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Abstract

The purpose of this study is to describe fluid-wall interactions in the
aortic arch. We analyse a method which allows coupling between fluid
equations (Navier-Stokes) and structure.
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Nomenclature

E Young coefficient
EL Elastance
h Wall thickness

R(z,t) Arterial Radius
t time
u longitudinal velocity
w radial velocity
C compliance
α Womersley coefficient
η parietal radial displacement
ξ parietal longitudinal displacement
ν Poisson coefficient
µ blood viscosity
ρ blood volumetric mass
ρw arterial wall volumetric mass
τ parietal constraint
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1 INTRODUCTION

1.1 Fluid-structure Interaction

Since many years, the study of mechanic behavior has been divided in two sub-
domains: fluid mechanics and structure mechanics. However these domains
interact, specially for the treatment of the limit conditions. This kind of studies
have several applications: aeronautic (flow around a wing profile), biomechanics
(evolution of a red blood cell in a capillary network). The individual analysis
of these sub-domains leads to approximations more or less appropriate on the
fluid-structure interaction.
The numerical simulation of a fluid flow requires constraints proper to the res-
olution method (CFL, order or choice for the discretization schemes).
For these reasons, the problem of the connectivity of these two sub-domains
across the interface arises. From this point of view, two conceptions neatly ap-
pear: an approach by un-coupling fluid and structure problems with a special
treatment at the interface and a unitary approach for the management of these
two sub-domains.
The second type of resolution is unfortunately expensive in computational time
and in memory storage.
The first approach presents the advantage of minimizing the efforts, treating
the individual problems and then concentrating on the interface treatment. A
few questions arise in this treatment:
• first, it is important to understand if the insertion of a new formalism in the
treatment of the limit conditions will not modify the global stability of the sys-
tem even if the two sub-domains are stabilized (Maday);
• second, the impossibility of an implicit treatment in the temporal evolution
which is common to both the sub-domains. This constraint leads to different
treatments in the algorithm for the fluid structure passage. Usually the imple-
mented algorithms choose either to treat the flow on the configuration at the
previous time or predict the new position of the structure (Charbel Farhat).
Differences in the nature of the sub-domains lead to differences in the mesh
structure. For this reason, the passage from one domain to the other can lead
to imprecisions and instabilities. Then, we have probably to recourse to a mor-
tar type method to join together functions defined on the two meshes (Maday,
Faker).
• Finally, a supplementary difficulty consists in the fact that the structure equa-
tions are formulated in Lagrangian coordinates while the fluid equations are
typically written in Eulerian coordinates. A solution to this kind of problems is
to use an “Arbitrary Lagrangian Eulerian (ALE)” method for which the frame
of reference is neither linked to the fluid nor to the structure (Hirch).
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2 Study specific to the arterial medium

2.1 Introduction

For several reasons fluid-structure coupling is the main problem when deal-
ing with the arterial medium. The pulsatile character of the blood circulation
implies a strong interaction between the blood and the vascular wall. This char-
acteristic is important to have continuity in the blood irrigation (oxygen and
energy feeding) of the different organs of the human body. In fact, the heart
contraction during a cardiac circle is divided in two steps, a systolic (blood ejec-
tion) and a diastolic one (ventricles fill-up). During the systole, the vascular wall
deformation accumulates, as elastic energy, part of the mechanical energy that
will be given back in the diastolic phase (Windkessel model). This mechanism
assures approximately constant velocity and pressure at the capillary level.
This study is also linked to the importance of the characterization of the pari-
etal constraints inside the pulsed boundary layer, in order to understand tissue
tearing phenomenon or atherogenesis which can lead to arteriopathy such as
anevrism or stenosis formation (Caro & al. 71).
Modeling of blood flow in the arterial network is not easy because of the charac-
teristics both of the blood and the vascular wall. Blood is composed of corpuscles
and platelates in suspension in the plasma. The fluid viscosity is function of the
flow shear rate. In addition, many parameters, such as the hematocrite (ratio
of blood cells volume and total blood volume), have a role in the rheological
analysis of the constitutive fluid. The vascular wall possesses a complex visco-
elastic rheologic behavior with hysteresis. To make the problem affordable, we
impose a certain number of restrictions according to the specific media on which
we intend to work.
Let us consider the limits of the modeling concerning the characterization of
the blood and the vascular wall. In the big arteries we can approximate blood
as a Newtonian fluid, due to the importance of the Reynolds and Womersley
numbers. Yet, the more the arterial diameter diminishes, the more the plasma
layer diminishes and the flow velocity decreases. As a consequence, the fluid
characteristics are intimately linked to the red cells behavior and principally
to their de-formability. The blood is then strongly non-Newtonian and un-
der diphasic evolutions governed by separation of phase effects (Fharaeus and
Fharaeus-Lindqvist effects).
At the arterial walls, the visco-elastic character is preponderant in the big ar-
teries and negligible in the capillary network.
A brief review of the analysis conducted for this type of flow in the last twenty
years will be given in the following.

