with data augmentation,
multi-orientation pooling and a multi-resolution approach.
On an alternative route, distances [33] or moments derived
from geodesic distance combined with an autoencoder [34]
have been used to derive compact shape descriptors. No-
tably, geodesic local polar coordinates have been used [36],
whereas our method uses a global parameterization. In an
effort to feed scanned shapes directly into deep networks,
Qi et al. designed Pointnet [51], which is invariant under
point permutations in point clouds. Combinations of local
features and either probabilistic Hough transforms [30] or
spectral descriptors derived from the Laplace-Beltrami oper-
ator [74] have also be used to design embeddings in order to
compute shape descriptors that can be fed into subsequent
spatial and/or spectral CNNs. In this paper, we introduce
a compact frequency-based representation that proves ef-
fective for “shallow” classification purposes. In contrast to
existing work, our method relies on a compact frequency-
based representation that is rotation-invariant and requires
no data augmentation or pre-registration of shapes. Further-
more, since our parameterization is global and continuous,
our method does not need to partition the object into local
patches, disks, or derive local feature descriptors. We would
also like to note that our method works with triangulated
objects as-is, i.e., it does not require any resampling, vox-
elization, or rendering of multi-views. Finally, our descriptor
is inherently multi-scale due to the use of Spherical Harmon-



ics and does not need explicit hierarchical data structures.

Spherical parameterization Geometric models are often
described by closed, genus-0 surfaces. For such surfaces,
there exist a homeomorphism to a sphere (that is, a con-
tinuous and invertible function that maps points from the
surface to the sphere) [19, 50]. Thus, the sphere is the most
natural parameterization domain, since it does not require
cutting the surface into patches or disks. Spherical param-
eterization proves to be challenging in practice, for three
reasons. Firstly, it must prevent parametric “foldovers” and
thus guarantee a 1-to-1 spherical map. Secondly, while all
genus-0 surfaces are topologically sphere-shaped, some can
be highly deformed, and creating a parameterization that
adequately samples all surface regions is difficult. Thirdly,
isometric parametrizations rarely exist; the goal of confor-
mal (preserving angles) and equiareal (preserving area) are
contradicting in all but trivial cases [40]. Conformal parame-
terization have recently gained much interest in the computer
graphics community, e.g. [31, 11], since they tend to distort
textures very gracefully by preserving angles. Whereas Li
et al.[31] propose to solve the Laplace-Beltrami equation
using exponential maps to improve numerical robustness
and complexity, more recent publications have used discrete
Willmore flow [4, 44, 13]. Willmore flow is a curvature flow
that can be used to smooth a 3D object into a sphere, thereby
obtaining a parameterization. However, it is a fourth-order
flow, which poses convergence and robustness challenges.
In two successive papers, Crane et al. [10, 11] developed
a computationally efficient and robust method to compute
the discrete Willmore flow for triangulated meshes. In this
work, we build upon their formulation for triangulated sur-
faces [11] to compute a conformal spherical parameteriza-
tion. Non-conformal parameterizations may shear features
on the model, introducing artifacts in the form of high fre-
quency components. Such artifacts are highly undesirable
for our application, since the subsequent spherical harmon-
ics decomposition would require many more coefficients to
serve as an effective shape descriptor.

Spherical harmonics decomposition Given a 2-manifold
surface M, the Laplace-Beltrami operator ∆M (a directional
measure of curvature) induces eigenfunctions that serve as
a natural basis of functions defined over M. This basis is,
in general, called the manifold harmonic basis [65], and, in
case of M being a sphere, spherical harmonics (SH). Due
to SH being the analogue of the traditional Fourier basis, it
can be used to decompose functions over M into frequencies.
For this reason, SH have been popular in computer graph-
ics, e.g., to precompute [20, 63] or sample [26, 38] lighting
contributions. Commonly, the fact is exploited that many
spherical functions occurring in natural phenomena can be
approximated sufficiently using only a few SH coefficients.

