
TOM: Totally Ordered Mesh

A multiresolution structure for time critical graphics applications

Eric Bouvier∗ Enrico Gobbetti†

CRS4
Center for Advanced Studies, Research and Development in Sardinia

Cagliari, Italy‡

Abstract

Tridimensional interactive applications are confronted to situations
where very large databases have to be animated, transmitted and
displayed in very short bounded times. As it is generally impos-
sible to handle the complete graphics description while meeting
timing constraint, techniques enabling the extraction and manip-
ulation of a significant part of the geometric database have been
the focus of many research works in the field of computer graphics.
Multiresolution representations of 3D models provide access to 3D
objects at arbitrary resolutions while minimizing appearance degra-
dation. Several kinds of data structures have been recently proposed
for dealing with polygonal or parametric representations, but where
not generally optimized for time-critical applications. We describe
the TOM (Totally Ordered Mesh), a multiresolution triangle mesh
structure tailored to the support of time-critical adaptive rendering.
The structure grants high speed access to the continuous levels of
detail of a mesh and allows very fast traversal of the list of triangles
at arbitrary resolution so that bottlenecks in the graphic pipeline are
avoided. Moreover, and without specific compression, the memory
footprint of the TOM is small (about 108% of the single resolution
object in face-vertex form) so that large scenes can be effectively
handled. The TOM structure also supports storage of per vertex
(or per corner of triangle) attributes such as colors, normals, tex-
ture coordinates or dynamic properties. Implementation details are
presented along with the results of tests for memory needs, approx-
imation quality, timing and efficacy.

Keywords: multiresolution modeling, level-of-detail, adaptive
rendering, time-critical graphics

1 Introduction

Synthetic scenes composed of thousands of highly detailed geomet-
ric models are rapidly becoming commonplace in computer graph-

∗Eric.Bouvier@crs4.it
†Enrico.Gobbetti@crs4.it
‡CRS4, VI Strada Ovest, Z.I. Macchiareddu, C.P. 94, I-09010 Uta (CA),

Italy, http://www.crs4.it/vvr

ics applications: from CAD systems, virtual reality, to interactive
video games. Despite the continuous improvement in performance
of CPUs and graphics accelerators, these scenes, exceeding a mil-
lion of polygons, cannot be handled directly at interactive speeds
even on high-end machines. An essential feature of scalable inter-
active 3D applications is thus the ability to trade rendering quality
with speed, so as to meet the timing constraints associated to pro-
viding the illusion of continuous motion.

The traditional approach is to precompute a small number of
independent level-of-detail (LOD) representations of each object
composing the scene, choosing at run-time the best one based on a
cost/benefit analysis [7, 25]. An improvement to this method con-
sists in representing objects as multiresolution meshes, also known
as continuous LODs. In this case, the LODs are stored in a dedi-
cated data structure from which representations of the mesh can be
extracted with any number of polygons.

In this paper, we discuss a multiresolution triangle mesh struc-
ture, the Totally Ordered Mesh structure (TOM), that has the fol-
lowing properties:

• The structure is compact. Without using specific compression
techniques the memory overhead of the structure is about 8%
of the full resolution mesh and becomes smaller if colors and
texture coordinates are stored.

• The mesh can be accessed at any resolution in a short pre-
dictable time. The triangle traversal rates are in the order of
a a few million triangles per second on common single pro-
cessors machines (R10000 194 Mhz, Pentium II 300 MHz),
which is comparable to what can be handled by high-end 3D
accelerators.

• The data structure is designed to make optimal use of the
immediate-mode vertex-face mesh rendering interfaces of
modern graphics libraries. Rendering can be performed by
first transferring to the graphics pipeline compact arrays of
vertex attributes and then streaming through triangles to de-
fine the mesh connectivity with vertex indices.

• The quality and speed of the simplification methods that can
be used to build the structure are competitive with other exist-
ing results.

These properties make this structure a good candidate for mesh
representation in time-critical applications. The TOM structure has
proven useful to support multiresolution scene rendering [9].

The rest of this paper presents related work and discusses our
proposed structure. Implementation details are presented along
with the results of tests for memory needs, approximation quality,
timing and efficacy. We demonstrate the applicability of the struc-
ture to real-time applications with the implementation of a time-
critical rendering engine that automatically selects the resolution of
a set of objects represented with our multiresolution structure.

2 Related work

2.1 Levels-of-detail

Many applications dealing with time-critical graphics are able to
store a 3D model in a fixed number of independent resolutions
(LODs) (e.g. OpenInventor [22] and VRML [29]). The main ad-
vantages of LODs are the simplicity of implementation and the fact
that, as LODs are pre-calculated, the polygons can be organized in
the most efficient way (triangle strips, display list), exploiting raw
graphics processing speed with retained-mode graphics. The main
drawbacks of this technique are related to its memory overhead,
which severely limits in practice the number of LODs per object.
As an example, representing an object at just the four LODs 100%,
75%, 50%, 25% would cause an overhead of 150% over the single
resolution version. The small number of LODs limits the degrees
of freedom of the display algorithm and might introduce visual ar-
tifacts due to the sudden changes of resolution between differing
representations [13]. The use of accelerated retained mode can also
be penalizing if the display lists cannot be entirely loaded in dedi-
cated hardware memory [20, 21].

