
Interpolation Routines

Alan Louis Scheinine, Senior Researcher, CRS4

CRS4

Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna

Sesta Strada, Ovest

Zona Industriale Macchiareddu

09010 Uta (Cagliari) Italy

E-mail: scheinin@crs4.it

ii

Contents

1 Basic Classes 1

1.1 StencilParams . 1

1.2 StencilSites . 1

1.3 StencilVector . 2

1.4 Bspline . 3

1.5 StencilTerms . 5

1.6 ImageBase . 7

1.7 StencilMatrix . 9

1.8 Constants . 10

1.9 StencilHandle . 10

2 Linear Algebra Classes 11

2.1 LinAlgVector . 12

2.2 Number . 13

2.3 LimitRange . 14

2.4 Vector1, Vector2, Vector3 . 14

2.5 TNTVect . 14

2.6 ReadOnlyNumArray . 15

2.7 Timer . 15

2.8 CastToSelfType . 15

2.9 Matrix Inversion . 16

iii

iv CONTENTS

3 Image Field 16

3.1 ImageFieldTyped . 16

3.2 ImageField . 20

3.3 ImageFieldAlgorithms . 23

3.4 ImageFieldAssign . 24

3.5 ImageFieldBase . 24

3.6 FieldInterpolAlgorithms . 25

3.7 LinTrans . 26

3.8 MapDef . 27

3.9 ObjVar . 28

3.10 DataExplorer . 28

4 Utilities 28

4.1 RegridBrick . 28

4.2 GridSlice . 29

List of Figures

v

List of Tables

vi

vii

1

1 Basic Classes

This section describes simple classes that deal with vectors and matrices, or deal

with polynomials used for interpolation, or utility classes.

1.1 StencilParams

The class StencilParams declared in file Basic/stencil params.hh associates a

dimension and size for a given stencil tag. The tag can be an integer or the class

StencilSitesTag. As an integer, the tag can have the follow values: 3 or 5 for one

dimension, 9, 13 or 25 for two dimensions and 27, 33 or 57 for three dimensions.

The class StencilSitesTag is used to identify the tag that describes a stencil

rather than the tag that describes the polynomical terms used for the interpolation

function. Some algorithms use both kinds of tags so to avoid confusion the type

descriptor is a class.

1.2 StencilSites

The class StencilSites declared in file Basic/stencil sites.hh and implemented in

the file Basic/stencil sites.C creates the arrays

ReadOnlyNumArray<signed char> stencil_sites_x;

ReadOnlyNumArray<signed char> stencil_sites_y;

ReadOnlyNumArray<signed char> stencil_sites_z;

which give lattice indices of a stencil in 1, 2, or 3 dimensions. This class inherits

from StencilParams. The constructor of the class has an argument that defines

the specific stencil.

StencilSites(int tag_in)

StencilSites(const StencilSitesTag& tag_in)

The integer tag that describes which stencil type happens to correspond to the

size of the stencil: 3 or 5 for one dimension, 9, 13, 21 or 25 for two dimensions and

27, 33 or 57 for three dimensions.

2 1 Basic Classes

In the same files Basic/stencil params.hh and Basic/stencil params.C are

the declaration and implementation of ArbitrarySites in which the stencil is defined

by arbitary positions in space (specified by floating point numbers). This class has

not been tested.

1.3 StencilVector

The typedef StencilVector declared in file Basic/stencil vector.hh is defined as

follows

typedef TNTVect<double> StencilVector;

Though the array is called StencilVector, it can be used to hold any vector.

Note, unlike an STL vector, resizing destroys the contents.

The array type is derived from the C++ templates TNT (Template Numeri-

cal Toolkit: Linear Algebra Module) http://math.nist.gov/tnt with some changes

to increase the speed of simple operations that were implemented by Gassan Ab-

doulaev. The difference between the TNT class for vectors and the standard tem-

plate library is that TNT class is optimized for numbers. The third edition of the

book The C++ Programming Language describes a valarray for numbers but

this is not implemented (or I could not find the declarations) in the 2.xx version of

g++. The user can forget about the type

TNTVect<double>

by simply using

StencilVector_pointer newStencilVector();

StencilVector_pointer newStencilVector(int n);

which are implemented in the file Basic/stencil vector.hh .

In some cases, this class is used as coefficients for the polynomial terms of the

interpolation function. While the size of StencilVector is arbitrary, the actual use

as stencil coefficients assumes that the size is fixed, in analogy with the size of the

position template and polynomial terms being fixed.

1.4 Bspline 3

1.4 Bspline

The class BsplineEquations and the class Bspline declared and implemented in

file Basic/bspline.hh deal with a specific type of function that has a shape similar

to a Gaussian function. These functions are useful for interpolation.

