
Sketching 3D Animations
Jean-Francis Balaguer and Enrico Gobbetti

CRS4
Center for Advanced Studies, Research, and Development in Sardinia

Scientific Visualization Group
Via Nazario Sauro 10

09123 Cagliari
Italy

E-mail: {balaguer|gobbetti}@crs4.it

            

                    

Abstract

We are interested in providing animators with a general-purpose tool allowing them to create animations
using straight-ahead actions as well as pose-to-pose techniques. Our approach seeks to bring the
expressiveness of real-time motion capture systems into a general-purpose multi-track system running on a
graphics workstation. We emphasize the use of high-bandwidth interaction with 3D objects together with
specific data reduction techniques for the automatic construction of editable representations of interactively
sketched continuous parameter evolution. In this paper, we concentrate on providing a solution to the
problem of applying data reduction techniques in an animation context. The requirements that must be
fulfilled by the data reduction algorithm are analyzed. From the Lyche and Mørken knot removal strategy, we
derive an incremental algorithm that computes a B-spline approximation to the original curve by considering
only a small piece of the total curve at any time. This algorithm allows the processing of the user's captured
motion in parallel with its specification, and guarantees constant latency time and memory needs for input
motions composed of any number of samples. After showing the results obtained by applying our incremental
algorithm to 3D animation paths, we describe an integrated environment to visually construct 3D animations,
where all interaction is done directly in three dimensions. By recording the effects of user's manipulations
and taking into account the temporal aspect of the interaction, straight-ahead animations can be defined. Our
algorithm is automatically applied to continuous parameter evolution in order to obtain editable
representations. The paper concludes with a presentation of future work.

Keywords:

Data Reduction, 3D Animation, 3D Interaction, Performance-Driven Animation



1. Introduction

Keyframing is by far the most prevalent motion control technique offered by current animation systems [14].
The animation of continuous parameters is defined by interactively specifying a sequence of key values and
their associated time. In-between values are automatically generated by using an interpolation method in
order to obtain a smooth animation. Keyframe computer animation is strongly related to the pose-to-pose
style of traditional animations, with timing and pose control of extremes and in-betweens. However, with the
computerized tool, the animator has much less control on the in-betweens, since the shape and timing of the
resulting parameter curve are largely determined by the underlying interpolation scheme. The desired final
animation is obtained at the expense of a very time-consuming process, where the parameter curves are
iteratively edited until the real-time playback of the animation is judged satisfactory. This inability to specify
the timing of an animation in an interactive way is a major drawback in all cases where the spontaneity of the
animated object's behavior is important [42]. In these cases, defining the animation by straight-ahead actions
is clearly a better solution [21]

The problem of defining animations using straight-ahead actions is addressed by performance animation
systems, where an actor's performance is captured in real-time by means of dedicated devices and is used to
drive the animation of a synthetic character [42; 41; 39]. The sensed values are put in direct correspondence
with parameters of the animated objects and the actor constantly evaluates his performance based on real-time
visual feedback. While the entire process is kept very creative and spontaneous, the incredibly large amount
of data associated with a live performance makes it impossible to efficiently edit the captured animation. This
is the major problem faced by current performance animation systems [42]. In order to edit real-time captured
performances, we need to obtain a more compact representation of the captured data. In particular, building a
spline representation would have the advantage of providing a mean to seamlessly integrate real-time capture
capabilities with keyframing systems.

We are interested in providing animators with a general-purpose tool allowing them to create animations
using straight-ahead actions as well as pose-to-pose techniques. Our approach seeks to bring the
expressiveness of real-time motion capture systems into a general purpose multi-track system running on a
graphics workstation. Essential characteristics of such a system should be:

• high-bandwidth interaction with 3D objects for the continuous control of all kind of attributes. This can
be achieved by means of devices allowing the control of multiple degrees of freedom, as in virtual
environments [9; 32; 46] and performance animation systems [42; 41], or with more traditional device
configurations together with interaction metaphors exploiting the greater possibilities of 3D [19; 12; 15;
27; 37; 17];

• automatic construction of editable representations of interactively sketched animations of continuous
parameters. This can be obtained by applying data reduction techniques to the recorded data in order to
compute a spline that reproduces precisely the geometry and timing of the sketched animation and that
can be effectively edited with standard spline editing tools.

In this paper, we concentrate on the problem of applying data reduction techniques in an animation context.
First, we analyze the requirements that must be fulfilled by the data reduction algorithm. Then, we derive an
incremental algorithm that guarantees constant latency time and memory needs. After presenting examples of
animation paths processed with our algorithm, we describe a visual construction environment allowing the
definition of 3D animations using pose-to-pose techniques and straight-ahead actions.

2. Data Reduction for Animation

In a 3D animation system, the variety of data that must be processed and the type of information that must be
preserved, as well as the various sources that might be used to generate the initial data, introduce specific



requirements that must be fulfilled by the data reduction algorithm. In particular, the following points must be
considered.

• Preservation of geometry and timing: The computed curve must not only precisely approximate the
geometry, as it is required in modeling and drafting tools, but also the timing of the initial data. In the
case of interactively specified data, both components are defined with a limited precision and should be
efficiently smoothed by the approximating curve while preserving the correspondence between the
geometry and timing. This implies that the data reduction algorithm must treat both components
simultaneously, since treating them independently may introduce errors difficult to control.