2.2 Analysis of the other approaches

The description of a pulsed flow in arterial medium is based on the continuum
mechanics principles. The rheologic specification of the blood and the arterial
wall determines the dynamics of the fluid and the wall. The fluid-structure
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interaction is simulated by a coupling of the limit conditions. Even with sim-
plifying hypothesis on the rheologic specifications, such as Newtonian behavior
for the fluid and purely elastic one for the wall, we are led to a 3D study of the
fluid (Navier-Stokes) and of the vascular wall (Navier). Some simplifications are
then necessary to obtain theoretically and numerically satisfactory solutions.
As the fluid flows along the vessel, it forces the arterial wall to move in the radial
and longitudinal directions. If the vessel behaves in a passive way, its displace-
ment is caused by the modifications of the trans-wall pressure, the visco-elastic
properties of the wall and the inertial forces due to the effective mass of the
vascular wall (Pedley 1980). Supposing negligible the inertia of the vascular
wall, as well as that of the fluid and wall viscosity, the wall displacement is only
given by the equilibrium between the pressure waves and the elastic forces. This
can be expressed as a pressure-section relation:

A = A(P, t).

Many efforts have been done to determine this relation. There are works based
on the approximation of the wave celerity (Anliker 1980) or on an expression
of the arterial compliance (Stergipoulos & al 1992, Tardy 1992). About this
approximation of the parietal movement, different fluid models have been de-
veloped.
Initially, they were concentrated on the linearized Navier-Stokes equations and
in the frame of small elastic deformations (Womersley 1957b, Atabek 1968).
Unfortunately these hypothesis are irrelevant in the velocity profile description,
specially in big arteries. This fact has been noticed by Ling et Atabek (1972),
who have developed a non-linear model called ”local flow theory”. This theory
only permits to obtain local information on the velocity profile and it proscribes
a resolution along an artery. By a succession of integration of this system we can
remedy the restriction of the local model to obtain a global resolution. In fact,
this kind of resolution is intimately linked to an approximation of the parietal
constraint evaluation (Lambossy 1952, Zielke 1968, Trikha 1975, Kufahl 1985,
Khalid-Naciri 1988, Zagzoule 1991, Mederic 1991, Yama & al. 1995, Lagrée &
Rossi 1996). Another approach for the resolution of this kind of problem has
been proposed. It consists in using an iterative process initialized by the two
precedent models (Buthaud 1976, Atabek 1980, Doufoulkar 1995).
Many other studies concern the parietal movement influence and its role in the
hemodynamic characteristics. They cast a doubt on the passive behavior of
the arterial wall, which was an hypothesis of many models: from a dynamical
(Dutta 1989, Klanchard 1990), a visco-elastic (Flaud 1979) and finally a geo-
metrical point of view (Belardinelli 1995).
Recently, numerous studies have been conducted on the fluid-structure inter-
action, more formally and realistically on the influence of the active behavior
of the wall on the hemodynamics (Perkthold 1995, Perkthold 1994, Ma & al
1992, Reuderink 1991). In the same spirit, using the blood incompressibility
approximation, Magnaudet & al, Rivero 1995, Blanco 1995 have proposed to
solve the deformation of the fluid-structure interface through the resolution of
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the Stokes equation (projection method) for a flow around a bubble.
We should add to this fluid-structure interaction problem, the importance of
the distal limit conditions in order to closely characterize the down flow arte-
rial network. This treatment is by its own a complex fluid structure interface,
which is specific to each region of the human body that we want to analyze:
bifurcations (Reuderink 1991), peristaltic contraction (Laurens 1995), stenosis
(Porenta & al. 1989).