The class BsplineEquations implements the functions

static inline double bspline2(double x)

static inline double bspline2_derivative(double x)

static inline double bspline2_integral(double x, double y)

static inline double bspline2_integral(double x)

static inline double bspline3(double x)

static inline double bspline3_derivative(double x)

static inline double bspline3_integral(double x, double y)

static inline double bspline3_integral(double x)

static inline double bspline4(double x)

static inline double bspline4_derivative(double x)

static inline double bspline4_integral(double x, double y)

static inline double bspline4_integral(double x)

as well as functions that represent the sum of two neighboring bsplines

static inline double bsplinepair2(double x)

static inline double bsplinepair2_derivative(double x)

static inline double bsplinepair2_integral(double x, double y)

static inline double bsplinepair2_integral(double x)

static inline double bsplinepair3(double x)

static inline double bsplinepair3_derivative(double x)

static inline double bsplinepair3_integral(double x, double y)

static inline double bsplinepair3_integral(double x)

static inline double bsplinepair4(double x)

static inline double bsplinepair4_derivative(double x)

static inline double bsplinepair4_integral(double x, double y)

static inline double bsplinepair4_integral(double x)

The function bspline2() has polynomial terms up to second order, has four

pieces and is non-zero for

0 <= |x| < 1/2

4 1 Basic Classes

1/2 <= |x| < 3/2

whereas the function bspline3() has polynomial terms up to third order, has

four pieces and is non-zero for

0 <= |x| < 1

1 <= |x| < 2

and finally the function bspline4() has polynomial terms up to fourth order,

has six pieces and is non-zero for

0 <= |x| < 1/2

1/2 <= |x| < 3/2

3/2 <= |x| < 5/2

The adjacent intervals in the above equations refer to the pieces.

The class Bspline implements the basis functions for a user-defined scale, user

defined offset and one, two, or three dimensions. The two and three-dimensional

functions are the products of one-dimensional bspline functions.

When the user calls the function

double bspline(const double* location) const

the argument to the standard bspline function is

BsplineEquations::bspline2((invr_scale_[i]*(a - center_[i]))

- (0.5*extended_[i]);

(or bspline3 or bspline4) for each dimension indexed by i where invr_scale_[i]

is the inverse of the scale factors. The term scale factors are synonymous with

the term voxel size. The order of approximation of the bspline can be different for

each dimension. The voxel size and order of approximation is set by the arguments

of the constructor whereas the position of the center is set by setCenter().

The array extended_[i] is only used when the bspline is actually a bsplinepair.

The value of extended_[i] is −1 if a stencil site is a lower edge and is +1 if a stencil

site is an upper edge for dimension i.

1.5 StencilTerms 5

The derivative can be calculated using the function

void bspline_derivative(const double* location,

double* d) const

where the array d[] is the derivative in each direction.

The integrated value of the bspline is calculated by

double bspline_integral(const double* box) const

where box[0] = lower_x, box[1] = upper_x, box[2] = lower_y, etc. The av-

erage value within a box is calculated by

double bspline_avg(const double* box) const

The function implementations are all in a header file so that the compiler can

inline them.

1.5 StencilTerms

The class StencilTerms declared in file Basic/stencil terms.hh and implemented

in file Basic/stencil terms.C implements the polynomial functionals that take

a position to a value. The implementation of a Taylor series can be found in

Basic/stencil terms.C whereas the implementation using bsplines is taken from

class Bspline.

The choice of functions for the basis is described by the class TermsTag whose

constructor is given by

TermsTag(int tag_in, int basis_in)

For a Taylor expansion, the tag value of 3, 5, 9, 13, 27 or 33 describes the

dimension and the order of approximation. For example, the number 27 refers to

a 3x3x3 cube whereas 33 refers to a cube for which the template has extra points

along the axes and therefore a higher order approximation is needed. The basis

parameter should be 1 for Taylor expansion and 2 for overlapping gaussian bsplines.

6 1 Basic Classes

For a Taylor expansion the constructor is either one of the following:

StencilTerms(int tag_in)

StencilTerms(const TermsTag& tag_in)

For bsplines, the constructors are

StencilTerms(int tag_in, double x)

StencilTerms(const TermsTag& tag_in, double x)

StencilTerms(int tag_in, double x, double y)

StencilTerms(const TermsTag& tag_in, double x, double y)

StencilTerms(int tag_in, double x, double y, double z)

StencilTerms(const TermsTag& tag_in, double x, double y, double z)

where the double precision numbers are the pixel or voxel sizes.