2.2 Multiresolution meshes

A multiresolution mesh is a compact data structure able to provide
on demand a number of LODs that is proportional to the size of
the mesh at full resolution. An extensive survey of multiresolution
techniques is presented by Puppo et al. [24].

In the context of time-critical rendering applications, the desir-
able features a multiresolution mesh must possess are low mem-
ory overhead, to deal with large databases and maximize cache
coherency, and fast triangle traversal rates at arbitrary resolutions,
to provide fast adaptive rendering. While some of the existing al-
gorithms are providing compact representations (e.g. progressive
meshes [15]) or fast triangle access (e.g. hypertriangulations [4]),
none of them provide a satisfactory compromise between space and
time constraints, mainly because they were not designed for time-
critical rendering applications.

The Progressive Mesh (PM) [15] representation is the most com-
monly used candidate structure. However, even if the representation
is compact, it cannot be rendered directly, since it has first to be tra-
versed to construct a single resolution mesh structure which can
then be used for rendering [16]. Experimental results [16] are in-
dicating a reconstruction rate of less than 200K triangles/sec on a
Pentium Pro 200 Mhz. While this cost can be amortized on more
than one frame if the single resolution meshes are cached, this is
at the expense of memory. Moreover, exploiting per-object frame-
to-frame coherency is only a partial solution for complex scenes,
because of the discontinuity in scene complexity caused by objects
entering into or exiting from the viewing frustum [7].

2.3 Dynamic simplification

An alternative to per-object LOD selection is to dynamically re-
tessellate visible objects continuously as the user’s viewing position
shifts. As dynamic re-tessellation adds a run-time overhead, this
approach is suitable when dealing with very large objects or static
environments, when the time gained because of the better simpli-
fication is larger than the additional time spent in the selection al-
gorithm. For this reason, this technique has been applied when the
entire scene, or most of it, can be seen as a single multiresolution
object from which to extract variable resolution representations.

The classic applications of dynamic re-tessellation techniques
are in terrain visualization (see [14] for a survey). Xia et al. [31, 30]
discuss the application of progressive meshes to scientific visualiza-
tion. Luebke and Erikson [21] apply hierarchical dynamic simpli-
fication to large polygonal CAD models, by adaptively processing

the entire database without first decomposing the environment into
individual objects. To support interactive animated environments
composed of many objects, we restrict ourselves to per-object con-
stant resolution rendering.

3 Multiresolution triangle mesh structure

Because of their generality, triangle meshes are the most popular
data structure for approximating surfaces in computer graphics ap-
plications. In applications where the main time-critical operation
is surface rendering, the crucial optimizations are: the traversal of
all the structure’s triangles, and the retrieval of attributes at the ver-
tices. On high-end systems it is particularly important to minimize
the amount of data transferred from the application to the graph-
ics pipe, since the host-to-pipe bandwidth limit can cause a per-
formance bottleneck. A particularly effective approach is to con-
struct primitives by indexing vertex data. Rendering can thus be
performed by first transferring to the graphics pipeline compact ar-
rays of vertex attributes and then streaming through triangles to de-
fine the mesh connectivity with vertex indices. Support for this type
of direct-mode rendering has been recently introduced in high per-
formance graphics libraries (e.g., OpenGL vertex array extension
or Direct3D DrawIndexedPrimitive).

In this section we present a multiresolution triangle mesh struc-
ture that efficiently supports vertex packing and indexing. We
named our data structureTotally Ordered Mesh(TOM), as it is
based on totally ordered arrays of vertices and triangles. A sim-
ilar structure has been independently developed by Guéziec et al.
[12] for streaming geometry in VRML. Their structure, however,
emphasizes the compaction of a small number of LODs in a single
structure using a forest split approach, while we focus on continu-
ous LODs for time-critical rendering applications.

3.1 Vertex substitution coding

Several algorithms have been recently published that simplify a
polygonal mesh by iteratively contracting vertex pairs (e.g. [17,
10, 11, 15, 26, 8, 1]). A vertex pair contraction operation [8], de-
noted(v1, v2)→ ṽ, replaces two vertices(v1, v2) with a single tar-
get pointṽ to which all the incident edges are linked, and removes
any triangles that have degenerated into lines or points. The opera-
tion is quite general, and can express both edge-collapse and vertex
clustering algorithms. The primary difference between vertex pair
contraction algorithms lies in how the particular vertex pairs to be
collapsed are chosen and in where the new vertices are positioned.

Ta

Tb

Tcv1

v2

Tl Tr

Ta

Tb

Tc

v1
v2

v2v2

v
1

v2

v
1

v2

Figure 1:Vertex substitution. On the left, the substitutionv1 →
v2 removes two triangles, as(v1, v2) is an edge. On the right, the
substitutionv1 → v2 just connects two disjoint mesh regions. In
both cases, all the simplification information can be retrieved from
data stored at the vertex level in the original vertex list.