SH decompositions have also been used to construct a vari-
ety of 3D shape descriptors. To obtain spherical functions,
intersections between the 3D model and concentric spheres
around the barycenter have been used [17, 29, 45]. General
genus manifolds have been decomposed into star-shaped
patches [39] to facilitate computing the spherical functions.
In contrast, Li et al. [31] and our method use a conformal
mapping that avoids such sampling and the associated loss of
information. To this end, Li et al. solve a diffusion equation
(the Laplace-Beltrami equation). To alleviate slow conver-
gence and numerical issues, exponential maps are used. In
contrast, we use a robust and computationally efficient im-
plementation of discrete Willmore flow. To make the shape
descriptor rotation-invariant, the use of SH energy invariants
has been proposed [29]. Noting that energy invariants lose
information, complete invariants based on canonical Euler
angles and generalized Legendre polynomials have been pro-
posed [31]. Similarly, Althlooti et al. [3] demonstrate the use
of SH to robustly estimate rotation. The derived SH-based
shape descriptors have been successfully used in the context
of shape matching and retrieval [45, 60, 16]. In this work,
we use the incomplete energy rotation invariants of Kazhdan
et al. [29] for their compactness and effectiveness [60].

3. Method overview
Our work is motivated by the analysis of shapes repre-

senting brain structures at nanometric scale. The general
workflow for 3D reconstruction consists of 3D Electron
Microscopy imaging, followed by image registration, and
labelling performed through manual or semi-automatic seg-
mentation techniques [9]. Finally, surface reconstruction
produces closed triangular meshes representing the differ-
ent cellular structures. Given a triangle mesh representing a
genus-0 surface, our framework computes a frequency-based
parametrization that can be applied for classification particu-
larly targeted to biological shapes (see Fig. 1). The method
consists of three main steps:

• spherical parameterization: find a continuous invert-
ible map from the unit sphere to the input mesh, which
maps each mesh vertex to a sphere vertex, in a way that
each mesh edge maps to a great circle arc, and each
mesh triangle maps to a spherical triangle bounded by
these arcs. In this work, in order to obtain a robust
parameterization, we apply a fairing method based on
the minimization of Willmore energy [11] (see Sec. 4).

• spherical harmonics decomposition: given a spheri-
cal parameterization, Spherical Harmonics provide a
complete natural frequency-based basis for represent-
ing functions defined over a sphere. Given spherical
functions representing the coordinates of mesh vertices,
they can be represented as linear combination of har-
monic functions. In this paper, we describe a least-



Figure 1. Pipeline: after acquisition and processing of biological shapes, from triangle mesh closed surfaces our framework is able to
compute a frequency-based representation that is used for classification. The pipeline consists of three main steps: spherical mapping
through robust discrete formulation of Willmore flow, decomposition over the spherical domain through Spherical Harmonics orthonormal
basis, ans shallow classification over energy descriptors.

square method for computing the coefficients of linear
decomposition of coordinate functions (see Sec 5);

• classification: given a shape parameterization com-
posed by a set of complex SH coefficients, energy de-
scriptors obtained from SH coefficients [29] are used
to obtain a rotation-invariant representation. These de-
scriptions can be used to perform classification. In this
work, we show how a “shallow” classification based on
a Support Vector Machines applied to energy descrip-
tors can be used to obtain state-of-the-art performance
on nuclear envelope classification (see Sec 6).

Even though the proposed framework is targeted at the analy-
sis of biological shapes, our frequency-based shape represen-
tation is of general use for a variety of applications, such as
remeshing, analysis, on-the-fly tessellation, streaming, and
classification.

4. Willmore flow parameterization

Figure 2. Willmore flow: Willmore flow is ideally suited to com-
pute the spherical parameterization. A robust discrete version is
able to evolve closed 2-manifolds to conformally equivalent spheres
in a limited number of steps.

The goal of spherical parametrization is to find a bijective
mapping from the original surface to the unit sphere. Given
a genus-0 surface M, a classical way to compute the map-
ping consists of smoothing the original shape through the
minimization of Willmore energy [68], which is a measure

of how much M differs from a sphere. It is defined as

EW (M) =

∫
M

H2dA−
∫
M

KdA, (1)

where dA is a differential surface element, H the mean
curvature and K the Gauss curvature. In this work, we are
concerned with closed 2-manifolds M of genus 0, for which∫

M

KdA = 4π. (2)

Expressing H = 1
2 (κ1 + κ2) and K = κ1κ2 in terms of

principal curvatures κ1, κ2, the following equivalent formu-
lation can be derived from Eq. (1).