Public vectors that hold the results of function calls are

StencilVector terms;

StencilVector xterms;

StencilVector yterms;

StencilVector zterms;

The same result vector terms is used for two different types of calculations

implemented the functions

void make_point_terms(const double *location)

void make_ntgrl_terms(const double *box)

It is assumed that only one of the two functions will be called for a given

dataset. The polynomial terms calculated here correspond to intensity values

when multiplied by the appropriate coefficients calculated elsewhere. The func-

tion make_point_terms(const double *location) gives an intensity value at the

point location[] when an inner product is taken between the terms and the co-

efficients. The function make_ntgrl_terms(const double *box) gives an average

intensity value within the voxel box[] when an inner product is taken between the

terms and the coefficients.

1.6 ImageBase 7

For interpolation, if we take the view that a given voxel of a dataset represents

the average of underlying function (rather than the value of the function at the

center of the voxel) then the call make_ntgrl_terms() should be used.

The arrays xterms, yterms and zterms are assigned values when the function

void make_gradient_terms(const double *location)

is called.

The choice of approximation method depends on a tradeoff between speed and

accuracy. The choice of approximation method, made during construction of the

class StencilTerms, is then transparent to the user for the function calls

void make_point_terms(const double *location)

void make_ntgrl_terms(const double *box)

void make_gradient_terms(const double *location)

1.6 ImageBase

The class ImageBase declared in file Basic/image base.hh does not contain a

block of data that could represent a field or image. It only contains the basic

information, in particular, the dimension (1, 2, or 3), the length (bounds) and the

pixel/voxel size (aspect). These values are set using the functions

virtual void set_Dimension(unsigned char dimension)

virtual void set_Bounds(const int *lattice_bounds)

virtual void set_Aspect(const double *aspect_ratio)

The class ImageBase also contains static constants such as

static const int ImageBase::IMAGE_DATA_TYPE_UNSIGNED_SHORT = 5;

which can be used to determine the numerical type of data in a derived class

when a base class pointer is used that does not specify the numerical type of the

image data.

In the namespace BasicDataType the function

8 1 Basic Classes

int BasicDataType::toDataType(const char* type_in)

returns the data type integer tag when the argument is a character string that

describes C type such as ”unsigned short”. In addition, the data type integer tag

can be obtained using a templated function such as

template<> int BasicDataType::toDataType<double>()

These templates, implemented in the file Basic/image base.C simplify the

construction of a typed field, that is, a typed field that is defined by a templated

class can return the correct data type tag by returning

int BasicDataType::toDataType<T>()

where T is the template parameter.

Two important functions defined in the class ImageBase are

bool find_Indices_Nearest(const double* const coord,

int* const lattice_site,

double* const location)

bool find_Indices_Nearest(const double* const coord,

int* const lattice_site,

double* const location,

const signed char* field_pos)

Since the length in each direction and the pixel or voxel size are data of this

class, given a point coord[] it is possible to say which box of the lattice contains the

point. The output variable lattice site[] specifies the box and the output variable

location[] gives the displacement from the middle of the box. The second function

has an input variable field pos[] which can have a value of −1, 0 or 1 for each

dimension. The most common cases correspond to either −1 or 0. The value −1

corresponds to the coordinate system beginning at an edge and having only positive

values, whereas, the value 0 corresponds to the coordinate system being centered

on the lattice.

1.7 StencilMatrix 9

1.7 StencilMatrix

The class StencilMatrix and the class ArbitraryMatrix are declared in file Ba-

sic/stencil matrix.hh and implemented in file Basic/stencil matrix.C . The class

ArbitraryMatrix is for a template of arbitrary positions but has not been tested.

The class StencilMatrix inherits from StencilSites, though one could argue

that it would be better to use a HAS-A rather than IS-A relationship between

the two classes. For a lattice with uniform spacing, there is a unique matrix that

multiplies intensity values at a stencil of sites to obtain weights for the polynomials

(basis functions) used to interpolate the intensity values at any arbitrary position

near the center of the stencil. The class StencilMatrix contains the data

vector<double> _col_by_col_matrix;

vector<double> _row_by_row_matrix;

which is the interpolation matrix. Initially the class had the data

TNT::Matrix<double> _tnt_matrix;

but the matrix is read much more often than written so the linear vectors

(unrolled matrix) are more efficient.

The matrix is constructed by taking the inverse of a matrix constructed from

the basis functions. Public functions of this class include the following

int fill_matrix(const double *position,

const ImageBase *field,

int value_mode)

int take_inverse()

void mat_vec_mult(StencilVector_const_ref stencil_coefs_in,

StencilVector_ref stencil_coefs_out) const

void vec_mat_mult(StencilVector_const_ref stencil_coefs_in,

StencilVector_ref stencil_coefs_out) const

virtual int generateLatticeInverse(const ImageBase* lattice,

int value_mode)

int numSites() const

but in practice only generateLatticeInverse() is used outside this class. It is

not necessary to have an actual lattice, just the simple base class ImageBase that

10 1 Basic Classes

contains the voxel size (since the aspect ratio has an effect on the interpolation).