We definevertex substitution, denotedv1 → v2, the restricted
form of vertex pair contraction where the target pointṽ is con-
strained to be the second vertex of the pairv2. Vertex substitution
has the interesting property that it does not create any new vertex
during the transformation. We can also consider that it does not
require the creation of any new triangle: during the vertex substi-
tution transformation, the surviving triangles can be interpreted as
unchanged if we consider that the removed vertex is replaced at

lower resolutions by the remaining vertex of the contracted vertex
pair (in figure 1, after the substitutionv1 → v2, vertexv1 becomes
equivalent to vertexv2, trianglesTa, Tb andTc are unchanged).

By iteratively applying vertex substitution, a triangle mesh can
be reduced by removing one vertex and possibly some degener-
ated faces at a time (see figure 1). During the simplification pro-
cess, no new vertex is inserted and the triangle list is not modified.
Therefore, vertex substitution is an ideal transformation to create a
multiresolution structure in a compact way, as all the simplification
information can be encoded by just adding constant-size informa-
tion to the vertex records in the original vertex list. The memory
overhead introduced to store the multiresolution mesh is limited to
the space required to store the vertex substitution history associated
to vertex pair contraction. We encode a vertex substitution by as-
sociating to each vertex the reference to the vertex by which it is to
be substituted. The resolution at which the substitution occurs need
not be encoded as it is equal to the vertex index after sorting.

The necessary data structures are summarized as follows:

MESH = {
ARRAY<VERTEX> vertices
ARRAY<TRIANGLE> triangles

}

TRIANGLE = {
VERTEX_INDEX[3] vertices -- triangle connectivity

}

VERTEX = {
VERTEX_INDEX substitute
ATTRIBUTES attributes

}

ATTRIBUTES = {
POINT3 position
VECTOR3 normal
... color, texture, and other vertex attributes ...

}

The space overhead associated to the information added to the
original single-resolution mesh is equal toNv∗Svertexindex where:

• Nv is the number of vertices;

• Sindex is the size used to store the index to a vertex of the
mesh

For a typical mesh ofNt = 2Nv triangles, considering to use
32 bits to represent both a vertex index and a floating point number,
the overhead associated to the above structure is less than 8% of the
single full resolution mesh memory footprint when only position
and normals are associated to vertices and becomes even smaller if
other attributes such as colors and texture coordinates are present.
We could still reduce the size of the mesh using mesh compression
techniques [6], but this is not appropriate for time-critical rendering
applications.

3.2 Total ordering for packing and traversal

As iterative vertex substitution does not modify vertex data and
does not add new vertices, a total order can be defined both on the
vertex list and on the triangle list based on the contraction resolu-
tion. Sorting according to this order after the simplification gener-
ates a compact and efficient data structure.

By ordering the vertex list, we obtain an optimally packed rep-
resentation where the active vertices at resolutionn are exactly the
firstn ones in the vertex array. In the case of graphics libraries sup-
porting indexed mesh primitives, vertex data accessed at an arbi-
trary resolution may thus be communicated to the graphics pipeline
for the rendering operation in the most efficient way, by passing
a pointer to the first element in the contiguous block of memory
storing the vertices together with the active vertex count.

Moreover, by ordering the triangle list, we have a way to iterate
through the triangles that define the mesh at an arbitrary resolution

in a time depending only on the number of active triangles and the
lengths of the vertex substitution chains. Fortunately, these lengths
are limited and relatively independent from the model size (see sec-
tion 4). In any case the depth at full resolution is always1 so that
triangle traversal at full resolution is strictly linear. When resolu-
tion decreases, the traversal rate also decreases but slowly, because
vertex substitution cannot, by definition, create too long chains for
all the vertices. In fact, each vertex substitutionv1 → v2 incre-
ments by one the depth of all the vertex chains containing vertexv1

but also keeps unchanged the length of all chains containing vertex
v2.

The following algorithm describes how to access all the triangles
of a mesh for rendering at an arbitrary resolution:

--
-- 1. Send Vertex data
--

.. Send to pipeline the first ‘‘requested_resolution’’ vertices ..
in the vertex array

--
-- 2. Retrieve last vertex index at current resolution
--resolution is defined by the number of triangle ’tri_count’
--
last_triangle := triangles[tri_count]
from

v := last_triangle.vertices
until

v[0]=v[1] or v[0]=v[2] or v[1]=v[2]
loop

-- i receives the position of the max of the triple (v[0], v[1], v[2])
i := PosMax(v[0], v[1], v[2])
v[i] := v[i].substitute
res_max := v[i]

end

--
-- 3. Send connectivity information
--
from

current_triangle:= triangles.first
until

current_triangle = last_triangle
loop

v := current_triangle.vertices
from

i = 0
until

i > 2
loop

while
v[i] > res_max

do
v[i] = v[i].substitute

end
end
-- Send (v[0], v[1], v[2]) as connectivity information for
-- the graphics pipeline

current_triangle:= triangles.next
end

3.3 Attribute discontinuity

Associating rendering attributes to vertices is not always sufficient
as it prevents modeling objects having discontinuities on their at-
tributes. It is, for example, not possible to model sharp edges or
to have adjacent triangles with distinct colors. A possible solution
is to store the attributes by corners or using a wedge structure[16].
Both of the techniques have the drawback of introducing time and
space overheads in the case of mostly continuous meshes: storing
attributes at corners is space inefficient for vertices sharing the same
attributes, and using a wedge structure introduces an indirection in
accessing vertex data.

