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Abstract

We present the 2D simulation of the interaction of an artificial aortic

valve and the blood reflux at the end of the systole. The valve is pivoting of

60 degrees under the flow pressure. The ALE formulation is used and mesh

is regenerated periodically. Coupling procedures and mesh regeneration

are described with care given to technical difficulties. Results are shown

and commented underlining their limits and potentiality.
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1 Introduction

In the cardiac cycle, at the end of the systole, the reflux of blood from the
aorta to the left ventricle is stopped by the closure of the aortic valve. If the
natural aortic valve gets damaged, a now common procedure is to replace it by
a prosthesis. There are many design for artificial valves; in this study, we have
considered the bileaflet model by Sorin ([11]). The aortic valves, both natural
and artificial, are passive objects where opening and closing phase are governed
solely by the blood flow. Points of interest in the analysis of an artificial valve
are:

1. the maximum shear rate to evaluate the risk of hemolise,

2. the blood reflux volume to measure its efficiency and

3. the closing velocity to estimate the possible weaving of the valve ma-
terial.

Numerical simulation is done using an ALE formulation for the fluid, allowing
moving domains. The blood is considered to be incompressible and Newtonian.
It is governed by the Navier-Stokes equations. The valve is supposed to be rigid
with two symmetric leaflets that rotates over a fixed axis. Only half of the
domain is simulated. Doing a 2D planar simulation, we don’t pretend to obtain
meaningful quantitative results but only to indicate an approach to the problem
that will give quantitative data in the future 3D simulation.

The fluid is transferring its pressure to the structure which in turn transfers
its displacement to the fluid. Geometry changes drastically during the simula-
tion, so remeshing is done when necessary. We give results of the simulations
and show that some interesting results can already be inferred with such a ba-
sic approximation. Other works have been done on the flow around a cardiac
valve. We refer to King and al. (1996) ([15]) for a quite complete bibliography,
both experimental and numerical. Apart from Peskin & al. (1992) ([16]), for
the mitral valve, we do not know of any other direct simulation with a moving
boundary.

2 Notations and Constitutive Equations

Our domain Ω is composed of two parts evolving in time:

1. Ωf for the fluid domain,

2. Ωl for the leaflet.

Technically our domain of simulation is defined by five boundaries:

1. Γi where the inlet flow is prescribed,

2. Γo for the free (Neumann) outlet flow,
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3. Γh for the fixed external wall with homogeneous Dirichlet conditions for
the velocity,

4. Γm for the moving boundary, that is the leaflet boundary,

5. Γs for the symmetry axe.

There are two geometrical points of interest:

1. CG the leaflet center of inertia,

2. CR the leaflet center of rotation.

When the center of rotation is not fixed in time, it follows a path linked to the
inclination of the leaflet:

1. Γr is the trajectory of the center of rotation.

These informations are illustrated in figure (1).

2.1 Leaflet equations

The leaflet momentum MF about the point CR, is calculated from the pressure
and viscous forces applied by the fluid, and it is used to calculate the leaflet
angular acceleration, velocity and position after one time step Dt. We have:

MF =

∫

Γm

[(PI + ν∇u).n] ∧ −−−→
CRXdX (1)

where P is the pressure, I the identity matrix, u the fluid velocity and n is the
normal pointing outside the fluid domain.
The inertial moment of the leaflet about CR, MiR is given by:

MiR = MiG + ml.|CGCR|2 (2)

where ml is the total mass of the leaflet and |CGCR| is the distance between the
two points CG and CR. We have used MiG the inertial moment of the leaflet
about its center of inertia CG which is defined, knowing ρl the leaflet density,
by:

MiG =

∫

Ωw

ρl|GX |2. (3)

The angular acceleration Θ̈ is then calculated by:

θ̈ =
MF

|CGCR|.MiG

(4)

to give angular velocity and value as:

θ̇(n + 1) = θ̇(n) + Dt.θ̈, (5)
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Figure 1: Scheme of the geometry with the velocity profile in inlet and the sens
of rotation of the valve leaflet.
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θ(n + 1) = θ(n) +
Dt

2
.(θ̇(n + 1) + θ̇(n)). (6)

The new position Xn+1 of a point M of the leaflet boundary is known from its
previous position Xn, the angle associated θM (Xn), and the angular increment.
Noting:

Xn+1 = θ−1

M (θM (Xn) + θn+1 − θn). (7)

The velocity of the leaflet, which is also the boundary velocity both for the mesh
and the fluid is finally computed by:

ul =

−−−−−−→
XnXn+1

Dt
. (8)