The degree of the polynomial approximation and the use of Taylor expansion or

Gaussian weights (bsplines) is specified in the constructor

StencilMatrix(int tag_in, int basis_in) :

StencilSites(tag_in), _terms_tag(tag_in, basis_in)

the polynomial degree implied by tag in and the Taylor expansion or bsplines

specified by basis in . In the function call

C<generateLatticeInverse(const ImageBase* lattice, int value_mode)>

the value mode can have either of two values: POINT VALUE MODE

or BOX VALUE MODE. The first means that the intensities used as input for

interpolation refer to specific points whereas the second means that the intensities

refer to the average value over a box centered at the point. One way to describe the

meaning of these two modes is to say that the interpolation polynomials (combined

with their coefficients) should reproduce the actual values of stencil points at specific

points in the former case, while in the latter case, the interpolation polynomials

(combined with their coefficients) should reproduce the average of the area/volume

of a box. Stated another way, the intensity values of the lattice are associated with

either discrete points or are averages over a pixel/voxel.

1.8 Constants

The file Basic/interpol.hh defines some constants that describe the mode of in-

terpolation. The style of the file may be interesting for other applications because

it shows how to define the same constants for Fortran, C and C++.

1.9 StencilHandle

The class StencilHandle declared and implemented in file Basic/stencil handle.hh

is a reference counting wrapper for a pointer. It takes control of a pointer and deletes

the pointer when the reference count goes to zero. (It is widely used in CORBA.)

Of course, reference counting does not work for circular references, nonetheless,

this class is often useful. One use of handle types is the automatic deletion of

objects created with new . This is especially useful when the a function can exit

11

from various points. The StencilHandle should be declared in the function, rather

than created with new . Then it will be placed on the stack and deleted when the

function exits. The StencilHandle should be assigned a pointer of something that

one wants to delete automatically when exiting a function. When StencilHandle

is deleted, it calls delete on the pointer that it holds, unless this StencilHandle

has assigned its value to another StencilHandle. In the latter case, the other

StencilHandle continues to hold the pointer. For a given pointer being handled

by an StencilHandle, its associated reference count is a heap variable so that all

StencilHandle instantations that handle the same pointer use the same reference

count.

2 Linear Algebra Classes

As well as defining interpolation routines, this package defines a field (an image).

In order to do arithmetic on fields without making reference to the primitive type

of the field variable, abstract types have been defined for scalars and vectors for

linear algebra. These class were originally developed for a parallel program, so this

abstraction is at a sufficiently high level that the implementation class could actually

be a distributed vector. However, the distributed vector classes have not been put

into this package.

Most of the classes of the Interpol package concern the representation of a

scalar-valued field. The structure of classes is rather complex but the end result

should be simple for the user. Two aspects for which the classes are simple for the

user (though complex in the Interpol implementation) are the following.

The field that represents an image can have a variety of numerical types,

generalized by using a templated class. However, nearly all of the functions of a field

are virtual and are defined in a base class that does not have a type. My personal

preference is to avoid templated classes, perhaps simply due to the bad performance

of compilers of the past for which templates sometimes caused internal compiler

errors. Templated classes lead to more templated class because of the type checking

of C++. That is, if a variable is an instantation of a templated class, then a user’s

class must also be templated in order to have functions generalized for use with

all the potential types of the templated variable. In contrast, the Interpol package

gives the developer a non-templated class for use in his or her classes. The details

of the implementation of a field classes inside the Interpol package are complicated

because the virtual functions are repeated in several places. A further example of the

complexity is that there is a class just for assignment of fields, ImageFieldAssign.

This class does type conversion and implements the operators += , -= , ∗- , and

12 2 Linear Algebra Classes

/= , as well as assignment. Moreover, these assignment operators convert between

field types using the class LimitRange to avoid compiler complaints and run-time

errors. The program developer does not need to be concerned about details such

as the ImageFieldAssign class.