We prefer instead to manage discontinuities by duplicating ver-
tices with different attributes and introducing degenerated triangles
to preserve topology (see figure 2). As the number of discontinu-
ous edges is generally very small compared to the total number of
edges, the memory overhead is small, and no indirection is neces-
sary to access vertex data.

Attribute
Discontinuity

Same Position,
Different Attributes

Null Area
Triangle

Figure 2:Attribute discontinuity. Discontinuities are handled in-
troducing degenerate triangles.

3.4 Geomorphs

Smooth transitions between resolutions can be obtained by interpo-
lating vertex data. As simplification proceeds by substituting only
one vertex at each step, only the attributes for the last active ver-
tex (i.e. the one that will be substituted at the next step) have to
be interpolated. We currently implement this feature using linear
interpolation for all data (see figure 3).

Resolution = 6 Resolution = 5.5 Resolution = 5

Figure 3: Geomorph. Smooth transitions between resolutions is
obtained by interpolating vertex data along the last vertex substitu-
tion.

4 Implementation and results

A software library supporting the multiresolution triangle mesh
structure described in this paper has been implemented and tested
on Silicon Graphics and Windows NT machines. The results pre-
sented here were obtained on both architectures. The triangle
meshes used in the evaluation were selected among those available
in the public domain to enable comparison with other approaches.
The characteristics of these meshes are summarized in table 1.

Mesh Vertices Triangles Site
bunny 35942 69449 www-graphics.stanford.edu

fandisk 6871 12946 www.research.microsoft.com/˜hoppe

cow 2915 5804 www.cs.cmu.edu/˜garland/cow.html

Table 1:Triangle meshes used in the tests

4.1 Simplification

Our multiresolution structure requires that the mesh simplification
method neither creates new triangles nor new vertices. As in [18],
we have implemented mesh simplification schemes based on itera-
tive vertex substitution in a generic framework of greedy algorithms

for heuristic optimization. The generic greedy algorithm is param-
eterized by abinary oracle, deciding which vertex substitutions are
legal, and afairness predicate, which assigns priorities to all vertex
substitutions in the legal candidate sets. The algorithm proceeds in
a series of greedy steps until the candidate set is empty. In each
greedy step, the best vertex substitution is removed from the can-
didate set, the mesh is modified accordingly, and new substitutions
are reevaluated for the vertices affected by the mesh change. To
speed-up these operations, the candidate set is implemented as a
heap keyed on the priority, and references to the heap entries that
have to be modified are associated to each of the active vertices.
Building a multiresolution structure for a mesh withn faces has
thus nearlyO(n) time complexity when using local binary oracles
and fairness predicates, as time is dominated by priority computa-
tion and not by heap maintenance.

As in [1, 18] we have noticed in our various experiments that
the most important factor to preserve quality during mesh simpli-
fication is the order in which operations are done, and that a good
mesh reduction scheme can be achieved without inserting new ver-
tices. Most of the methods that have been recently proposed can be
adapted and restricted to vertex substitution and are implemented
in this framework by just defining an appropriate binary oracle and
fairness predicate. As noted by Garland and Heckbert [8], and con-
firmed by our experiments (see section 4), the effect of vertex po-
sition optimization in vertex contraction algorithms is only notice-
able at very low resolutions. Since our context is multiresolution
rendering, objects at low resolution do not need lots of details, as
they contribute very little to the images. The loss in simplification
quality is thus low, when compared to the performance gains pro-
vided by vertex substitution.

The possible vertex substitutionsv1 → v2 accepted by the bi-
nary oracle used for this paper, as in [8], are those for which(v1, v2)
is an edge or‖v1 − v2‖ ≤ t, wheret is a user-selected thresh-
old parameter. This makes it possible to connect disjoint mesh re-
gions during simplification. We obtained good results for the error
(see section 4) by using a simple fairness predicate that computes a
penalty coefficient with a simple memoryless technique similar to
the one introduced by Lindstrom and Turk [19]. In all the examples
we have used the following formula:

εv1→v2 = ∆Vv1→v2 + ‖v1 − v2‖∆Av1→v2 + δInvv1→v2

where the penaltyεv1→v2 is a linear function of the volume vari-
ation∆Vv1→v2 , the area variation∆Av1→v2 , the distance between
vertices in a pair‖v1− v2‖, and a penaltyδInvv1→v2 which heav-
ily penalizes substitutions that cause mesh inversion. We note that
in our case the volume variation can be efficiently computed. As
we apply vertex substitution, the volume variation is the sum of the
tetrahedra based on the triangles that are modified during the con-
traction and that are passing by the vertex that is removed during
the contraction.