3 Resolution in the aortic arch

During this intensive research period we have tried to analyze the fluid-structure
interaction in an elastic curved tube (representing the aortic arch) and we have
decided to separate the fluid and structure problems from one another.

3.1 Fluid resolution

The fluid flow resolution is saught in the frame of the Navier-Stokes equation
for an incompressible medium. For this, we have used the N3S software, pro-
vided by Simulog. This software solves the Navier-Stokes equations taking into
account the deformation of the computational domain during the simulation.
The algorithm is based on an Arbitrary Lagrangian Eulerian (ALE) method,
consisting of the computation, at every time step, of a domain velocity which
conforms to the boundary movement (through the limit conditions satisfied at
the boundary), while it could be quite arbitrary inside the domain, where the
only constraint is to keep a good quality mesh. This velocity is then used both
in the transport term of the Navier-Stokes equations and to construct the next
mesh.

3.2 Wall displacement

In a first time, we have considered a parietal displacement governed by a linear
pressure-section law related to a coefficient, elastance (EL), which depends on
the material. We have used the following relation:

R2 = R2
0

(

1 +
P − P0

EL

)

, (1)

with R0 the artery radius at the reference pressure P0 (that corresponds to
the external pressure). The aortic evolution is principally led by the trans-wall
pressure.

Yet, as we have previously mentioned, the vascular wall structure is anisotropic
and could be described in the frame of thin shells, through the Navier equations
written as:

ρwh
∂2η

∂t2
= P − P0 − 2µ

∂u

∂r
−

Eh

1 − ν2

(

ν

R

∂ξ

∂z
+

η

R2

)
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ρwh
∂2ξ

∂t2
= −µ

(

∂w

∂r
+

∂u

∂z

)

+
Eh

1 − ν2

(

ν

R

∂η

∂z
+

∂ξ2

∂z2

)

.

The variables η and ξ represent the radial and longitudinal vessel evolution in
the local base. If we consider as negligible the viscous effects and the longitudinal
vascular wall displacement, we can write the previous equations in the following
form:

ρwh
∂2η

∂t2
= P − P0 −

Eh

1 − ν2

( η

R2

)

. (2)

4 APPLICATIONS

4.1 Boundary Conditions

We choose to put non-homogeneous Dirichlet limit conditions at the aorta inlet.
Only the amplitude, not the spatial profile, is function of time. At the outlet
we give the classical Neumann condition:

(−P.I + ν∇u).n = P (3)

where I is the identity matrix and n the outward normal.
On the moving boundaries, we fix the velocity of the fluid equal to the velocity
of the elastic structure not to have either cavitation or permeability. Being the
fluid incompressible, the pressure is defined up to an additive constant which is
enforced by setting the mean pressure P at the outlet. In incompressible fluids,
a problem is that pressure tends to lose its physical meaning, being considered
either as a Lagrange multiplier or as the variable used to build the projection
operator on the divergence free subspace. Unfortunately, while the resolution
of the fluid velocity is indifferent to the pressure interpretation, it is definitively
not the case for the resolution of the structural part, where the reference level
of pressure and more generally its temporal evolution is essential. To treat
this problem, we decided to re-normalize the pressure coming from the fluid
resolution by a quantity only dependent on the temporal variable and satisfying
the inlet pressure condition, given as a temporal variation on the mean value
(since our physiological data are more precise at the inlet of the aorta). A
validating criteria for the system evolution would be represented by a good
behavior of the pressure at the outlet of the domain. This procedure does not
seem completely satisfactory, however it was selected by the authors as the
simplest choice available.