A second aspect of the field classes which is complicated for someone studying

the source code but should simplify the use for a developer is that the fields in-

herit from LinAlgVector. A LinAlgVector was initially developed for the Nast++

project, to be combined with a LinAlgMatrix. In the case of Nast++, the LinAl-

gVector hides both the type of the field variable and also the distribution among

processors for a parallel application. For the Interpol package, LinAlgVector just

hides the base type of the field variable. The key point of LinAlgVector is that

it implements arithmetic on vectors, including cases in which dummy variables are

needed by the compiler. The problem is a technical detail of C++ for which a fol-

lowing brief description may not be clear to all readers. The operation A += B

does not require a copy function. On the other hand, A = B + C needs to generate

a temporary for (B + C) that does not modify B nor C. The consequence is that

a copy function is needed. But if A, B and C are bases classes then they to not

contain the field array, since the base class has no type. Typically, A, B, and C would

be references to the derived classes that contain the field of a specific type. But an

actual copy function that returns a temporary dummy can only return the base type,

thereby loosing the field array. A variable whose type is the class LinAlgVector

can be either a reference (or pointer) to a derived type or if the variable is actually

a LinAlgVector, then it contains a pointer to a derived type. The latter case allows

returning a copy of the base class without loosing the array that contains the field.

The added complexity is that derived classes need to define all the arithmetic oper-

ations defined as virtual functions in LinAlgVector. The advantage for the user is

that an algorithm of vector arithmetic can be described in terms of LinAlgVector

(and LinAlgScalar, which encapsulates a scalar without specifying the type) and

the algorithm can then be applied to any field that is derived from LinAlgVector.

The subdirectory LinAlg contains some classes not related to linear algebra.

This subdirectory is the first compiled so it has everything simple used by other

classes.

2.1 LinAlgVector

The classes LinAlgScaler and LinAlgVector declared in file LinAlg/lin alg vector.hh

implement scalars and vectors that can be used in linear algebra. A linear algebra

scalar of a specific type is declared as

2.2 Number 13

template <class T>

class LinAlgScalarTyped : public LinAlgScalar

The historical origin of LinAlgVector resides in the parallelization by Alan

Scheinine of a linear algebra solver and fluid dynamic solver written by Gassan

Abdoulaev, a C++ program called Nast++.

The original Nast++ used templates for classes that contained various intera-

tive solvers. Which class could be used could be found by compiling and seeing if

all operations required by a function could be found in the class given as a template

parameter. The Nast++ program was gradually modified to use virtual functions

of a base class, instead of templates, because the base class can serve to rigorously

declare which functions need to be implemented for the iterative solvers. The ac-

tual implementation of LinAlgVector has solved one interesting problem that often

presents itself in arithmetic expressions. For example X = A + (B + C) requires a

temporary for (B + C) because none of the variables can hold the temporary value.

(In contrast, for X = A + B the variable X can hold the result of A + B .) This tem-

porary requires a copy of a return value but copies from a base class can only give a

base class. The solution will not be described in the document. The overall result

is that LinAlgVector as a base class has few restrictions on the type of arithmetic

statement in which it can appear. For Nast++ the actual implementation can in-

clude communication between parallel processes on different computers, but with

regard to this interpolation package it is used for describing arithmetic on fields

(images) without regard to the underlying primitive numerical type.

2.2 Number

The classes Number and NumberTyped declared in file LinAlg/number.hh and

implemented in the file LinAlg/number.C are similar to the classical example used

in many introductory C++ textbooks. A Number is a wrapper for any primitive

numerical type for which arithmetic can be defined. The class NumberTyped is

defined as follows

template <class T>

class NumberTyped : public Number

Normally the programmer would use a pointer or reference to Number which is

actually a NumberTyped. The class Number inherits from the class LinAlgScalar

and is primarily motivated by the use of LinAlgVector.

14 2 Linear Algebra Classes

The class Number is not of fundamental importance for implementing a gener-

alized linear algebra but is convenient when a typeless scalar is needed. A Number

differs from a LinAlgScalar in that a Number does conversion to and from numer-

ical types.

2.3 LimitRange

The class templated class LimitRange declared in file LinAlg/limit range.hh and

implemented in the file LinAlg/limit range.C is used for type conversions, in

particular, for converting all values of a field. Though it would be unwise to con-

verted a signed field to an unsigned field, by using this class the results will at least

be defined. A second purpose is to avoid compiler warnings. In particular, the

Field classes provide conversion between all types of fields (of numerical primitive

types). Before the class LimitRange was introduced, the compilation created a

large number of warnings.

2.4 Vector1, Vector2, Vector3

The classes Vector1, Vector2, Vector3, LinAlgVectorSpace and VecSpecificDim

are declared in file LinAlg/vector123.hh and implemented in LinAlg/vector123.C .

The former three are simple one, two, and three-component vectors. In the series

of books Graphics Gems there are defined simple structures (with similar names)

for one, two, and three-dimensional points; these classes serve the same purpose.

The latter two classes, declared as follows

class LinAlgVectorSpace : public virtual LinAlgVector

template <class T>

class VecSpecificDim : public virtual LinAlgVectorSpace

put the simple vectors into the framework of LinAlgVector.