EW (M) =
1

4

∫
M

(κ1 − κ2)
2
dA. (3)

From this formulation, it becomes immediately obvious
that the Willmore energy vanishes for a sphere (κ1 = κ2),
whereas it is positive otherwise.

The corresponding L2 gradient flow is called the Will-
more flow. It is a particular type of curvature flow that
describes the evolution of a genus-0 surface M into a sphere.
It is governed by the differential equation

∂tx (t) = −∇EW (x (t)) ∀x (t) ∈M. (4)

One of the main advantages of Willmore flow is the preser-
vation of angles (conformality), which prevents shearing of
features of the mesh and avoids the introduction of unwanted
high frequencies. This makes it ideally suited for a variety
of applications, like texturing, remeshing, and smoothing.

In this work, we introduce Willmore flow for the first
time in the context of shape analysis to compute a robust
spherical parameterization for a subsequent spherical har-
monics decomposition. In practice, we apply the discrete
formulation proposed by Crane et al. [10, 11], which allows
to develop triangulated, closed genus-0 2-manifolds to a
conformally equivalent sphere in a computationally efficient
fashion. Each step involves the following process: calcu-
lating smooth per-vertex normals, calculating the cotangent
Laplacian using the Laplace-Beltrami operator [48], solving
an eigensystem in curvature space, and a Poisson equation.
From a computational perspective, despite the Willmore flow



being a fourth-order flow, all of our examples could be de-
veloped into a sphere in only 10 steps (see Fig. 2). At the
end of the process, from the initial set of vertices

X = {xi = (xi, yi, zi) }ni=1 ⊆ R3, (5)

we obtain the spherical map

W : X→ S2

W : xi 7→ wi = (θi, φi) , (6)

where S2 denotes the unit 2-sphere embedded in R3.

5. Spherical Harmonics decomposition
Since we develop any genus-0 surface to a sphere through

our Willmore flow parameterization, we can define any sur-
face using spherical functions, and spherical harmonics be-
come a natural choice to serve as basis functions [5]. They
are an infinite set of complex functions that are single-valued,
continuous, orthonormal, and complete on the sphere. They
are defined as complex functions with respect to the order l
and degree m in the following way:

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (7)

where l and m are integers such that |m| ≤ l, and Pml are
the associated Legendre polynomials [39]. In Fig. 3 the 3D
graphic representations of spherical harmonics up to order
l = 3 are shown. Any spherical function f(θ, φ) can be
represented by a linear combination of spherical harmonics
Y ml (θ, φ) as follows:

f(θ, φ) =

∞∑
l=0

l∑
m=−l

aml Y
m
l (θ, φ). (8)

This spherical harmonic expansion can be interpreted as

Figure 3. Spherical harmonics: they are complex functions de-
pending on order l and degree m, and they represent an orthonormal
basis for decomposing radial functions.

the Fourier transform for functions defined on the sphere,
converting spherical scalar signals into their frequency spec-
trum. Spherical harmonics have several interesting proper-
ties such as orthonormality, completeness, and coarse-to-fine

hierarchy. In our case, we use them for decomposing the
coordinate functions x(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ)) as
defined by the Willmore flow map W.

For fitting, we define a vectorial surface representation
xLmax(θ, φ) in spherical coordinates as a truncated linear
combination of spherical harmonic complex components, by
limiting the maximum degree to a specific value Lmax, in a
way to have a fixed number of coefficients k = (Lmax+1)2:

x(θ, φ) ≈ xLmax(θ, φ) =

Lmax∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ), (9)

where Y ml (θ, φ) is the harmonic function.