When dealing with degenerated triangles to support attributes
discontinuity, the way the penalty is computed must be adapted
as simplifying a degenerated triangle doesn’t change its volume,
area and the distance between its vertices can be null. In this case,
our solution is to introduce an additional coefficient measuring the
distance between the vertices attributes. In the case of purely ge-
ometric meshes (as those in the results section), we simply add to
the penalty a term∆Nv1→v2 proportional to the angle between the
normals of the two vertices of the pair.

4.1.1 Quality

In order to assess the quality of the meshes representable by our
multiresolution structure, we have compared the results obtained by

Figure 4:Sequence of approximations of thebunny, cow, and fandisk datasets.The original models on the left have full resolution. The
approximations to the right have 20%, 10%, 5%, and 1% triangles respectively.

our simplification algorithm with those generated with other state-
of-the art techniques. The algorithms considered are Mesh Decima-
tion [27], Progressive Meshes [15], Simplification Envelopes [5],
Multiresolution Decimation [2], and Quadric Error Metric [8]. The
comparison has been done using the publicly availableMetro tool
[23], which measures surface deviation and is thus biased towards
simplification algorithms which use that criterion to guide simpli-
fication. Figure 5 and table 2 summarize the results obtained on
thebunnymodel. The source for data on competing algorithms is
reference [3]. Despite the constraints imposed by the multiresolu-
tion structure and the simple memoryless binary oracle and fairness
predicate, our simplification algorithm obtains results comparable
to those of recently published simplification methods. The visual
quality of the approximations is illustrated in figure 4.

Vertices Triangles Maximum error Average error
17418 (50%) 34653 0.47433 0.01009
8079 (25%) 16006 0.83984 0.01631
3484 (10%) 6873 0.79855 0.02583
1742 (5%) 3428 1.04764 0.04387
697 (2%) 1361 1.02499 0.09544
349 (1%) 675 1.78891 0.18555

175 (0.5%) 337 2.41363 0.34466

Table 2: Geometric error measurements for thebunny model
at various resolutions. Errors are % of the dataset bounding box
diagonal.

4.1.2 Time

The performances that we have obtained when building our mul-
tiresolution structure from the full resolution mesh are presented in
table 3. The simplification time is linear with the full resolution
triangle count, and exceeds the rate of 1000 triangles/second on all
models that we have tested. The simplification time is thus compa-
rable to that of other approaches (see [3, 19]), even though, in our
case, the output is a full multiresolution representation instead of a
single simplified model. This shows that little overhead is associ-
ated to constructing the structure.

Mesh Time (seconds) Triangles/second
bunny 50.6 1370.5
fandisk 10.1 1286.8
cow 3.9 1482.2

Table 3:Multiresolution construction time.

4.2 Memory

Table 4 summarizes the storage requirements of the TOM structure
for the test meshes, compared to the original mesh in face-vertex
form, to a typical LOD representation with the six levels of details
100%, 50%, 25%, 12%, 6%, 3%, and to a progressive mesh (PM)
representation using the memory-resident data structure presented
in [16], simplified by removing face-level attributes to make com-
parison fair. As the PM representation cannot be rendered directly,
but has first to be traversed to construct a single resolution mesh
structure [16], we provide for this representation the minimum and
maximum memory required, corresponding to rendering the mesh
at the lowest, respectively highest, possible resolution. All size es-
timations assume that the mesh contains only normals as vertex at-
tributes, and that 32 bits are used for both integer and floating point
data.

Mesh bunny fandisk cow
Face-Vertex 1696 (100%) 320 (100%) 140 (100%)
TOM 1840 (108%) 348 (108%) 151 (108%)
LOD 3521 (213%) 666 (213%) 290 (212%)
PM-0% 1966 (119%) 376 (120%) 159 (117%)
PM-100% 4436 (268%) 840 (269%) 364 (267%)

Table 4: Minimum storage needs for a rendering application.
Sizes in Kb, percentages are with respect to the mesh in face-vertex
form.

As we can see from table 4, the TOM multiresolution structure is
the most compact, with an overhead of only 8% with respect to the
single resolution mesh in face-vertex form. The overhead fraction
is further reduced when associating more attributes at each vertex
(e.g. color, texture coordinates).

0.002

0.004

0.008

0.016

0.032

0.064

0.128

0.256

0.512

1.024

500 1000 2000 4000 8000 16000
Vertices

Bunny Mesh - Mean Error

Vertex substitution
Mesh Decimation

Simplification Envelopes
Multiresolution Decimation

Progressive Meshes
Quadric Error Metric

0.025

0.05

0.1

0.2

0.4

0.8

1.6

3.2

6.4

500 1000 2000 4000 8000 16000
Vertices

Bunny Mesh - Max Error

Vertex substitution
Mesh Decimation

Simplification Envelopes
Multiresolution Decimation

Progressive Meshes
Quadric Error Metric

Figure 5: Mean and maximum geometric error. Errors are % of the dataset bounding box diagonal. The source for data on competing
algorithms is reference [3]

.