4.2 Mesh

The geometry construction and the generation of the initial mesh were made
using the SIMAIL software from Simulog. Figure (1) shows the geometric struc-
ture of our domain and the mesh of reference we used for most of our runs.
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4.3 Overview of the numerical algorithm

We suppose that the quantities: ηn−1, ηn, Pn, un, xn, Γn, are known.
We recall that η is the displacement of the moving elastic wall. Γ is the moving
fluid boundary, P the pressure, u the velocity of the fluid, x the position of
the mesh and the subscript n indicates the value at time t = tn = t0 + n.∆t.
Without loss of generality, we will assume t0 = 0 in the following.

Step-1 Compute the new position of the moving boundary by:

ηn+1 − 2ηn + ηn−1

∆t2
(+a.

ηn+1 − ηn−1

∆t
) + a2ηn+1 = γ(Pn − Pext) (4)

Step-2 Deduce boundary velocity for the fluid and the mesh:

un+1
|Γn+1 = C|Γn =

ηn+1 − ηn

∆t
(5)

Step-3 compute the mesh velocity C by:

{

∆C = 0
C|Γn = un+1

|Γn+1

(6)

Step-4 Extend the mesh:
xn+1 = xn + ∆t.C (7)

Step-5 Convection of the fluid by a method based on the analysis of the char-
acteristics. Gives ũn+1, solution at time (n + 1).∆t of:

∫ (n+1)∆t

n∆t

∂u

∂t
+ (u − C).∇u = 0 (8)
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Figure 1: Simplified aortic arch

Step-6 Stokes step. Compute un+1 and Pn+1 by:







un+1−ũn+1

∆t
− ν∆un+1 + ∇Pn+1 = 0

∇.un+1 = 0
un+1
|Γn+1 = ηn+1 − ηn

(9)

Remark The term a.ηn+1−ηn−1

∆t
in equation (4) is given in parenthesis be-

cause it was only added for numerical convenience to stabilize the algorithm.

4.4 Preliminary Results

As first step we executed the code for a rigid configuration (no moving bound-
aries). This configuration allowed us to test the flexibility of the fluid simula-
tion code N3S (by Simulog) for quite irregular pulsed inlet velocity boundary
conditions. These conditions are based on experimental values obtained on an
artificial simulator of the cardiovascular system (data courtesy of Sorin Biomed-
ica). We noticed that the fluid solution well behaved even after inversion of the
flow. This flow inversion induces an entering velocity at the “outlet” Neumann
boundary. The reflux in the aortic artery at the beginning of the diastole, which
lasts for its entire duration in case of an artificial or injured aortic valve, has
too strong influence on the characteristics of the flow to be artificially neglected
(by smoothing or artificially increasing the inlet flow), even if it corresponds to
a small fraction of the total loading. As a consequence of the good behavior
obtained, we introduced a fluid-structure coupling by using the first of the two
pressure laws previously indicated, (relation (1)) on the wall. After very encour-
aging initial results, with large time steps and coarse grids, we could not proceed
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further because of very strong instability of the solution. In contrast with usual
stability results, this instability grows as the time step (taken constant during
the whole computation) decreases. By observing how instabilities developed we
were led to think that they were due to a strong stiffness of the wall pressure law.
A pressure perturbation induces an almost instantaneous displacement of the
wall, causing strong velocity variations which produce an amplified big jump
of pressure. So, we introduced the second wall-pressure law (2) for the fluid
structure coupling. To get rid of the natural oscillatory modes of the moving
boundary, we added a dissipation term of the form C.η′ in the equation. The
coefficient was chosen in a way to get a double real negative eigenvalue for the
associated homogeneous linear differential equations. We also made implicit the
finite difference scheme describing the temporal progression of the walls. This
new procedure was tested. It provides a system with a better stability than be-
fore but not yet sufficient. What is worse is that the pathological behavior of the
numerical solution with the decrease of the time step is preserved. This means
that the principal source of instability is still to be found. Nevertheless, this
small gain allowed us to detect, just before or at the beginning of the spreading
of the instability, a strange behavior of the flow at the Neumann outlet. A more
elaborated study on the consequences of this type of boundary condition maybe
could give us a criterion to modify in a more correct, if not the less harmful,
way.