Least-squares problem The least-squares problem that
we need to solve for fitting minimizes the squared distance
between the points and the SH decomposition [5]. We can
write equation 9 in matrix form YC(x|y|z) = X(x|y|z), cor-
responding to three linear systems, one for each component:

y1,1 y1,2 . . . y1,k
y2,1 y2,2 . . . y2,k

...
...

. . .
...

yn,1 yn,2 . . . yn,k




c1(x|y|z)
c2(x|y|z)

...
ck(x|y|z)

 =


x1(x|y|z)
x2(x|y|z)

...
xn(x|y|z)

 , (10)

where yi,j = Y ml (wi = (θi, φi)), cj = cml , with j =
l2+l+m+1, k = (Lmax+1)2, and xi = x(wi = (θi, φi)).
For smoothing the solution, we also added a Tikhonov reg-
ularization term Γ [22], increasingly penalizing the coeffi-
cients with increasing order l. In this way, the least square
problem is defined as:

C(x|y|z) = argmin
C(x|y|z)

(∥∥YC(x|y|z) − X(x|y|z)
∥∥2 + ν

∥∥ΓC(x|y|z)
∥∥2) ,

(11)

leading to the following linear systems

(YHY + νR)C(x|y|z) = YHX(x|y|z), (12)

where YH is the Hermitian (conjugate transpose) matrix of
Y , and where R = ΓHΓ:

R =

l
2
j (l

2
j + 1)2 0

. . .
0 l2max(l2max + 1)2

 . (13)

Here, lj is the spherical harmonics order associated with the
coefficient j. In order to speed-up the decomposition process,
we also considered a residual iterative fitting scheme [57].
We decomposed the fitting problem in a sum of smaller scale
least square problems YsCs = Bs, such that the residual
iteratively decreases ( Bs = X − Bs−1). The matrix Ys

is composed by separating the spherical harmonics order
in bands in a way that the size of the matrix ks does not



exceed a given threshold (in the results provided in this
paper, we separated the problems to keep ks = 100). In all
results of this paper, we used a small regularization value
(ν = 10−5). We solve the linear systems by performing a
robust Cholesky decomposition with pivoting through LDLT
factorization [56].

Rotation invariance In this work, we use the energy
rotation-invariances proposed in [29, 43]. The key obser-
vation is that the L2 vector norm is preserved under rotation.
Therefore, the squared norm of SH coefficients cml at every
frequency l is independent of rotation [31]. We thus define

ξ(l) :=
∑
|m|≤l

‖cml ‖
2
, (14)

using the SH coefficients introduced in Eq. (8). While [31]
points out that these invariants are incomplete—there
are only (Lmax + 1) real-valued invariants instead of
(Lmax + 1)

2 complex coefficients—it is this incompleteness
that make them appealing for shape classification applica-
tions [60].

6. Results
Implementation notes Our framework was imple-
mented in C++, by using an implementation of
conformal curvature flow using spin transformations
(https://github.com/nitronoid/flo), and the Eigen library [23]
for linear least-squares optimization in the case of spher-
ical harmonics parameters. The coefficients of spherical
harmonics components were found by solving the linear sys-
tems in Equation 12 (with regularization factor ν = 10−5),
and OpenMP for parallelizing the solution of linear systems
over different coordinate functions. All fitting sessions were
performed on a Dell XPS 8930 workstation equipped with
CPU Intel i7-9700 3.0GHz, an Nvidia Geforce RTX 2060
and running Windows 10. For reconstructing the objects
from an SH decomposition, we considered a recursive edge
subdivision of the spherical domain, starting from icosahe-
dron approximation of the unit sphere. We also used the
parameters derived from SH decompostion for classifying
the nuclei according to standard machine learning methods,
that we implemented using Jupyter notebooks [21] and the
scikit-learn [47] Python library.

Dataset Our test set is a collection of 92 3D reconstruc-
tions of brain cells nuclei. They were extracted from dense
reconstructions coming from a semiautomatic segmentation
of nanometric scale electron microscopy stacks, obtained
after imaging a volume of brain parenchyma from layer VI
somatosensory cortex of a P14 rat [6]. The nuclear shapes
were manually assigned to known cell types (Fig. 4). All

considered objects are represented by triangular meshes con-
taining around 10K vertices and 20K triangles.