2.5 TNTVect

The class TNTVect declared and implemented in file LinAlg/tnt vect.hh has the

following class declaration

2.6 ReadOnlyNumArray 15

template <class T>

class TNTVect : public Vector<T>

where Vector is a class of TNT (Template Numerical Toolkit) and TNTVect

includes some changes, implemented by Gassan Abdoulaev, to increase the speed

of simple operations.

One useful note, the newsize() function of TNT destroys the original data,

unlike the Standard Template Library (STL) resize() function which saves what

can be saved.

2.6 ReadOnlyNumArray

The class ReadOnlyNumArray declared and implemented in file LinAlg/read only num array.hh

is a templated class that has a TNTVect vector. To protect the vector from being

changed the function setRO() can be called.

2.7 Timer

The class Timer declared and implemented in file LinAlg/timer.hh implements

an accumulator for the processor time of a program, implemented by calling the C

function clock(). Each instantation of Timer is an independent stopwatch.

2.8 CastToSelfType

The global function cast_to_self_type defined in namespace CastToSelfType and

implemented in file LinAlg/cast to self type.hh is part of a trick needed when a

copy must be made of a base class. It is used, for example, in LinAlgVector and in

ImageFieldTyped. For example, the assignment operator in the templated class

ImageFieldTyped<T> { // ...

// virtual method of ImageField

ImageField& operator=(const ImageField& object_in) {

return operator=(cast_to_self_type(object_in));

}

16 3 Image Field

The assignment operator is a virtual function of ImageField and therefore both

the input argument and the return value do not specify the type specified by the

template. By casting to the templated type (which is the derived type) the correct

operator= of the derived type is chosen.

2.9 Matrix Inversion

The function

int invert_matrix(double *matrix,

int size,

int ifdebug)

in the file LinAlg/invert matrix.c inverts the square matrix given as the first

argument.

In the file LinAlg/invert.hh are declarations of C type for functions compiled

with Fortran for the matrix inversion.

3 Image Field

The description of the classes defined in the directory Field will not be presented in

hierachical order. The first class described, ImageFieldTyped, is the first member

of the hierarchy that brings together a large number of virtual functions and actual

implementions. By describing this class first, the reader can understand the goal of

the hierarchy of classes. The next group of classes described will be the those classes

from which ImageFieldTyped is derived. After which, the classes that implement

interpolation will be described.

3.1 ImageFieldTyped

The templated class ImageFieldTyped defined in file image field typed.hh de-

fines a field (image) of a given numerical type. The class declaration is

template <class T>

3.1 ImageFieldTyped 17

class ImageFieldTyped :

public ImageFieldAssign<T>,

virtual public ImageField

The inheritance combines both a series of classes that declare virtual functions

and a series of classes that implementation functions or contain data. This class

does not contain data. Most of the functions of this class concern the implementa-

tion of arithmetic operations. Other functions of this class are implemented using

static functions defined in the class ImageFieldAlgorithms. There are too many

functions in ImageFieldTyped to list them all, just some examples will be given.

This class inherits from ImageFieldAssign, which defines various assignment

operators. Because this class does not contain data, it can use the ImageField-

Assign assignment operator to convert between various templated versions of this

class. The implementation is shown below.

template <class U>

ImageFieldTyped<T>& operator=(const ImageFieldBase<U>& object_in) {

ImageFieldAssign<T>::operator=<U>(object_in);

return *this;

}

This class implements the virtual functions of LinAlgVector. The direct base

class ImageField inherits from LinAlgVector. These functions are mostly arith-

metic operations. An example of an implementation is the following implementation

of the operator +=

template<class U>

inline ImageFieldTyped<T>& operator+=(const ImageFieldTyped<U>& A) {

ImageFieldAssign<T>::operator+=<U>(A);

return *this;

}

which takes advantage of the actual implementation in ImageFieldAssign.

The implementation of the analogous virtual function of LinAlgVector then takes

advantage the += of this class.

inline LinAlgVector& operator+=(const LinAlgVector& lav) {

return operator+=(cast_to_self_type(lav));

}

18 3 Image Field

The class ImageField, as well as inheriting virtual functions from LinAlgVec-

tor, declares a large number of abstract virtual functions. For example, to get

individual pixels as well as converting the type (implemented using LimitRange)

there are declared in ImageField functions such as

virtual short getImage_short(int ix) const = 0;

virtual short getImage_short(int ix, int iy) const = 0;

virtual short getImage_short(int ix, int iy, int iz) const = 0;

and similar for putting a pixel/voxel value.

virtual void setImage(int ix, short v) = 0;

virtual void setImage(int ix, int iy, short v) = 0;

virtual void setImage(int ix, int iy, int iz, short v) = 0;

The number of getImage and setImage functions is about 70.