4.3 Traversal and rendering

As we are focusing on time-critical scene rendering applications,
the most important results are relative to the triangle traversal rate
through our multiresolution structure. The overhead with respect to
traversing a single resolution mesh is only dependent on the lengths
of the vertex substitution chains. Figure 6 presents the overhead
associated to traversing thebunny, fandisk, andcowmeshes at var-
ious resolutions. As we can see, the results on different meshes
are very similar. The overhead grows slowly with the simplifica-
tion ratio, and in all cases, never exceeds 75%. It is thus possible
to traverse all active triangles while retrieving vertex attributes at a
speed sufficient to feed the 3D graphics pipeline even on high-end
3D accelerators.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Resolution

Triangle traversal overhead

Bunny
Fandisk

Cow

Figure 6:Multiresolution traversal overhead. Ratio of extra ver-
tices traversed to render meshes at multiple resolutions. Resolution
expressed as fraction of vertices.

Figure 7 presents the data structure traversal and rendering per-
formance obtained with the multiresolution structure for thecow
mesh. Similar results were obtained for the other meshes and are
not presented here. For the benchmarks we used two directional
lights, Gouraud shading, and a viewing configuration compressing
the mesh to a 50x50 pixel area, to avoid fill-rate bottlenecks. Our
current implementation renders meshes with the strict OpenGL core
command set as a sequence of independent triangles whose vertices
are specified usingglNormal/glVertex calls. Rendering with
vertex index extension is slower, as rendering indexed primitives is
only emulated in the drivers used. We expect a performance im-
provement with native implementation theEXT vertex array
extension.

As we can see, even using standard OpenGL, the rendering per-
formance at all resolutions for the multiresolution version is similar
to the limit given by rendering a streamlined version of the mesh. In
both cases, the meshes are rendered at a constant speed of about 800
KTris/second at all resolutions, showing that our linear cost heuris-
tics is a good approximation of the rendering behavior. Triangle
traversal rates on the multiresolution structure, measured by having
the traversal routine call empty vertex/normal procedures are well
above the rates obtained with the rendering code for all resolutions,
since they range from 3.7 MTris/second to over 10 MTris/second.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
00

2000000

4000000

6000000

8000000

10000000

12000000

TOM Traversal TOM Rendering Stream lined
OpenGL rendering

Resolution (fraction of total triangles)

S
pe

ed
 (

tr
ia

ng
le

s/
se

co
nd

)

Figure 7:Multiresolution traversal and rendering performance.
Timing statistics for thecow mesh. Experimental measures on a
SGI 320, single 500 MHz Pentium III with 512 Kb L2 cache, 256
Mb RAM, Cobalt graphics. Rendering environment: two direc-
tional lights, one material per object, Gouraud shading, independent
triangles, one normal per vertex

4.4 Time-critical rendering application

We have developed an application that demonstrates the perfor-
mances of our structure in a time-critical context. The rendering
engine is based on a feedback algorithm that automatically selects
the resolution of the objects of the scene. The technique used is
based on a simplestress managementapproach [7, 25]. Two state
variables, the systemload, defined as the fraction of expected time
actually used to render the frame, and the systemstress, a function
of load over time, are used to increase or reduce the number of ren-
dered triangles so as to meet the timing deadlines. At system start,
thestress is initialized at one. At the beginning of each frame, the

system selects the resolution at which to render the visible objects
by linearly mapping to the available resolution range their bound-
ing box screen coverage scaled by1/stress. Thus, when the stress
is high, coarser models are chosen so as to reduce future system
load. At the end of a frameN , loadN andstressN are updated as
follows:

loadN = TN
actual/T expected

stressN =

 stressN−1 ∗ (1− α) if loadN < loadmin

stressN−1 ∗ (1 + α) if loadN > loadmax

stressN−1 otherwise

whereTNactual is the measured time for frameN , T expected

is the user-specified target drawing time,α < 1 is the stress up-
date factor, and]loadmin, loadmax[defines an hysteresis band that
reduces unwanted oscillations.

The graphs of figure 9 illustrate the approach with data gathered
during a fly-through of the test scene of figure 8 with a target frame
rate of 10 frames/second. The results presented here were obtained
on a Silicon Graphics Onyx with 2 MIPS R10000 194 MHz CPU,
primary data cache size of 32 Kbytes, secondary unified instruc-
tion/data cache size of 1 Mbyte, main memory size of 1Gb, and an
InfiniteReality graphics board with two raster managers with 64 Mb
of texture memory.

Despite the enormous and abrupt changes in potential complex-
ity due to objects entering into and exiting from the viewing frus-
tum, we see that the load is always maintained below one, and thus
that the system was able to meet the timing constraints thanks to the
fast random access times of our structure.

The good results obtained despite the simple feedback adaptation
technique are due to the continuous nature of the multiresolution
models, which overcomes the problems experienced when using
discrete LODs [7, 25]. The wide range of continuous variation of
resolution for objects in a scene is illustrated by the close-up view
of figure 10.

Figure 8:Adaptive rendering test scene. The total scene complex-
ity is 1.15 Mtriangles. The fly-through path analyzed is traversed
from left to right.