2.2 Fluid equations

The fluid is governed by the incompressible Navier-Stokes equations:
{

∂tu + (u.∇)u − ν∆u + ∇P = 0 in Ωf (t)
∇.u = 0

(9)

where u is the fluid velocity, P its pressure and ν its viscosity.
To overcome the difficulty coming from the change of Ωf during one time step,
we fix the domain for that time step and transport the equation over the fixed
domain. We obtain the following formulation ([5],[1],[2], [3], [6], [7]), known as
the Arbitrary Lagrangian Eulerian (ALE) formulation:
{

∂tũ + ([ũ − c].∇)ũ − ν∆ũ + ∇P̃ = 0 in Ω̃f (]tn, tn+1]) = Ωf (tn+1),
∇.ũ = 0

(10)

where c is the domain velocity and will serve as mesh velocity. P̃ and ũ are first
order approximations in Dt of the previous pressure and velocity ([8], [4]). This
system is completed by the following boundary conditions:























ũ = g (given) on Γi,

ũ = 0 on Γh,

u = ul on Γm,

∇P̃ .n = 0 on Γi ∪ Γh ∪ Γm,

P̃ = 0 on Γo.

(11)

with ul is the leaflet velocity and constitute the coupling term.

From now on, we will drop the tilde “̃” for the sake of simplicity.

We present briefly the numerical scheme for the fluid which uses operator
splitting and projection methods. It is implemented in the N3S software by
Simulog. Knowing u, P and c at time n, along with the boundary Dirichlet
conditions and positions at step n+1, we want to compute the variables at time
n + 1.
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1. First Step: Compute the domain velocity, solving a Laplace problem and
transport the mesh on the domain at time n + 1.

2. Second Step: Convection of the velocity field, by a characteristics method.
Roughly equivalent to giving an intermediary velocity solution un+ 1

2 of:

un+ 1

2 = un + Dt.([un − c].∇)un. (12)

3. Third Step: Diffusion with Projection on the divergence free space, solving
the system:

{

∆Pn+1 = ∇.un+ 1

2

Dt
un+1 − νDt.∆un+1 = un − Dt.∇Pn+1.

(13)

3 Remeshing and interpolation

During the closure of the leaflet, there are regions were the mesh is evolving con-
siderably with a decrease in mesh quality. We have chosen a strategy consisting
in remeshing the whole domain as soon as the mesh quality reaches a fixed value
of a mesh quality indicator Qm. We define the quality Qt of a triangle ABC in
the following way:

Qt = C

−→
AB ∧ −→

BC

|AB|2 + |BC|2 + |CA|2 (14)

where C = 2.
√

3 such that for an equilateral triangle Qt = 1.
Please note that triangles have been given a “counterclockwise” orientation

and the formula gives negative values when triangles are inverted.
The global quality Qm of the mesh is defined as the minimum quality of all its

triangles. It is checked at each iteration. When the quality criteria fails, a new
mesh is computed on the geometry independently of the previous one (in fact
we are preserving at present the mesh boundary structure). Then the velocity
and pressure fields are computed by linearly interpolating the values at the new
nodes over the old mesh node values. This interpolation is first order accurate (in
space) and does not preserve the incompressibility constraint. This constraint is
reestablished at the cost of a large, unphysical variation of pressure immediately
after remeshing. This jump of pressure vanishes rapidly when the deformation
of the geometry is enforced externally but can be source of strong long living
instabilities when the pressure value is used to move the boundary, as in coupled
problems. For this reason, we need to damp-out the pressure oscillation and the
angular acceleration, after a remeshing is calculated for a few time step as a
weighting between the angular acceleration before remeshing θ̈(n0) and the one

caused by the actual pressure field
¨̃
θ with the following formula:

θ̈(n0 + i) = θ̈(n0).e
−

i−1

N +
¨̃
θ(n0 + i).(1 − e−

i−1

N ) (15)
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Figure 2: P1 structure of the mesh at the beginning, during and near the end
of the simulation.
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where N = 1 in the ultimate version. Moreover, we ignore the pressure torques
calculated at the end of the first time step.

Our interpolation method has the advantage of been quite simple and fast,
and is well suited for a large range of situations. Nevertheless, in our simulation
we come close to a topological change of the geometry ( the valve closure). So,
remeshing and interpolation are done more and more often during the simula-
tion. There is a serious risk that the accumulation in the introduced error could
denature the solution. It would be therefore interesting to implement other
methods, more accurate. For an analysis of the different possibilities for the re-
generation of a discrete computational scalar or vectorial field after remeshing,
we refer to ([9]). The most efficient methods seem to be the minimization based
ones. They are unfortunately quite heavy to implement.