• Generality : The algorithm may be used to compute approximations of data generated by various
sources. In particular, we shall consider the cases of interactively specified data presenting a non
negligible amount of noise and imprecision, as well as highly accurate data generated by evaluating a
mathematical model, as when using data reduction to convert the output of a simulation engine to a
keyframing representation. Additionally, the algorithm must be able to treat data of various dimensions.

• Reduction factor: When applying the data reduction algorithm, we are interested in obtaining an
approximation curve being optimal for edition. Therefore, we are more interested in obtaining a
uniform distribution rather than a minimum number of curve controls.

• Compatibility: The performance based approach that we promote in this paper is intended to
complement rather than replace more traditional keyframe techniques. For the sake of integration, the
approximating curves computed by the data reduction algorithm should be compatible with those used
by a track system, so that the same tools and techniques can be used to perform editing tasks.

• Usability: The approximation curve must be made available in times compatible with the hard
constraint of responsiveness of an interactive system. In practice, application response is perceived as
immediate if the result is made available in less than one second after the end of the user action [30].
Additionally, there should not be an upper limit to the number of samples than can be treated.

If data reduction or curve fitting techniques have been successfully applied in drafting and modeling tools for
the interactive specification of curves or surfaces [7; 6; 33; 34; 36; 38; 40; 44] , their use to process animation
data appears to have been left mostly unexplored. In [2], a digitizing tablet was used to sketch the evolution
over time of mono-dimensional parameters, but no data reduction or curve fitting technique was used to
process the sampled data. In [40], a digitizing tablet is used to sketch the projection of the path geometry onto
the scene's ground. A curve is then fitted to the 2D path but the timing of the specification is not taken into
account, thus missing the advantages of performance approaches. Current performance animation systems
use standard keyframe interfaces to manipulate the sampled data directly, clearly an inadequate approach [42;
41].

There is a wealth of literature on curve fitting or data reduction algorithms [10; 36; 7; 23; 34; 13; 44].
Methods for fitting curves to data points have traditionally attempted to reduce the error in one of the Lp

norms, using more and more polynomial segments until the resulting fit does not exceed some given error
bound [10; 36; 34; 13]. These schemes are generally based on 2D or 3D geometric considerations and lack the
generality we require. Alternatively, Lyche and Mørken have developed an algorithm (the LM algorithm) that
begins with a piecewise linear B-spline with open end conditions passing through the data points to be
approximated [23; 24; 25]. This curve is re-represented through degree elevation as a curve of degree k-1 with
knots of multiplicity k-1 at each data point, k being the user-specified order for the approximation curve. This
curve is used as the initial curve and knots are removed, according to some global requirements, until the
user-specified error tolerance is met.

The LM algorithm is a very general scheme that can approximate data of various dimensions with B-
spline curves of arbitrary degree. When selecting the knots to be removed, some provision is made to
efficiently distribute the removed knots across the entire curve. The approximation curve defined over the
reduced knot sequence is computed by solving a least square minimization problem, but the approximation is



accepted upon the measurement of the error with respect to the initial curve using the L∞  norm. That way, the
reduced curve respects the value and parameterization of each data point within the user-specified tolerance.

All these characteristics make the LM algorithm very well suited for our particular data reduction
problem. However, each step of the search for the shortest knot sequence involves solving a global

minimization problem that requires O N 3( ) operations [35]. This makes it difficult to directly apply the LM

algorithm in the context of an interactive application and an incremental version of the algorithm must be
considered. Banks and Cohen [7; 6] developed an incremental version of the LM algorithm that could be used
in a performance animation context, but their method is unable to ensure constant latency times and memory
needs.

We have developed an algorithm that incrementally builds, from the input sequence, a parametric B-spline
preserving value and time of each input sample within a given tolerance. It is an incremental version of the
LM algorithm that works in parallel with the interactive specification by considering, as in [7], only a small
portion of the input curve at any time. Latency time and memory requirements for handling each portion of
the curve are constant and easily determined. Data reduction may therefore be performed concurrently with
interactive parameter input, and the responsiveness of the application can be ensured when handling
animations defined by any number of samples. In the following sections, we rapidly describe the LM
algorithm and we discuss our incremental version.

2.1. The Lyche and Mørken Algorithm

The algorithm is composed of three distinct steps termed rank, remove  and approximate :

• rank  consists in evaluating the importance of each interior knot using the approximate distance
between the curve and a curve defined on the knot sequence without the ranked knot.

• remove  exploits the ranking information to suppress the knots in the order that will perturb the curve
the least amount. The result is usually a much shorter knot vector for which an approximating curve of
the initial data can be computed without exceeding the maximum error tolerance.

• approximate determines the new coefficients of the approximating curve by computing an
approximation of the initial curve over the new knot vector.