5 Conclusions

We have presented a simple multiresolution data structure for rep-
resenting continuous levels-of-detail of triangle meshes. The struc-
ture is compact, requiring only a small overhead over the single full
resolution mesh, provides fast triangle and vertex traversal rates at
arbitrary resolution, and can make optimal use of immediate-mode
vertex-face mesh rendering interfaces.

Any simplification method reducible to a sequence of vertex sub-
stitutions can be used to build the structure. The quality and speed

of the simple memoryless simplification technique we have illus-
trated are competitive with other existing results.

These characteristics makes it very appropriate for mesh repre-
sentation in time-critical scene rendering applications. We have in-
tegrated the structure in a collaborative CAD system [28] and in an
experimental time-critical rendering engine [9]. Our future work
will focus on extending the structure to support view-dependent res-
olution optimization.

Acknowledgments

The authors would like to thank Hugues Hoppe, Michael Garland,
and the Stanford graphics group for making benchmark datasets
available, and the Visual Computing Group at I.E.I. for the devel-
opment of theMetro tool. We also greatly appreciate the help re-
ceived from Marco Agus and Fabio Bettio in taking experimental
measures.

This research is partially sponsored by the European project
CAVALCADE (ESPRIT contract 26285). We also acknowledge
the contribution of Sardinian regional authorities.

References

[1] CAMPAGNA , S., KOBBELT, L., AND SEIDEL, H.-P. Efficient
decimation of complex triangle meshes. Technical Report 3,
Computer Graphics Group, University of Erlangen, Germany,
1998.

[2] CIAMPALINI , A., CIGNONI, P., MONTANI , C., AND
SCOPIGNO, R. Multiresolution decimation based on global
error. The Visual Computer 13, 5 (1997), 228–246. ISSN
0178-2789.

[3] CIGNONI, P., MONTANI , C., AND SCOPIGNO, R. A com-
parison of mesh simplification algorithms.Computers and
Graphics 22, 1 (Jan. 1998), 37–54.

[4] CIGNONI, P., PUPPO, E., AND SCOPIGNO, R. Represen-
tation and visualization of terrain surfaces at variable reso-
lution. The Visual Computer 13, 5 (1997), 199–217. ISSN
0178-2789.

[5] COHEN, J., VARSHNEY, A., MANOCHA, D., TURK,
G., WEBER, H., AGARWAL , P., BROOKS, F., AND
WRIGHT, W. Simplification envelopes. InSIG-
GRAPH ’96 Proc. (Aug. 1996), pp. 119–128. URL:
http://www.cs.unc.edu/˜geom/envelope.html .

[6] DEERING, M. Geometry compression. InSIGGRAPH ’95
Proc. (Aug. 1995), ACM, pp. 13–20.

[7] FUNKHOUSER, T. A., AND SÉQUIN, C. H. Adaptive dis-
play algorithm for interactive frame rates during visualization
of complex virtual environments.Computer Graphics (SIG-
GRAPH ’93 Proc.)(1993).

[8] GARLAND , M., AND HECKBERT, P. S. Surface
simplification using quadric error metrics. InSIG-
GRAPH 97 Proc. (Aug. 1997), pp. 209–216. URL:
http://www.cs.cmu.edu/˜garland/quadrics .

[9] GOBBETTI, E., AND BOUVIER, E. Time-critical multireso-
lution scene rendering. InIEEE Visualization ’99(Oct. 1999),
IEEE.

10000

100000

1e+06

1e+07

0 50 100 150 200 250 300 350 400 450
Frame

Adaptive rendering statistics

rendered triangles
max resolution visible triangles

0.01

0.1

1

0 50 100 150 200 250 300 350 400 450
Frame

Adaptive rendering statistics

load
stress

Figure 9: Adaptive rendering statistics. Data gathered during fly-through illustrated in figure 8 withT expected = 100ms, α = 0.4,
loadmin = 0.5 andloadmax = 1.0. Notice the large increase/decrease in scene complexity due to culling. Results obtained on a Silicon
Graphics Onyx with 2 MIPS R10000 194 MHz CPU, primary data cache size of 32 Kbytes, secondary unified instruction/data cache size of
1 Mbyte, main memory size of 1Gb, and an InfiniteReality graphics board with two raster managers with 64 Mb of texture memory.

Figure 10:Adaptive rendering test scene. Close-up view during fly-through. The image to the left is the one presented to the viewer, while
the image to the right is rendered with flat shading to show the variation in levels of detail, not noticeable otherwise. Results obtained on a
Silicon Graphics Onyx with 2 MIPS R10000 194 MHz CPU, primary data cache size of 32 Kbytes, secondary unified instruction/data cache
size of 1 Mbyte, main memory size of 1Gb, and an InfiniteReality graphics board with two raster managers with 64 Mb of texture memory.

[10] GUÉZIEC, A. Surface simplification with variable toler-
ance. InSecond Annual Intl. Symp. on Medical Robotics and
Computer Assisted Surgery (MRCAS ’95)(November 1995),
pp. 132–139.

[11] GUÉZIEC, A. Surface simplification inside a toler-
ance volume. Tech. rep., Yorktown Heights, NY 10598,
Mar. 1996. IBM Research Report RC 20440, URL:
http://www.watson.ibm.com:8080/search paper.shtml .