Timing and accuracy Fig. 6 shows accuracy performance
of Spherical Harmonics decomposition coupled with Will-
more flow spherical mapping. For all of the considered
shapes, the initial Willmore flow spherical parameteriza-
tion was obtained with 10 iterations. Displacement errors
computed on all shapes in Fig. 4 are reported in µm. As ref-
erence scale, the average diagonal of the oriented bounding
boxes of the considered nuclear shapes is 11.26± 2.26µm.
Specifically, average error (Fig. 6, left) and maximum error
(Fig. 6. right) are reported for increasing Spherical Har-
monics decomposition (with Lmax ranging from 5 to 25).
It is evident how the fitting error monotonically decreases
by increasing the number of spherical harmonics. As ref-
erence, Fig. 5 shows examples of reconstructions obtained
with SH decompositions for Lmax ranging from 5 to 25.
Nuclear envelopes from different categories are presented:
from top to bottom, neuron, astrocyte, endotelium, microglia,
pericyte, and oligodendrocyte. It can be noted how even a
limited number of coefficients (Lmax = 5) is able to provide
a faithful approximation of the shape of nuclear envelopes.

For timing performances, in Fig. 7 we report the average
computation times for the nuclear shapes on Fig. 4 with our
current C++ implementation, which does not consider any
kind of GPU optimization but only trivial parallel schemes
provided by OpenMP. Specifically, we show the average
computation time for Willmore spherical mapping left, and
for SH decomposition (right). From charts, it appears evi-
dent that Willmore flow evolution is linear with respect to
the number of iterations, while SH decomposition time in-
creases with the number of coefficients, which is quadratic
in Lmax. Specifically, we obtain a total of (Lmax + 1)2

complex coefficients per dimension, resulting (for 3D) in a
total number of k = 6(Lmax + 1)2 values.

Classification using SVM For using the SH parametric
representation, we considered the classical support vec-
tor machine (SVM) [49, 70] with radial basis functions
for deriving predictive models. To evaluate classification
performance, we considered five cases for spherical har-
monics parameterization with Lmax = 5, 10, 15, 20, 25 (de-
noted as SH5,SH10,SH15,SH20,SH25). To reduce the
number of complex coefficients, we applied the rotation-
invariant energy descriptors proposed by Kazhdan et al. [29],
by computing the Lmax + 1 rotation-invariant energies
{ξ (l) , l = 0, .., Lmax}, from the SH coefficients as per
Eq. (14), ξ (l) =

∑l
m=−l ‖cml ‖

2. For each case con-
sidered, we performed grid-searching for configuring two
hyperparameters for the support vector machine model:
the constant γ of the Gaussian radial basis function(
K (xi, xj) = exp

(
−γ‖x−xj‖2

))
, and the weight C for



Figure 4. Input data: the test set is a collection of 92 3D reconstructions of brain cells nuclei: they were extracted from dense reconstructions
coming from a semiautomatic segmentation of nanometric scale electron microscopy stacks, obtained after imaging a volume of brain
parenchyma from layer VI somatosensory cortex of a P14 rat, and manually labelled by domain experts [6].

Figure 5. Nuclear envelopes fitting accuracy: examples of reconstruction of nuclear shapes of different classes. From top to bottom,
neuron, astrocytes, endotelium, microglia, pericyte and oligodendrocyte. The reconstruction is obtained with increasing number of sherical
harmonics (Lmax ranging from 5 to 25).

Figure 6. Accuracy: accuracy of SH decomposition on nuclear
envelopes. For increasing number of spherical harmonics (Lmax

ranging from 5 to 25), average error (left) and maximum error
(right) in µm are reported. As reference scale, the half diagonal of
considered nuclear shapes is 5.63± 1.13µm.

the soft margin regularization function. We carried out
the model training on 92 nuclear shapes of layer VI. We
performed hyperparameter optimization by using the scikit-
learn StratifiedShuffleSplit cross validator, which subdivides
the set in a merge of randomized stratified folds, obtained