Another, complementary, approach is the continuous monitoring of the mesh
with local remeshing capability based on a geometrical dynamic minimization
of the error. This kind of approach, while now quite common for stationary
simulations is at its first steps in the highly un-stationary case ([12], [13]).

4 Pressure in ALE formulation

It has also been numerically experienced that pressure seems very badly rep-
resented when boundary accelerations are involved ([10]) so that the coupling
with a boundary structure is very unstable. Fortunately the pressure behaves
well when no acceleration of the boundary is present. To overcome the diffi-
culty, ([10]) has developed a strategy that consists in splitting each structural
time step in two fluid time steps. All the acceleration effects on the boundary
in the structure time step are concentrated in the first fluid time step. The
second fluid time step is done with no acceleration of the boundary (at first
order, it is in fact the angular acceleration that is dealt with). The pressure
calculated at the end of the second fluid time step has then retrieved accuracy
and serves as input to the structure time step. While this method allowed us
to technically compute with success the movement of the artificial valve nearly
up to its closure, the analysis of the computation was not satisfying. In fact the
valve acceleration presented a bad behavior, with a tendency to an exaggerated
growth in time coupled with big drops at remeshing.

Positively impressed by the stability obtained by this splitting method, we
have tried to fix the acceleration over each “two-time-step”. The result was that
the valve acceleration became nearly continuous at remeshing and stabilized at a
quite lower value than before. Unfortunately, after some remeshing procedures,
the acceleration showed again a bigger oscillatory behavior and ended by being
instable.

A successive pressure coupling algorithm has been developed which evaluates
the “operative” pressure for computing of torque as the mean calculated pressure
over the last two time-step. While more stable than the preceding algorithm, it
does not allow to pursue the closure simulation up to the (near) end.

All these algorithm showed a constant improvement in stability. They are
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all somewhat based on regularizing the pressure effects. This smoothing takes
into account the past history of the pressure and is more needed as the leaflet
closes and the flow goes sharper. We finally used a parameterized algorithm
for which we introduce an “effective” Peff pressure as a weighting between the
measured pressure Pmea and the former “effective” pressure. This gives, with a
computing notation:

Peff = αPmea + (1 − α)Peff (16)

where α is the weight parameter and evolve in this simulation from an initial
0.7 to a final 0.1.

5 Numerical Results

The boundary inflow data are taken from from experimental measurement from
the SORIN BICARBON aortic valve ([11]). We should stress the fact that while
the geometry of the proximal aorta should give rise to an axial-symmetrical 2D
simulation, the structure of the valve is only plane-symmetric and its movement
is computed from a torque which would be zero in the axial-symmetrical case.
So, we evaluated the inlet flux and velocity with the cylindrical configuration
in mind, but we used instead the 2D planar Navier-Stokes equations. As al-
ready pointed out in the introduction, this approximation does not allow us to
infer quantitative informations from the simulation. However, we think that we
have caught the qualitative behavior and the experience with pressure coupling
algorithm is essential for future 3D computations.

5.1 Numerical values

The results of the simulation presented here has been effectuated with the fol-
lowing numerical setting.

1. Inlet velocity: the profile of the inlet velocity is a forth order parabola
whose maximal value is linearly evolving in time so as to reach the value
of 250mm.s−1 in 4.10−2s. It should be noted that only the total flux
has been taken from Sorin data. The profile used is highly arbitrary
and inaccurate for this simulation. More realistic profile should consider
a progressive inversion of the flow from the border to the center of the
aorta as is seen for the inversion of a flow in a pipe. However, due to
the curvature of the proximal aorta, the reflux is highly asymmetric and
should also presents a strong rotational component ([14]). Implementing
such better inlet flows require to have a compatible initial velocity field
and pressure field which complicate quite a lot the simulation and is left
for subsequent improvements.

2. Time step: the time step has been taken constant during all sequences
of execution without remeshing and changed from the value of 5.10−5s
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when the valve is fully opened at the beginning of the simulation up to
10−6 near to the leaflet closure. Flow and pressure waves that used to
happen with the former coupling algorithm at the change of time step
are no longer quantitatively relevant. The choice of the evolution of the
time-step allows to reach more rapidly and still with a good accuracy
and a reasonable flow pattern the interesting part of the simulation when
approaching to the valve closure by a few degrees. At this moment the
leaflet velocity becomes quite high and the mesh degenerate more rapidly.
A small time-step is then necessary to have time to capture the good flow
pattern between each remeshing. The diminution of the time step could
seem exaggerated but it is also due to the diminution of the parameter α.
In fact, the “effective” time step for the coupling algorithm is of order Dt

α
.

It is therefore necessary to keep this value much smaller than the time
between two remeshing.