Let f  be the piecewise degree k-1 B-spline interpolating the data points, and t be the initial knot vector. Then
the algorithm can be briefly described as follows:

τ 0 = t
g0 = f

for    i = 0,1,2,K

if  τ i = 2k  then stop; No more interior knots to remove.

for  j = 0,1,2,…, τ i

w j
i = rank τ j

i , gi( )
end

τ i+1 = remove wi , τ i( )  such as f − approximate f , τ i+1( ) ≤ ε
if  τ i+1 = τ i  then stop; No knots could be removed

gi+1 = approximate f , τ i+1( )
end



It is an iterative algorithm that, starting from the initial curve (g0 = f ), produces, at the ith iteration, an

approximation curve gi  defined over the reduced knot vector τ i . At the next iteration, the ranking phase

determines the importance of each interior knot of τ i  with respect to the previous approximation gi  and not

to the initial curve f . This allows the importance of each knot to evolve as neighboring knots are removed.
However, when computing the approximation of f over the new knot vector τ i , the error is measured by
comparing the computed approximation to the initial curve f, and not to the previous approximation gi . The

algorithm stops either when every interior knot has been removed, or when no interior knot could be
removed. In practice, an upper limit is also set for the number of iterations as a large number of knots are
removed during the first iterations. The approximation curve is typically computed by solving a weighted
least-squares minimization problem.

2.2. Incremental Algorithm

The basic idea of the incremental knot removal algorithm is to incrementally compute an approximation to
the original curve by considering only a small piece, called the window, of the total curve at any time [7].
That way, as data arrives from the input device, the same sequence of control points and knot values are
appended to the initial curve f and to the accumulated approximation curve g. When enough data points have
been sampled, the knots within the window are ranked and considered for removal. The reduced segment is
then spliced back into the accumulated curve with Ck−2  continuity. As sketching begins, the portion of the
initial and the approximation curves are the same but, after several window reductions, the approximation
contains fewer knots and control points than the initial curve. At the end of the algorithm, the starting index of
the window is modified according to the number of knots that could be removed in the current window. If all
the knots were removed then the index is left unchanged. Alternatively, if no knots could be removed the
starting index is moved to the end of the current window. Therefore, each knot is considered only once for
removal.

In order to isolate the section considered for reduction from the rest of the curve, as well as to give context
to the data reduction process, the window is extended with two overlapping regions at the beginning and the
end of the curve section. This is done by extending the parameter interval with k knots at each extremity. The
knots within the overlapping region are not candidates for removal. The first k knots come from the
accumulated approximation, and therefore have been already reduced. The last k knots come from the initial
curve and will be processed with the following window.

2.2.1 Ranking and Removing the Knots

The incremental algorithm computes the weight of each interior knot of the window as done in the original
LM algorithm. In effect, it can be shown [7] that this process uses only local information and therefore the
ranking phase can be easily performed for small sections of the curve.

The LM algorithm makes the hypothesis that the number of knots to remove will be relatively large and
that many of the knots will be clustered into groups with small differences in their weight values. Therefore, a
scheme is introduced to select the knots in a group such that the removed knots are uniformly distributed
across the entire parameter range. The incremental algorithm considers small windows of knots at a time, and
therefore effectively distributes the removed knots across the entire curve. Moreover, since the window size is
usually small with respect to the total number of knots, there is little benefit in grouping the knots, which can
thus be removed strictly in order of increasing weights.

To find the shortest knot sequence over which an approximation within the given tolerance can be built,
the LM algorithm uses a binary search through the possible knot vectors based on the assumption that the
error increases with the number of knots to remove. If this hypothesis may seem reasonable for large knot



sequences, it is more questionable for short sequences and we would rather test all possibilities until the given
tolerance is met. However, if m is the size of the window, then the solution will be found on average in m/2
tries against log2 m  for the binary search, and we will proceed as the LM algorithm for large windows.

2.2.2 Computing the Approximation

Let f be the initial order k-1 B-spline curve defined by the knot vector t  and the control polygon c,  and let g be
the approximation curve defined by the knot vector τ and the control polygon d. Let m be the size of the
window and p the starting index of the current window. Let g* be the section of g defined by the knot

sequence τ * = τ p , τ p+2k+m−1[ ]  and the control polygon dp , dp+k+m−1{ }. Similarly, let f * be the portion of f

defined over t = t1
* , t2

*[ ]   where t1
* = τ p  and t2

* = τ p+2k+m−1

Bank's Approach

In the incremental algorithm proposed by Banks, the approximation h*  of the curve section f * is computed

as in the LM algorithm. However, because of the local nature of the algorithm, we now consider only a
section f * defined over t*  of the initial curve f, and a section g* defined over τ *  of the accumulated

approximation g. The knot vectors t*  and τ *  have general end conditions and the remove step of the
algorithm can be expressed as:

κ * = remove w* , τ *( ) such as f * − approximate f * , τ *( ) ≤ ε

There are several disadvantages to comparing against f * when computing the section of the approximation

curve h* . First, the more knots removed, the more the time to treat the following windows increases because
the knot vector t*  corresponding parametrically to τ *  will be composed of ever more knots. Therefore, when
computing the approximation, the linear system is composed of more and more equations, computation time
increases and memory requirements grow. Additionally, the first k knots of τ *  being knots treated by the
previous window, the k first knots of t*  and τ *  are not necessarily the same and some complications may
arise when computing the knot insertion matrix with the Oslo algorithm [11].

Our Approach

Since t*  and τ *  differ only by their first k knots, we may consider computing the approximation with respect
to g* instead of f *. The remove phase of the algorithm becomes:

κ * = remove w* , τ *( ) such as g* − approximate g* , τ *( ) ≤ ε .

This approach has several advantages. First, whatever the window being considered, the number of knots in
τ *  is fixed, and therefore the number of equations is known a priori. Similarly, the computation time required
to process one section of the curve has an upper bound, corresponding to the case where only one knot can be
removed. Finally, the memory requirements are totally predetermined. Data reduction may therefore be
performed concurrently with the sampling of the initial data, and the responsiveness of the application can be
ensured when handling animations defined by any number of samples.