Figure 7. Computation times: average computation time for Will-
more flow parametrization (left) and Spherical harmonics decom-
position (right) are reported. Willmore flow is linear with respect
to the number of iterations.

by shuffling samples in a way to preserve the percentage of
samples for each class. The accuracy is evaluated with the
scikit-learn on a test set that is 20% of the total set. The
grid considered for hyperparameter optimization is logarith-
mic with C ranging from 10−2 to 1010, and γ ranging from
10−9 to 103. Table 1 shows statistics of the usage of SVM



Type Hyperp. grid SVM params Accuracy

SH5 γ = 0.01 ,C = 10 0.84

SH10 γ = 10−3 , C = 103 0.81

SH15 γ = 0.01 , C = 100 0.82

SH20 γ = 10−8 ,C = 107 0.79

SH25 γ = 10−3 , C = 105 0.76

Table 1. Support vector machine classification: each representa-
tion determined specific classifier parameters during grid optimiza-
tion. We show evaluation accuracies for different configurations of
SVM parameters γ and C, the optimal set of parameters, and the
corresponding evaluation accuracy.

Figure 8. t-distributed stochastic neighbor embedding: the ap-
plication of t-SNE to the invariant harmonics parametrization of
nuclear envelopes confirms that there is no significant clustering
difference between SH5 (left) and SH25 (right)

model: for each case, we show the accuracy function over
the parameter grid color-mapped with ColorBrewer BuPu
color scheme, the set of best SVM hyperparameters γ and
C, and the best test accuracy score. It appears evident how
even a limited number of rotation-invariant energy descrip-
tors is able to provide accuracy above 80%, while for a big
number of coefficients we start to experience overfitting. We
compared the testing accuracy to results reported by Agus
et al. [2], who used implicit hyperquadrics representations
and SH decomposition of radial surfaces without conformal

spherical mapping. We can see how the usage of conformal
Willmore flow dramatically improves the classification ac-
curacy even for a limited number of coefficients (0.67 and
0.67 for SH4and SH10 in Agus et al. [2] versus 0.84 and
0.82 for SH5 and SH10 for the proposed framework). This
is because performing a conformal spherical allows us to
gracefully handle any genus-0 shape, without degradation
when significantly far from the spherical shape (see in partic-
ular endotelium, microglia, and perycite in Fig. 5). In order
to provide direct visual representation of the parameter data,
we also considered classical dimension reduction schemes
to have a visual representation of nuclear clusters on a re-
duced 2D parameter space. To this end, we used t-SNE
(t-distributed stochastic neighbor embedding) [35], which
maps each high-dimensional object to a two-dimensional
point in such a way that similar objects are modeled by
nearby points and dissimilar objects are modeled by distant
points. Fig. 8 shows the results of t-SNE on spherical har-
monics parameterizations SH5 and SH25. Neurons (green)
form a well-defined cluster which is clearly separated from
all other classes, and it is evident how increasing the num-
ber of coefficients does not provide significant difference in
cluster separation. Moreover, apart from a few outliers, the
clusters representing the various brain cell types are clearly
separated with small overlaps.

7. Conclusions

We presented a framework for classification of biological
shapes represented by manifold genus-0 closed surfaces. Our
approach is based on conformal spherical mapping through
Willmore flow, followed by frequency-based decomposition
through Spherical Harmonics. We tested the method on the
classification of a set of nanoscale reconstructions of brain
cells nuclear envelopes of a juvenile rat, demonstrating the
capability to capture the overall shape with few coefficients,
and achieving state-of-the art results in the classification task.
The obtained representation is compact and meaningful, and
it can be extended in various ways: first of all, for the analysis
of more complicated shapes exhibiting higher frequency
details, we plan to reduce the computation complexity of
SH decomposition by combining incremental schemes based
on the sampling theorems over spherical domain [37] with
local density representations induced by conformal mapping
over the sphere. Moreover, we plan to exploit our Spherical
Harmonics decomposition framework for evaluating other
rotation-invariant representations, like distance to barycenter,
curvature, or histograms, for shallow classification, as well as
for embedding for feeding deep classifiers for more general
shape analysis tasks on heterogeneous shape collections.
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