5 Afterwards considerations

5.1 A priori estimates on the continuous equations

We want to give an a priori estimate which could allow us a better understanding
of the problem. We consider then a simplified problem where dissipative terms
are neglected.

Let Ω be a domain whose boundary Γ is composed of three parts:

1. Γ1 is supposed to be an inlet, with Dirichlet boundary condition on the
velocity field;

2. Γ2 is supposed to be an outlet, with a priori Neumann type boundary
condition on the velocity field;

3. Γ3 is the interface with the elastic wall. Pressure and velocity are the
same on both sides of the interface.

The coupled system is written as:

u′ + (u.∇)u + ∇P = 0 in Ω (10)

η′′ + η = P on Γ3 (11)

u|Γ3
.n = η′ (12)
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Multiplying (10) by u and integrating over Ω, we get

1

2
∂t|u|

2
L2(Ω) +

1

2

∫

Γ1+Γ2

|u|2u.n +

∫

Γ

Pu.n = 0. (13)

Multiplying (11) by η′ and integrating over Γ3, we get

1

2
∂t|η

′|2L2(Γ3) +
1

2
∂t|η|

2
L2(Γ3) =

∫

Γ3

Pη′. (14)

Summing these two equations, we have

1

2
∂t(|u|

2
L2(Ω) + |η′|2L2(Γ3) + |η|2L2(Γ3)

) = −

∫

Γ1+Γ2

(
1

2
|u|2 + P )u.n (15)

From this estimate, we can see that the instabilities can either be caused by
high flow in outlet or by high pressure values. In fact, numerical simulations
can give both these numerical phenomena.

If we keep in mind our specific problem, with its own orders of magnitude,
the simplified coupled system is better described modifying equation (11) by:

ǫη” + η = P on Γ3, (16)

where ǫ ≈ ρwh, cf. equation (2), is a small parameter with order of magnitude
10−6.

In this case, we get the a priori estimate:

1

2
∂t(|u|

2
L2(Ω) + ǫ.|η′|2L2(Γ3) + |η|2L2(Γ3)

) = −

∫

Γ1+Γ2

(
1

2
|u|2 + P )u.n. (17)

From this estimate, it is now clear that η′ is not strictly controlled by the kinetic
and pressure energy put in inlet and outlet.

Another a priori estimate that gives a control over the velocity of the moving
wall is obtained multiplying the structural equation by ǫ−1 as it follows:

1

2
∂t(|u|

2
L2(Ω) + |η′|2L2(Γ3)

+ ǫ−1.|η|2L2(Γ3)
) = −

∫

Γ1+Γ2

(
1

2
|u|2 + P )u.n

+ (ǫ−1 − 1).

∫

Γ3

P.u.n. (18)

This means that to have a reasonable control over η′ you must perfectly con-
trol the pressure on Γ3. Unfortunately, this is not what happened in our first
attempts. Moreover, the simulations we were able to run for for a reasonable
number of time steps were obtained using an added mass, which consists in
taking a much bigger h (1cm instead of 1mm). In terms of these a priori esti-
mates, it means that we took ǫ ten times as big, reducing in the same way the
sensibility of the wall to the pressure.
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5.2 A pathological situation

Let Ω be a disk and its boundary Γ an elastic wall. We begin with an equilibrium
state in which internal and external pressures are equal and the fluid is still. At
t = t0, we force the external pressure to decrease uniformly on Γ.

How should the system react?

1 The internal pressure should instantaneously uniformly decrease according to
the external pressure.

2 The fluid should stay still.

Now let’s consider how will our algorithm react to such a situation.

1 at Step 1 and 2, the boundary Γ gets lightly uniformly extended and a positive
normal velocity is set on it.