One important aspect of the LM algorithm is the warranty that the error between the initial and the
approximation spline lies within the tolerance for every data point. With an incremental algorithm, controlling
the error over the entire curve is more difficult. As stated by Banks, extending the window with k knots of
past context allows essentially isolating from the rest of the curve the error introduced by reducing the current
window [7]. The risk exists however, that the modifications of the k control points corresponding to the
overlapping knots introduce an additional error in the previous curve segment.

When computing the approximation with respect to g*, supposing that k overlapping knots are enough to

effectively isolate the error from the rest of the curve would result in allowing twice the tolerance for the

points associated with the overlapping knots. In effect, g* is defined by the knot vector 
  
τ * = τ1

* ,K, τm+2k−1
*[ ],

where τ1
* = τ p  and τm+2k−1

* = τ p+m+2k−1, and by the control polygon 
  
d * = d1

* ,K, dm+k
*{ } = dp ,K, dp+m+k−1{ }. The

first k control points   d1
* ,Kdk

*  are members of the control polygon of the accumulated approximation curve,

and are therefore defined with a tolerance ε with respect to the initial curve f. When computing the
approximation, the LM algorithm considers that the tolerance is the same for all the data points. As the knots

  τ p ,K, τ p+k−1 participate in two successive windows, this will allow a greater tolerance for the control points

associated with the overlapping knots. The method used to compute the approximation has to be modified in
order to integrate the fact that the first k points of the control polygon d *  and of g* are known and must be

preserved. We do so by extending the linear system with k equations expressing that the first k control points
of the approximated section h*   must be the same as the first k control points of g*. Additionally, we apply a

smaller tolerance to the last k control points in order to prevent too important a modification of the segment's
end tangent.

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Original
Reduite

Points

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Original
Reduite

Points

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Original
Reduite

Points

Figure 1. Plots of the data points and of the approximation splines for the spiral of the
example 3.1 of [24] for n = 1001 points, a window size of 10 knots, and the
tolerance ε = 0.1, 0.1( ).

Figures 1 and 2 show the effects of introducing constraints in the computation of the approximation when
processing the spiral of the example 3.1 from [24]. We applied our incremental algorithm with a window size
of 10 knots and a tolerance ε = 0.1, 0.1( ). The left curve has been obtained using an algorithm computing the

approximation with respect to g* without any considerations for start and end overlapping regions. The plot

exhibits numerous oscillations whose frequency increase with the curvature. For the curve in the middle,
additional equations have been introduced to anchor the first k control points of each section. The curve still
exhibits oscillations and the error plot shows that the specified tolerance is not met for some localized
sections of the curve. For the curve on the right, additional constraints limit the modifications of the last k
control points. The error is now kept within the tolerance, while the control points are well distributed over
the entire curve.



-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14

x-err
y-err

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 2 4 6 8 10 12 14

x-err
y-err

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12 14

x-err
y-err

Figure 2. Plots of the error components for the spiral of the example 3.1 of [24] for
n = 1001 points, a window size of 10 knots, and the tolerance ε = 0.1, 0.1( ).

2.2.3 Incremental Algorithm

Let f be the initial curve defined over the knot vector t  and the control polygon c . Let g be the approximation
curve defined over the knot vector τ and the control polygon d. Let m be the window size and p the knot index

of the current starting point of the window. Let g* be the portion of g restricted to the interval τ * = τ1
* , τ2

*[ ]
with polygon 

  
dp ,K, dp+m+k−1{ } , where τ1

* = τ p  and τ2
* = τ p+2k+m−1. Our incremental algorithm can be

described as follows:

if  τ − p ≥ 2k + m  then

τ 0 = τ *

g0 = g*

for    i = 0,1,2,K

if  τ i = 2k  then end; There are no more interior knots to remove

for  
  
j = k + 1,K, τ i − k

w j
i = rank τ j

i , gi( )
end

τ i+1 = remove w i , gi( )  such as g* − approximate g* , τ i+1( ) ≤ ε

if  τ i+1 = τ i  then end; No interior knots could be removed

gi+1 = approximate g* , τ i+1( )
end

if  τ * − τ i+1 > 0  then g = splice gi+1, g( )
p = p + m − τ * − τ i+1( )

else
accumulate data points

end

Since we compare against the accumulated approximation curve g, we do not need to maintain the initial
curve f  and, as data arrives, the new knots and control points are added only to the current approximation g.
The window is extended with k knots for past context and k knots for future context. Only the interior knots of



τ *  are candidate to removal. The window is processed iteratively and an approximation g1  defined over τ 1 is

built from the initial section of the curve g0 = g* . During the ith iteration, the ranking phase determines the

importance of the knots of τ i  with respect to the current approximation gi , while the error is checked with

respect to the initial curve g0 . The iterative algorithm stops when all the candidate knots have been removed

or when no knots could be removed. At the end of the algorithm, p, the starting index of the window, is
modified according to the number of knots that has been removed, as in the incremental algorithm of Banks.

Our incremental algorithm differs from the algorithm of Banks in the method used to compute the
approximation and by the iterative processing of the window. Since we compare to the approximation curve
g*, the processing time is much smaller than with the algorithm of Banks, as the minimization problem to

solve is usually composed by a much smaller number of equations. Therefore, we can treat much bigger
windows (typically 50 knots at a time) in times compatible with the responsiveness of the application.