Other virtual functions of ImageField, such as

virtual ImageField* new_proj_x_avg(int lower, int upper) = 0;

virtual ImageField* new_proj_z_max(int lower, int upper) = 0;

virtual ImageField* new_cropped(const int *lattice_box) = 0;

virtual ImageField* new_imbedded(const int *lattice_box,

double background) = 0;

virtual ImageField* new_diffused(double diff_coef,

int num_iters) = 0;

are implemented in ImageFieldTyped by calling static functions defined in

ImageFieldAlgorithms. The static functions in ImageFieldAlgorithms all use

ImageField, that is, no type needs to be specified for the field for used in the

algorithms of ImageFieldAlgorithms.

In most cases, the pointer to a field class can be of type ImageField with calls

to virtual functions being implemented by functions of ImageFieldTyped. The use

of LinAlgVector as the base type for pointers is more abstract than is necessary

for this interpolation package. The original motivation for having LinAlgVector

as a base class comes from a parallel program in which there were several very

different implementations for vectors (distributed vectors, local vectors and local

vectors composed of blocks of vectors). The use in the package is motivated by the

3.1 ImageFieldTyped 19

fact that LinAlgVector has a reasonably complete set of declarations of arithmetic

operators for vectors, so it serves as a useful prototype.

There are a group of functions for which there are pairs of functions with similar

names, such as,

getDimension() and get_Dimension()

find_indices_nearest() and find_Indices_Nearest()

with identical implementations, in fact the former calls the latter. The rea-

son is that for class ImageFieldTyped there is a convergence of two lines of class

hierarchies. One hierarchy contains predominantly implementations of functions,

while the other hierarchy contains predominantly declarations of abstract classes.

However, the hierarchy of implementations also contains some abstract classes be-

cause during the development of the classes the structure of the more highly derived

classes was not certain. For the hierarchy in which the implementations predom-

inate, it can be useful to write programs that take advantage of virtual functions

without arriving at the highly derived level of ImageFieldTyped. To give a spe-

cific example, the class ImageBase is so primitive that it does not contain a field,

only the size of the lattice and the size of each pixel/voxel. Yet that is enough

for implementing the function find_Indices_Nearest() in the class ImageBase, a

function which is declared virtual. The class ImageBase is part of the hierarchy

that contains implementations, for example, there is the following inheritance

template<class T>

class ImageFieldBase : public ImageBase

where the class ImageFieldBase contains the actual field data in the data

member

TNTVect<T> image

The other hierarchy of abstract classes contains a similar declaration in the

class ImageField

virtual bool find_indices_nearest(...) = 0;

Because ImageFieldTyped inherits both, the names are different. At one

point in the develop of the package, the abstract virtual function in ImageField

20 3 Image Field

and the virtual function in ImageBase had the same names, both being inherited

by ImageFieldTyped. The GNU g++ did not complain and the test programs

worked correctly. Nonetheless, the situation seems ambiguous and likely to invoke

an internal compiler error (even if technically legal) so the names were changed to

avoid ambiguity.

In addition, there are virtual functions that are actually implemented in Field-

InterpolAlgorithms with function calls in this class simply calling the same function

in FieldInterpolAlgorithms. The functions in the class FieldInterpolAlgorithms

never use ImageFieldTyped explicitly, the algorithms rely on the virtual functions

of ImageField. For this reason, the algorithms are treated as a separate class, in

accord with the concept of an algorithm as logically abstract.

3.2 ImageField

The classes ImageField and NewImageField defined in files Field/image field.hh

and Field/image field.C declare abstract functions. A partial list will be given to

show the breadth of the class.

ImageField()

ImageField(const LinAlgVector& lav)

[functions implemented in ImageBase, such as]

virtual void setBounds(const int *lattice_bounds) = 0;

virtual int getBounds(int i) const = 0;

virtual void setAspect(const double *aspect_ratio) = 0;

virtual double getAspect(int i) const = 0;

virtual void setDimension(unsigned char dimension) = 0;

virtual unsigned char getDimension() const = 0;

virtual const int* const getBounds_array() const = 0;

virtual const double* const getAspect_array() const = 0;

virtual bool find_indices_nearest(const double* const coord,

int* const lattice_site,

double* const location) = 0;

virtual bool find_indices_nearest(const double* const coord,

int* const lattice_site,

double* const location,

const signed char* field_pos) = 0

virtual const ImageBase* getImageBase() const = 0;

[other methods include]

virtual int getDataType() const = 0;