2 Steps 3 to 5, everything goes well.

3 At step 6, the projection step, we are required to solve

{

∆P = ∇.ũn+1 on Ωn+1

∇P.n = 0 on Γn+1 (19)

which has no solution because of the compatibility condition that we get
integrating equation (19) over Ωn+1:

∫

Γn+1

∇P.n =

∫

Γn+1

ũn+1. (20)

So, in this situation, the algorithm fails instantaneously. Now, let us consider
the same domain with a tiny hole on the elastic boundary. This hole is modeled
with a Neumann boundary condition on the velocity field. In the situation given
above the system should have the same reaction: it stays still. Following the
algorithm, we can proceed until step 6. Now there is a solution to the pressure
correction which consists in giving a very high value to the entering flow at the
level of the hole to preserve the conservation of the mass. The mean velocity
value on this part of the boundary is proportional to the velocity on the elastic
wall and to the ratio of the areas of the two boundaries. The higher is the ratio,
the less reliable is the algorithm behavior.

5.3 Time scale inconsistency

The pathological case just described allows us to understand why we have a pos-
sibility of strong instabilities of the scheme. It doesn’t explain why we managed
to get seemingly reasonable results for large ∆t, of order of a few 10−3s.

When we want to understand the behavior of the moving wall, a useful quan-
tity is the characteristic time given by the dynamic equation of the structure.
In our case it is given by Tw = 1

a
where a is the quantity in equation (4). When
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P2

P1

Γ12

Ω1

Ω2

Figure 2: Pathological case. For a numerical algorithm, the pressure P1 should
know any uniform change of P2 without movement of the elastic boundary Γ12

when the flow is still.

we let free the wall after an initial static deformation η0, the time dependent
deformation is given by:

η = η0.e
−

t−t0
Tw (21)

when we keep the friction term, and by:

η = η0. cos(
t − t0

Tw

) (22)

when we don’t consider it.
From expression (2) we get:

Tw =

√

ρw.(1 − ν2).R2

E
(23)

with the radius taken constant at 15mm,
the wall density at ρw = 1.1 · 10−6kg.mm−3,
the Young coefficient at E = 3 · 102kg.mm−1.s−2

and the Poisson coefficient at σ = 0.5, relation (23) gives:

Tw ≈ 0.8 · 10−3s. (24)

In fact, when we perform a simulation with ∆t = 5·10−3, we obtain a solution
seemingly reasonable. Taking ∆t = 2 · 10−3, the solution begins to degenerate
at the Neumann outlet. For ∆t = 10−3, the solution is highly degenerated at
the outlet and begins to pollute the flow upstream. For smaller ∆t we get fast
explosion.

So, we manage to get a solution only when we don’t solve correctly the
interaction time scale and, because of the implicit treatment of the structure
equation, we are artificially increasing the diffusive properties of the scheme.
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5.4 Pressure correction default

The analysis of the scheme will now be extended, with the aim of finding an
improvement. First, let’s get a better insight of the treatment of the pressure
considering the following example.

Let Ω be a 2D rectangular domain with periodicity condition on the top
and bottom velocities, time dependent Dirichlet velocity condition on left-side
(inlet) and Neumann velocity condition on the right (outlet) (see figure 5.4).
The equations of the continuous are given by:























u′ + (u.∇)u − µ.∆u + ∇P = 0 in Ω
u|Γ1 = g(t) with g(t) ∧ n = 0
u|Γ31 = u|Γ32

∇u.n = 0 onΓ3
P|Γ2 = Pout(t).

(25)

Γ1

Γ32

Γ2Ω

Γ31

Figure 3: Domain periodical orthogonally at the inlet flow. For such a domain
and an horizontal flow, uniform in space, we know an explicit solution. The
numerical scheme should approximate well this solution.