2.2.4 Application of the Algorithm to Sketching Three-dimensional Paths

The LM algorithm takes as a starting point a linear B-spline that interpolates the data points. The algorithm is
applied a first time with a tolerance ε1  to this linear spline. The linear approximation curve is re-represented

through degree elevation as a spline of the final desired degree. The algorithm is applied a second time to this
spline with a tolerance ε 2 = ε − ε1. The result is a spline of the desired degree approximating the data points

within the tolerance ε .
The LM algorithm was designed to treat data known with the precision of some data collection device.

However, we consider data that is essentially specified interactively and which is therefore far from being
exact. In particular, the density and the accuracy of the samples may vary with the speed and accuracy of the
user's specification. This aspect is particularly important when sampling animations, since the speed of the
specification has here a meaning that must be preserved in the computed approximation. Additionally, when
specifying three-dimensional animation paths, the user has to specify simultaneously the position, the
orientation and their timing. The specification of such a large amount of information will clearly be the source
of additional imprecisions.

We assume that the sampled data points are close enough together so that the B-spline built using them as
control polygon is a curve representing the initial data within a small tolerance. The times at which each data
point is sampled are used to build the initial knot vector. This curve is used as the starting point and the
algorithm is applied only once.

Example: Jump Motion

In order to illustrate the method, we present the results obtained for the interactive definition of a jump
motion in a computer generated movie [20]. Additional 2D and 3D examples can be found in [4]. The
environment is a simplified version of the movie scene's database and is composed essentially by a square
room of eight meters side. The user can control the position and orientation of the camera using a Spaceball
and an eye-in-hand metaphor [43]. The beginning and the end of the motion sampling are specified by
pressing and releasing a mouse button. The sampling frequency is set to 20 Hz, a low-pass filter is applied to
the sampled data and then duplicate values are removed.

The initial data is represented by two cubic parametric B-splines, one for positions fp , and one for

orientations fr , both curves being defined over the same knot vector t . The control polygon of fp  is defined

by the sequence of camera positions, while that of fr  is defined by the sequence of camera orientations
represented using Euler angles. Therefore, fp  and fr   are defined by:



fp = ci
p Bi,4,t

i=1

n

∑  where 
t = t1, t1, t1, t1; t3 ,…, tn−2 ; tn , tn , tn , tn( )
ci

p = xti

p yti

p zti

p[ ] for i = 1,…, n







fr = ci
r Bi,4,t

i=1

n

∑  where 
t = t1, t1, t1, t1; t3 ,…, tn−2 ; tn , tn , tn , tn( )
ci

r = xti

r yti

r zti

r[ ] for i = 1,…, n







Figure 3. Sketched and initial jump motions.

The jump motion lasts 5.9 s and the initial plot is composed of 111 samples. The data reduction algorithm was
applied with a window size of 20 knots, a position tolerance of 40 mm for each dimension, and an orientation
tolerance of 2 degrees (0.035 radian). The position spline was reduced to 24 control points, while the
orientation spline fr was reduced to 8 control points. On a R4000 SGI Indigo2, the average processing time
for each window of the position spline fp  was of 174 ms with a total processing time of 0.9 s, while the

average time for rotation windows was of 72 ms with a total processing time of 0.36 s. In comparison, with
the LM algorithm, the position spline was reduced to 16 control points in 2.1 s, and the orientation spline to 5
control points in 0.6 s.

Figure 3 shows the initial position spline fp  together with the reduced version hp . Figures 5 and 6 show

the plots of initial and reduced position and orientation components. Figure 7 shows the plots of position and
orientation error components, and figure 4 shows the plots of chord lengths as a function of time for the initial
and reduced position splines.



0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6

Position: s(t)

Original
Reduite
Noeuds

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6

Position: (ds/dt)(t)

Reduite
Original
Noeuds

Figure 4. Plot of chord length as a function of time and speed profiles for the initial and
reduced position splines.

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0 1 2 3 4 5 6

Position: X

Original
Reduite

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6

Position: Y

Original
Reduite

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6

Position: Z

Original
Reduite

Figure 5. Plot of the components of the initial and reduced position splines.

3.05

3.06

3.07

3.08

3.09

3.1

3.11

0 1 2 3 4 5 6

Orientation: X rot

Original
Reduite

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

0 1 2 3 4 5 6

Orientation: Y rot

Original
Reduite
Noeuds

-3.17

-3.165

-3.16

-3.155

-3.15

-3.145

-3.14

-3.135

-3.13

-3.125

0 1 2 3 4 5 6

Orientation: Z rot

Original
Reduite

Figure 6. Plot of the components of the initial and reduced orientation splines.

From the plots of the components presented in figure 5 and 6, we can see that the reduced curves preserve the
intention of the sampled motion while smoothing it efficiently. In particular, for the position curve, it is
interesting to note that the discontinuities corresponding to each jump impulsion are well preserved, even
though the algorithm does not make any provision for the processing of discontinuities and pauses. In figure
4, the plot of the chord length of the position curves shows that there is no error accumulation, since the
reduced path is traveled very similarly to the initial data. The reduced knots are distributed over the entire
parameter range. The speed profile has been correctly smoothed; better results are obtained with bigger
windows. Finally, figure 7 shows that the error components are efficiently kept within the desired tolerances
over the parameter range. In the video tape [3], the initial and reduced motions are shown in parallel. It can be
noted that the geometry and timing of the initial motion has been preserved while efficiently smoothed.