[12] GUÉZIEC, A., TAUBIN , G., HORN, B., AND LAZARUS, F.
A framework for streaming geometry in VRML.IEEE Com-
puter Graphics and Applications 19, 2 (Mar./Apr. 1999), 68–
78.

[13] HECKBERT, P. S.,AND GARLAND , M. Multiresolution mod-
eling for fast rendering. InProc. Graphics Interface ’94
(Banff, Canada, May 1994), Canadian Inf. Proc. Soc., pp. 43–
50. URL: http://www.cs.cmu.edu/˜ph .

[14] HECKBERT, P. S.,AND GARLAND , M. Survey of polygo-
nal surface simplification algorithms. Tech. rep., CS Dept.,
Carnegie Mellon U., to appear. URL:http://www.cs.cmu.edu/˜ph .

[15] HOPPE, H. Progressive meshes. InSIGGRAPH
’96 Proc. (Aug. 1996), pp. 99–108. URL:
http://www.research.microsoft.com/research/graphics/hoppe/papers.html .

[16] HOPPE, H. Efficient implementation of progressive meshes.
Computers and Graphics 22, 1 (January 1998), 27–36.

[17] HOPPE, H., DEROSE, T., DUCHAMP, T., MCDON-
ALD , J., AND STUETZLE, W. Mesh optimization. In
SIGGRAPH ’93 Proc.(Aug. 1993), pp. 19–26. URL:
http://www.research.microsoft.com/research/graphics/hoppe/papers.html .

[18] KOBBELT, L., CAMPAGNA , S., AND SEIDEL, H.-P. A gen-
eral framework for mesh decimation. InProceedings of the
24th Conference on Graphics Interface (GI-98)(San Fran-
cisco, June18–20 1998), W. Davis, K. Booth, and A. Fourier,
Eds., Morgan Kaufmann Publishers, pp. 43–50.

[19] L INDSTROM, P., AND TURK, G. Fast and memory effi-
cient polygonal simplification. InProceedings IEEE Visual-
ization’98(1998), IEEE, pp. 279–286.

[20] LUEBKE, D. Hierarchical structures for dynamic polygonal
simplification. TR 96-006, Department of Computer Science,
University of North Carolina at Chapel Hill, 1996.

[21] LUEBKE, D., AND ERIKSON, C. View-dependent simplifica-
tion of arbitrary polygonal environments. InSIGGRAPH 97
Conference Proceedings(Aug. 1997), T. Whitted, Ed., An-
nual Conference Series, ACM SIGGRAPH, Addison Wesley,
pp. 199–208. ISBN 0-89791-896-7.

[22] OPEN INVENTOR ARCHITECTURE GROUP. Open Inventor
C++ Reference Manual: The Official Reference Document
for Open Systems. Addison-Wesley, Reading, MA, USA,
1994.

[23] P. CIGNONI, C. R., AND SCOPIGNO, R. Metro: measuring
error on simplified surfaces. Tech. rep., Istituto I.E.I.-C.N.R.,
Pisa, Italy, Jan. 1996. Technical Report B4-01-01-96, URL:
http://miles.cnuce.cnr.it/cg/metro.img.html .

[24] PUPPO, E., AND SCOPIGNO, R. Simplification, LOD, and
multiresolution: Principles and practice. Eurographics tutorial
notes, 1997.

[25] ROHLF, J.,AND HELMAN , J. IRIS performer: A high perfor-
mance multiprocessing toolkit for real–Time 3D graphics. In
Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–
29, 1994)(July 1994), A. Glassner, Ed., Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH,
ACM Press, pp. 381–395. ISBN 0-89791-667-0.

[26] RONFARD, R., AND ROSSIGNAC, J. Full-range approxima-
tion of triangulated polyhedra.Computer Graphics Forum 15,
3 (Aug. 1996). Proc. Eurographics ’96.

[27] SCHROEDER, W. J., ZARGE, J. A., AND LORENSEN, W. E.
Decimation of triangle meshes.Computer Graphics (SIG-
GRAPH ’92 Proc.) 26, 2 (July 1992), 65–70.

[28] TORGUET, P., BALET, O., GOBBETTI, E., JESSEL, J.-P.,
DUCHON, J., AND BOUVIER, E. Cavalcade: A system for
collaborative prototyping. InProc. International Scientific
Workshop on Virtual Reality and Prototyping(May 1999).
Conference held in Laval, France, June 3-4.

[29] VRML 97, International Specification ISO/IEC IS 14772-1,
Dec. 1997.

[30] X IA , J. C., EL-SANA , J., AND VARSHNEY, A. Adap-
tive Real-Time Level-of-Detail-Based Rendering for Polyg-
onal Models. IEEE Transactions on Visualization and Com-
puter Graphics 3, 2 (Apr. 1997), 171–183.

[31] X IA , J. C.,AND VARSHNEY, A. Dynamic view-dependent
simplification for polygonal models. InIEEE Visualization
’96 (Oct. 1996), IEEE. ISBN 0-89791-864-9.