For this system, due to symmetry proprieties of symmetry, we can compute
the exact solution which is:

{

u = g(t) in Ω
P = Pout(t) + g′(t).(x|Γ3 − x),

(26)

and moreover

u′ + ∇P = 0 in Ω̄. (27)

Let g(0) = 0 and g′(0) = 0. Now, let’s follow the pressure evolution when
computed with our algorithm and in particular its gradient in inlet. We have
∇P 0

|Γ1.n = 0. As we update the pressure with a correction verifying ∇Q|Γ1.n =
0, we have for all n: ∇Pn

|Γ1.n = 0. Unfortunately this is completely untrue when

u′ is relatively high, as shown by equation (27).
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6 Modified algorithm proposal

6.1 Determination of the reference pressure

Given the fluid movement, we know that the pressure field is known up to a
constant. We will now propose a method to calculate this constant in a quite
general and simple way. The idea is the following:
when ∇P is derived from the zero divergence equation for the velocity field
∇.u = 0, the reference pressure Pref will be derived by the zero divergence
equation for the acceleration field ∇.u′ = 0, as we will now explain.

Given in integral form on the boundary, we get:
∫

Γ

u′.n = 0. (28)

Let’s suppose for a moment that |Γ3| = 0, i.e. there is no Neumann boundary
condition.So:

∫

Γ

u′.n =

∫

Γ1

u′.n +

∫

Γ2

u′.n. (29)

We have u′
|Γ1

= g′(t) prescribed and u′
|Γ2

.n = η” where η is the displacement
of the wall.

Usually, the structural law is of the form:

η” = F (η, η′, ∂x, ..., P0) + γP (30)

where all the arguments of F are explicitly known at computational time.So,
writing the pressure P as P = P̃ + C where P̃ is a pressure guess and C a
spatially constant correction, we get:

∫

Γ1

g′(t).n +

∫

Γ2

(F + γP̃ ) + γ.|Γ2|.C = 0 (31)

or
∫

Γ1

g′(t).n +

∫

Γ2

η̃” + γ.|Γ2|.C = 0 (32)

where η̃” is the acceleration guess corresponding to P̃ . Isolating C, we have:

C = −

∫

Γ1
g′(t).n +

∫

Γ2
η̃”

γ.|Γ2|
(33)

and the pressure is fixed by a correction to the initial guess.
Let’s consider the case when there is a Neumann boundary condition on

the flow. A Neumann outlet is usually a convenient way to artificially bound a
domain which is fundamentally either unbounded or with boundaries so far away
to make impossible an analysis on the whole physical domain. The location
of the artificial Neumann boundary is rather arbitrary, as long as it can be
reasonably felt that the flow approximately satisfies the Neumann condition.
So, we shall also turn to valuate

∫

Γ3
u′.n in an approximated manner.
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For a very small time interval, we can imagine that Γ3 is a physical “wall”
with a given velocity and a part of the boundary of another system out of the
domain. We just have to evaluate in term of boundary acceleration what is the
answer of this system to a given surface pressure.

For example (see figure 6.1), considering the outside boundary of the sim-
plified aortic arch, we can think of the external system as a tube of length L in
which the work of the pressure compensate the kinetic energy variation and the
friction dissipation. That gives:

∫

Γ3

u′.n =

∫

Γ3

[L−1.P − k.u.n] (34)

=

∫

Γ3

[L−1.P̃ − k.u.n] +
|Γ3|.C

L
. (35)

The correction to the guess pressure is then given by:

C = −

∫

Γ1
g′(t).n +

∫

Γ2
η̃” +

∫

Γ3
[L−1.P̃ − k.u.n]

γ.|Γ2| + |Γ3|.L−1
. (36)

6.2 Modified algorithm

We are now capable to propose a new version of the entire resolution algorithm
for ALE-based fluid structure interaction resolving at least the difficulties risen
in the previous part.

The ALE formulation requires the computation of a domain velocity C.
Wanting to be coherent with the boundary conditions, we choose to solve a
dynamic system for the velocity C of the domain

. The system of equations to solve for the continuous problem is:































































u′ + (u − c).∇u + ∇P − µ∆u = 0
η′′ + F (η, η′, ∂x, ..., P0) = γP

c′ − µc∆c = 0
cΓ1+3

.n = 0
cΓ2

= uΓ2

uΓ1
= g(t, x)

uΓ2
.n = η′

uΓ2
∧ n = 0

p̄ = h(u′)
∂nuΓ3

.n = 0.