-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5 6

Position: Erreur

x-err
y-err
z-err

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5 6

Orientation: Erreur

x-rot-err
y-rot-err
z-rot-err

Figure 7. Plot of the error components f 1 ti( ) − h1 ti( ), f 2 ti( ) − h2 ti( ), and f 3 ti( ) − h3 ti( ) .

In table 8, we present the results obtained by applying our incremental algorithm with different window sizes.
About the reduction factor, we note that the bigger the window, the shorter the knot sequence, even though
the results are comparable for all window sizes. The average processing time of each window clearly
augments with the number of knots being considered, while the total processing times  are similar and very
inferior to the specification time (5.9 s). Processing the data in parallel with the specification makes it
possible to keep the latency time, corresponding to the processing time of a single window, inferior to the
responsiveness requirement of one second, and so for all tested window sizes, even if we process the windows
for the position and orientation curves sequentially.

Window
Size

Control
points

position

Control
points

rotation

Average
window time
position (ms)

Average
window time
rotation (ms)

Total time
position

(ms)

Total time
rotation

(ms)
5 39 11 37 18 750 440

10 40 10 64 30 640 300
20 24 8 174 72 870 360
30 25 8 258 132 1030 530
50 24 6 525 140 1050 280

Table 8.  Results obtained by processing the jump motion using different window sizes.

Example: Long Motion

The advantage of our incremental algorithm over the global method is much more obvious when processing
sequences composed of hundreds of samples. This time, we consider a very slow camera motion inside the
same environment as in the previous example. The same methodology as before is used to define and sample
the motion.

The motion lasts 29 s and the initial plot is composed of 482 samples. Table 10 shows the results obtained
with our incremental algorithm for different window sizes. In comparison, with the global algorithm, the
reduced position curve is defined by 6 points with a processing time of 13.8 s, while the reduced orientation
curve is defined by 6 points with a processing time of 13.7 s.



Figure 9. Initial and reduced path for the slow camera motion.

Window
size

Control
points

position

Control
points

rotation

Average
window time
position (ms)

Average
window time
rotation (ms)

Total time
position

(ms)

Total time
rotation

(ms)
10 20 10 46 28 2200 1300
20 16 13 63 53 1500 1300
30 16 12 110 69 1800 1100
50 12 10 193 122 1900 1200
100 8 10 432 328 2200 1600

Table 10. Results obtained by processing the long motion using different window sizes.

Again, the total processing times are very similar for all window sizes and are kept very inferior to the time
needed to specify the motion. Also, for all tested window sizes, the responsiveness requirement can be
satisfied when processing the sampled data in parallel with its specification.

The algorithm was implemented in Eiffel 2.3 [29] using the linear algebra libraries BLAS [22] and
LAPACK [1]. When computing an approximation, the least-square minimization problem is solved using QR
decomposition [35]. All times were obtained on a R4000 SGI Indigo2.

3. An Integrated Environment to Visually Construct 3D Animations

Our data reduction algorithm has been incorporated in Virtual Studio, a prototype 3D animation environment
where all the interaction is done directly in three dimensions [5; 18; 4]. 3D devices allow the specification of
complex 3D motion, while virtual tools are visible mediators that provide interaction metaphors to
continuously control attributes of application objects [17; 16]. By recording the effects of user's manipulations



and taking into account the temporal aspect of the interaction, straight-ahead animations can be defined. The
algorithm is automatically applied to continuous parameter evolution to obtain editable representations.

 

(a) (b)

Figure 11a. Virtual Studio's desktop configuration.
Figure 11b. Interactive 3D animation environment.

3.1. System Principles

Virtual Studio is built on top of VB2, a graphics architecture based on objects and constraints [17; 16]. Its
desktop configuration uses a Spaceball and a mouse as input devices, and LCD shutter glasses for binocular
perception of the synthetic world. The Spaceball is used for the continuous specification of spatial
transformations, while the mouse is used as a picking device.

 Track

Discrete Track

Interaction
Metaphor

Edition

Data
Reduction

Record

Record

Figure 12. Principle of interactive animation specification.

Controller objects are connected to each animatable model and are responsible for monitoring the model's
state changes and updating the model's state during animation playback. Controller objects are composed of a
collection of continuous and discrete tracks that are used to store the evolution of continuous and discrete



parameters. While recording, all model state changes are handled by the controller to feed the animation
tracks. Continuous tracks apply our incremental data reduction algorithm each time enough data has been
collected or when the recording session terminates, while discrete tracks simply store change value events.

As when manipulating a model using a virtual tool [17], the desire to animate a model is expressed by
binding a controller to a model. This action results in the activation of a set of multi-way constraints between
the controller's and the model's active variables. When all constraints have been successfully activated, the
model is ready to be animated. In the current state of the system, animation controllers are not graphical
objects and thus the binding action cannot be performed interactively.