3. Mesh nodes: Due to remeshing, the number of nodes is not constant,
even when the boundary mesh is preserved. In fact, we used two families of
mesh. One with about 11.000 nodes and the other with about 24.000 nodes
for an open leaflet (see 2). These number fall by more than50% near the
closure because the boundary meshes have been created to behave well for
a near-closing valve. The coarsest grids have been used at the beginning
of the simulation and the finest ones at the end of the simulation.

A sum up of the simulation is given in the following table, the star in parenthesis
(*) in the first column indicates that a successive identical sequence has given
rise to an instability.

Sequence Mesh Dt α θ θ̇ θ̈ Time element
Number type s ad. do Rad.s−1 Rad.s−2 s number

2 1 5e-5 0.7 49.42 11.070 537.39 .04315 10668
4 1 2e-5 0.7 32.11 26.618 1415.3 .06026 9324
4 1 1e-5 0.6 15.54 42.872 2565.7 .06877 7274
2 2 5e-6 0.5 12.27 46.377 2953.3 .070045 15226

3(*) 2 2e-6 0.4 6.22 53.975 4558.3 .072158 13158
1(*) 2 1e-6 0.3 4.46 56.754 5543.9 .072711 12320
2 2 1e-6 0.2 2.21 61.033 7373.2 .073379 11214

1(*) 2 5e-7 0.2 1.67 62.176 7691.4 .073531 10882
2 2 2e-7 0.1 0.98 63.586 6636.8 .073724 10432

5.2 Results analysis

We show, in the following figures (3,4,5), the evolution of position, angular
velocity and angular acceleration of the leaflet. Closure is reached at 60 degrees.

As shown before, the angular acceleration is proportional to the torque ex-
erted on the leaflet. While the global motion and velocity of the leaflet looks
very good, it can be noticed some small irregularities of the angular acceleration.
These irregularities are localized at the re-initialization of the mesh, which are
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more frequent as the valve closes. They are thought to be caused by the errors
introduced during the interpolation and the flow takes some time to readjust
itself in the good configuration. The jumps of pressure which have been cut to
calculate the angular acceleration can be seen in figure (6).

The pressure drop induced by the leaflet is very small until few degrees of the
closure and the simulation does not degenerate even at 1 degrees of the closure.
The evolution of the mesh quality(fig.7) confirm the fact that degeneration of
the mesh is faster when the leaflet boundary is closer to the external boundary.

It has been tried to diminish the time-step without altering the parameter
α when oscillations have appeared. No substantial gain of stability has been
noticeable. The effect of α is to delay the instantaneous information coming

from the fluid over a characteristic time of Dt
α , which is the real characteristic

time from the accuracy point of view. This aspect should correlated to coupling
algorithms which use a global time step and then do sub-cycling on the separated
fluid and structure parts, being implicit at the global level (see [6]). From this
point of view, we use an algorithm totally explicit at the upper lever. This is
quite an important point, because it allows to do the coupling using the normal
I/O data of any commercial code.

The value and location of the maximum shear stress are also plotted (8, 9).
It can clearly by inferred from the figure ( 9) that the maximum shear stress
near the time of closure is close to the axe of symmetry of the domain.

We also presents the evolution of some relevant quantities with the variation
of the leaflet angle:(10, 11, 12 and 13), and a temporal zoom over the end of
the simulation: (14, 15, 16).

6 Conclusion

We have presented a fully coupled simulation of the fluid-structure interaction
of the blood with a rotating leaflet. Due to large displacements, in spite of
the ALE formulation, global remeshing is periodically done. The coupling algo-
rithm used shows a very stable behavior, threw the monitoring of a stabilizing
parameter (α). It is nevertheless fully explicit and of easy implementation. The
medodology and the technical main difficulties seem now under control, and full
3D accurate simulations can be expected in a near future.

References
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Figure 12: The effect of the leaflet for the pressure drop is significant only when
been less than 10 degrees from the closure. The jumps of the pressure drop at
remeshing increase quite a lot at the end of the simulation, indicating some lost
in accuracy.
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Figure 13: Remeshing becomes necessary more often near the closure of the
leaflet because we are closer to a topological change of the domain.
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Figure 14: Only at the extreme end, we can see a lowering of the acceleration.
It can also be noted the beginning of an instability at the maximum value.
Fortunately the remeshing procedure took place a few time-steps before. Even
at the extreme end of the simulation, the maximum jump in acceleration is less
than 3 % . Note the time increment.
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Figure 15: The acceleration increases by more than 50 % on the ultimate 4
degrees and then shows a small but stiff decreasing.
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increase until the end of the simulation.
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