(37)

The ALE formulation require the computation of a grid velocity C.
We write p̄ for any chosen quantity that fixes the indetermination of the

pressure. We suppose all the quantities known at iteration n. We denote by a˜
(tilde) an intermediary solution and the exponent refers to the mesh upgrade.

Step1 Fix the pressure indetermination. Gives P̃n.
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L

Ω

Γ3

Γ1

Γ4
P=P0

Ω2

Γ2

Γ2

Figure 4: We evaluate the pressure on Γ3 by fictively adding a new domain Ω2

were the flow and pressure patterns are given by simple integral laws.

Step2 Compute ηn+1 by using the structural software.

Step3 Compute un+1
Γ2

by the formula:

un+1
Γ2

= 2.
ηn+1 − ηn

∆t
− un

Γ2
. (38)

Step4 Compute the velocity c of the mesh at time step n + 1.






c̃n − ∆t.µC .∆c̃n = cn

c̃n
Γ2

= un+1
Γ2

c̃n
Γ1+Γ3

= 0.

(39)

Gives c̃n

Step5 (Convection on the old mesh)
By any adapted method (characteristics), solve







ũn = un + ∆t.[(u − cn).∇u + ∇P ]
ũn

Γ1
.n = gn.n

ũn
Γ2

.n = uΓ2
.n.

(40)
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Gives ũn.

Step6 Compute the new mesh by using the mesh velocity and position field.

Xn+1 = Xn +
∆t

2
.(C̃n + Cn). (41)

Gives Xn+1 and Cn+1.
Gives also ũn+1 and P̃n+1.

Step7 (Diffusion step on the new mesh) Solve:



















˜̃u
n+1

− ∆t.µ∆˜̃u
n+1

= ũn+1

˜̃u
n+1

Γ1
= gn

˜̃u
n+1

Γ2
= (η′n, 0)

∂n
˜̃u

n+1

Γ3
.n = 0.

(42)

Gives ˜̃u
n+1

.

Step8 (Projection step) Compute Q, a pressure increment, solving:















−∆Q = ∇.˜̃u
n+1

∂nQΓ1
.n = (gn+1 − gn).n

∂nQΓ2
.n = (un+1 − un)Γ2

.n

QΓ3
= 0.

(43)

Step9 Correct to get the velocity and pressure at time step n + 1.

un+1 = ˜̃u
n+1

+ ∇Q (44)

Pn+1 = P̃n+1 + Q. (45)

Obviously, numerous variations can be discussed, such as transferring the
pressure on the left hand side from the convection to the diffusion step. We can
also fix the tangential velocity at gn+1 ∧ n at the diffusion step. Indeed these
variations don’t modify the characteristics that we required for the scheme.

7 Conclusion

The first part of this work has been done during the Cemracs96 intensive re-
search center in Marseille.

It allowed both the authors to get more familiar to the quite wide range
of knowledge needed to tackle the subject, going from numerical analysis and
scientific computing to biomechanics.

We were wondering why we could not find in the literature other people
doing full coupled Navier-Stokes and structural simulation of the aorta. The
most complete similar work is done by Perktold&alt. (see ref.) in the context of
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the carotid bifurcation. Although it was a 3D simulation, there is no use of any
kind of ALE technique so we can’t expect results asymptotically too accurate.

Since that not being able to give reliable results that take in consideration
the physical time scales of the problem could be considered as a failure, we
turned in the second part to a deeper analysis of the computational scheme.

We showed that our calculus algorithm, which is what we can find of best
in this area, cannot solve accurately this kind of situation, being intrinsically
unstable except at the cost of denaturing the physics underlying.

We have given a simple benchmark case that any proposed algorithm should
be easily able to correctly solve. This could be interpreted as a minimum con-
sistency check.

We showed that the treatment of the pressure is of critical importance and
approximation errors must be carefully analyses.

We hope that the analysis developed here can give to people new to this
kind of studies hints on what to do and advises on errors not to fall in.

A new algorithm verifying the conditions stated in the second part of this
work is now under development.
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