3.2 Sketching 3D paths

A 3D cursor, controlled by the Spaceball, is used to select and manipulate objects in the synthetic world.
Since the device offers continuous and simultaneous specification of three-dimensional transformations, it is
possible to describe with the 3D cursor complex spatial paths that animated objects have to follow. In this
way, the animator has continuous control over the animation shape and timing, while keyframing techniques
offer control only at a limited number of points. In particular, subtle synchronizations between the position
and orientation components of an animation path can be directly specified. As noted in [28; 45], such a
guiding technique can provide the mean for interactively describing a large variety of animations if the
interaction with the controlled objects is performed at the task level, meaning that the animated objects
interpret the path as a goal. This allows to treat animated objects as virtual actors and to automatically obtain
secondary animations. In Virtual Studio, we currently distinguish between three kinds of primitive objects
with respect to their response to guiding: rigid objects, whose motion is an exact replication of the input,
articulated chains, whose motion is computed by an inverse kinematics algorithm [26], and virtual humans,
which exhibit a walking behavior [8].

3.3 Sketching All Continuous Attributes

The interactive sketching of animated behaviors is not limited to the specification of 3D paths, but can be
extended to the definition of all kind of attributes by using mediator objects that continuously map user's
actions to changes in manipulated models. The application of data reduction to all kinds of attributes is
possible because our incremental algorithm is not based on geometric constructions and is able to handle
splines of various dimensions with different levels of continuity.

The use of controller objects that monitor changes in application objects and automatically feed animation
tracks makes it possible to record animations that are generated in a number of ways and to convert them to a
manageable form, allowing this way further editing. In particular, all the expressiveness of the system's user
interface can be exploited when defining animations.

The bi-directionality of the relationship between user-interface and application objects makes it possible
to keep the system consistent during playback and to seamlessly integrate interaction and animation features.
During playback, information propagates from the animation tracks through the controllers and down to the
models. All connections are realized by multi-way constraints. Since the priority of playback constraints is
lower than that of interaction constraints, the user can take interactive control over animated models during
playback. Therefore, animations which take into account the evolution of the environment and which present
complex synchronizations with the animation of other models can be easily specified by interacting with the
system during playback. That way, we can support a layered approach to animation specification, where each
new piece is automatically synchronized with the rest of the animation.



Figure 13. Sketching the light's path during animation playback using constrained
manipulation.

4. Conclusions and Future Work

We have presented a data reduction algorithm that incrementally builds, from the input sequence, a
parametric B-spline preserving value and time of each input sample within a given tolerance. The algorithm
considers only a small piece of the total curve at any time and the processing of the user's captured motion
may be performed in parallel with its specification. By constraining the approximation, we are able to
guarantee constant latency time and memory needs, and so for input motions composed of any number of
samples. The algorithm is used inside an integrated environment for the visual construction of 3D animations
in order to automatically obtain editable representations of continuous parameters' evolution.

Our future work will concentrate on improving the handling of discontinuities and orientation curves. In
its current state, the algorithm does not make any provision to preserve key features such as discontinuities
and pauses, and a preprocessing step should be introduced in order to identify them automatically as in [34].
Also, the representation of orientation curves using Euler angles is not satisfactory for free spatial rotation
motion. We are investigating the extension of the data reduction algorithm to quaternion B-splines. We plan
to solve the approximation problem with iterative techniques similar to those presented in [31] to compute
quaternion interpolation B-splines.

With our research, we strive to bring the expressiveness of real-time motion capture systems into a
general purpose multi-track system running on a graphics workstation. Data reduction is an essential step
towards this goal.

Acknowledgments

The authors would like to thank Ronan Boulic for providing the walking engine.
This research was conducted by the authors at the Swiss Federal Institute of Technology in Lausanne and

was partly sponsored by Le Fonds National Suisse pour la Recherche Scientifique.



References

1. Anderson E, Bai Z, Bischof C, Demmel J,, DuCroz J, Greenbaum A, Hammarling S, McKenney A,
Sorensen D (1990) LAPACK: A Portable Linear Algebra Library for High-Performance Computers.
CS-90-105, Computer Science Department, University of Tennessee, Knoxville.

2. Baecker RM (1969) Picture-driven Animation. Proc. Spring Joint  Computer Conference 34: 273-288.
3. Balaguer JF, Gobbetti E (1993) Data Reduction for Animation. Demonstration Video, Computer

Graphics Lab, Swiss Federal Institute of Technology, Lausanne, 7 min.
4. Balaguer JF (1993) Virtual Studio: Un système d'animation en environnement virtuel. PhD Thesis 1178.

EPFL DI-LIG, Switzerland.
5. Balaguer JF, Gobbetti E (1995) Animating Spaceland. To appear in IEEE Computer Special Issue on

Real World Virtual Environments 28(7).
6. Banks MJ (1989) A User Interface Model and Tools for Geometric Design. CS-TR-89-001, Computer

Science Department, University of Utah, USA.
7. Banks MJ, Cohen E (1990) Realtime Spline Curves from Interactively Sketched Data. Proc.

SIGGRAPH Symposium on Interactive 3D Graphics: 99-107.
8. Boulic R, Magnenat-Thalmann N, Thalmann D (1990) A Global Human Walking Model with Real-time

Kinematic Personification. The Visual Computer 6(6) : 344-358.
9. Bryson S, Pausch R, Robinett W, van Dam A (1993) Implementing Virtual Reality.  SIGGRAPH Course

43.
10. Chou JJ, Piegl LA (1992) Data Reduction Using Cubic Rational Splines. IEEE Computer Graphics &

Applications: 60-68.
11. Cohen E, Lyche T, Riesenfield R (1980) Discrete B-splines and Subdivision Techniques in Computer-

Aided Geometric Design. Computer Graphics and Image Processing 14: 87-111.
12. Conner DB, Snibbe SS, Herndon KP, Robbins DC, Zeleznik RC, Van Dam A (1992) Three-

Dimensional Widgets. SIGGRAPH Symposium on Interactive 3D Graphics: 183-188.
13. Dierckx P (1982) Algorithms for Smoothing Data with Periodic and Parametric Splines. Computer

Graphics and Image Processing 20: 171-184.
14. Forcade T (1993) Evaluating 3D on the High End. Computer Graphics World, Oct/Nov.
15. Gleicher M, Witkin A (1992) Through-the-Lens Camera Control. Proc. SIGGRAPH: 331-340.
16. Gobbetti E (1993) Virtuality Builder II: Vers une architecture pour l'interaction avec des mondes

synthétiques. PhD Thesis 1191. EPFL DI-LIG, Switzerland.
17. Gobbetti E, Balaguer JF (1993) VB2: A Framework for Interaction in Synthetic Worlds. Proc. UIST:

167-178.
18. Gobbetti E, Balaguer JF (1995) An Integrated Environment to Visually Construct 3D Animations. Proc.

SIGGRAPH.
19. Herndon KP, van Dam A, Gleicher M (1994) Report: Workshop on the Challenges of 3D Interaction.

CHI Bulletin, Oct.
20. Klein D (1990) Le bruit du frigo. Computer Animated Movie, EPFL-DI LIG.
21. Lasseter J (1987) Principles of Traditional Animation Applied to 3D Computer Animation. Proc

SIGGRAPH: 35-44.
22. Lawson, Hanson, Kincaid, Krogh (1979) Basic Linear Algebra Subprograms for FORTRAN Usage.

ACM Transactions on Mathematical Software, Vol. 5: 308-323.
23. Lyche T, Mørken K (1987) A Discrete Approach to Knot Removal and Degree Reduction Algorithms

for Splines. In Mason JC, Cox MG (Ed) Algorithms for Approximation. Clarendon Press, Oxford: 67-82.
24. Lyche T, Mørken K (1987) Knot Removal for Parametric B-spline Curves and Surfaces. Computer

Aided Geometric Design  4: 217-230.
25. Lyche T, Mørken K (1988) A Data Reduction Strategy for Splines with Applications to the

Approximation of Functions and Data. IMA Journal of Numerical Analysis 8: 185-208.
26. Maciejewski AA (1990) Dealing with Ill-Conditioned Equations of Motion for Articulated Figures.



IEEE Computer Graphics and Applications 10(3): 63-71.
27. Mackinlay JD, Robertson GG, Card SK (1991) The Perspective Wall: Detail and Context Smoothly

Integrated. Proc. SIGCHI: 173-179.
28. McKenna M, Pieper S, Zeltzer D (1990) Control of a Virtual Actor: The Roach. Proc. SIGGRAPH

Symposium on Interactive 3D Graphics: 165-174.
29. Meyer B (1992) Eiffel: The Language. Prentice-Hall.
30. Newell A (1987) Unified Theories of Cognition. Harvard University Press.
31. Nielson GM, Heiland RW (1992) Animated Rotations using Quaternions and Splines on a 4D Sphere.

Programming and Computer Software, Plenum Publishing Corporation, New York.
32. NSF (1992) Research Directions in Virtual Environments. NSF Invitational Workshop, UNC at Chapel

Hill: 154-177.
33. Ostby E (1986) Describing Free-Form 3D Surfaces for Animation, Proc. SIGGRAPH Symposium on

Interactive 3D Graphics: 251-258.
34. Plass M, Stone M (1983) Curve Fitting with Piecewise Parametric Cubics. Proc. SIGGRAPH: 229-239.
35. Press WT, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C. Second edition,

Cambridge University Press.
36. Pudet T (1994) Real Time Fitting of Hand Sketched Pressure Brushstrokes. Proc. EUROGRAPHICS:

205-220.
37. Robertson GG, Mackinlay JD, Card SK (1991) Cone Trees: Animated 3D Visualizations of Hierarchical

Information. Proc. SIGCHI: 189-194.
38. Schneider PJ (1988) Phoenix: An Interactive Curve Design System Based on the Automatic Fitting of

Hand-Sketched Curves. Master's Thesis, University of Washington.
39. Schreiber G (1989) Goopy Real Time Muppets. Animation Magazine 2(3):56-57.
40. Shelley KL, Greenberg DP (1982) Path Specification and Path Coherence. Proc. SIGGRAPH: 157-166.
41. Tice S (1993) VActor Animation Creation Systems. SIGGRAPH Course #01.
42. Walters G (1993) Performance Animation at PDI. SIGGRAPH Course #01.
43. Ware C, Osborne S (1990) Exploration and Virtual Camera Control in Virtual Three Dimensional

Environments. Proc. SIGGRAPH Workshop on Interactive 3D Graphics: 175-183.
44. Wu SC, Abel J, Greenberg D (1977) An Interactive Approach to Surface Representation. CACM 20(10):

703-712.
45. Zeltzer D (1991) Task-level Graphical Simulation: Abstraction, Representation, Control. In Badler NI,

Barsky BA, Zeltzer D (Editors) Making Them Move, Morgan Kaufmann, San Mateo, CA, USA.
46. Zeltzer D, Pieper S, Sturman DJ (1989) An Integrated Graphical Simulation Platform. Proc. Graphics

Interface: 266-274.