3.2 ImageField 21

virtual int toDataType(const char* type_in) = 0;

virtual ImageField* newImageField() const = 0;

virtual ImageField* newImageField(...) const = 0;

virtual ImageField* cloneImageField() const = 0;

virtual Number getImage_Number(int ix) const = 0;

virtual Number getImage_Number(int ix, int iy) const = 0;

virtual Number getImage_Number(int ix, int iy, int iz) const = 0;

virtual char getImage_char(int ix) const = 0;

virtual char getImage_char(int ix, int iy) const = 0;

virtual char getImage_char(int ix, int iy, int iz) const = 0;

[etc. other types]

virtual int getImage_int(int ix) const = 0;

virtual int getImage_int(int ix, int iy) const = 0;

virtual int getImage_int(int ix, int iy, int iz) const = 0;

virtual float getImage_float(int ix) const = 0;

virtual float getImage_float(int ix, int iy) const = 0;

virtual float getImage_float(int ix, int iy, int iz) const = 0;

[etc. other types]

virtual void setImage(int ix, Number v) = 0;

virtual void setImage(int ix, int iy, Number v) = 0;

virtual void setImage(int ix, int iy, int iz, Number v) = 0;

virtual void setImage(int ix, char v) = 0;

virtual void setImage(int ix, int iy, char v) = 0;

virtual void setImage(int ix, int iy, int iz, char v) = 0;

[etc. other types]

virtual void setImage(int ix, unsigned short v) = 0;

virtual void setImage(int ix, int iy, unsigned short v) = 0;

virtual void setImage(int ix, int iy, int iz, unsigned short v) = 0;

virtual void setImage(int ix, float v) = 0;

virtual void setImage(int ix, int iy, float v) = 0;

virtual void setImage(int ix, int iy, int iz, float v) = 0;

[etc. other types]

virtual ImageField* new_proj_x(int lower, int upper, int mode) = 0;

virtual ImageField* new_proj_y(int lower, int upper, int mode) = 0;

virtual ImageField* new_proj_z(int lower, int upper, int mode) = 0;

virtual ImageField* new_proj_x_avg(int lower, int upper) = 0;

virtual ImageField* new_proj_y_avg(int lower, int upper) = 0;

virtual ImageField* new_proj_z_avg(int lower, int upper) = 0;

virtual ImageField* new_proj_x_max(int lower, int upper) = 0;

virtual ImageField* new_proj_y_max(int lower, int upper) = 0;

virtual ImageField* new_proj_z_max(int lower, int upper) = 0;

virtual ImageField* new_cropped(...) = 0;

virtual ImageField* new_imbedded(...) = 0;

22 3 Image Field

virtual ImageField* new_diffused(...) = 0;

Since the functions are abstract, one may wonder why the file image field.C

is needed. This file contains the implementation of

ImageField* NewImageField::newImageField(int image_data_type ...

ImageField* NewImageField::newImageField(int image_data_type ...

which generates pointers whose actual type is ImageFieldTyped.

This class is not templated, thereby giving the advantage of having a unique

base class for the virtual functions. For every type of primitive number for which

the function limit_range() is defined, there is a corresponding indexed get and set

for field values.

Using an instantation of a derived, expressed as a pointer to this base class, a

new instantation of the derived class can be constructed using this base class as a

prototype. The methods are the following.

virtual ImageField* newImageField() const = 0;

virtual ImageField* newImageField(int dimension,

const int *lattice_bounds,

const double *aspect_ratio) const = 0;

The same idea, but with field values set equal to the prototype can be obtained

using the following.

virtual ImageField* clone() const = 0;

For interpolation, the following virtual functions are defined:

virtual FieldInterpol* new_extend_by_two() const = 0;

virtual int make_stencil_rhs(StencilVector_ref rhs,

StencilSites& sites,

const int* lattice_site) const = 0;

virtual int check_template_with_field(int dimension_must_be,

const int* lattice_site,

int extent) const = 0;

3.3 ImageFieldAlgorithms 23

virtual FieldInterpol* new_by_interpol(const ImageBase& grid,

const MapDef& mapping,

int precision_level,

const PrecisionChoice& pc) const = 0;

3.3 ImageFieldAlgorithms

The class ImageFieldAlgorithms defined in files Field/image field algorithms.hh

Field/image field algorithms.C are algorithms implemented by static functions.

Functions with the same name are declared as virtual in the class ImageField and

the implementation in the class ImageFieldTyped is to call the function defined in

ImageFieldAlgorithms. The idea is that ImageField and ImageFieldTyped have

primarily an organizational role. The class ImageField declares abstract virtual func-

tions and the class ImageFieldTyped is a templated class that uses only a header

file so it should not be too complex to avoid long recompilations. Nowhere in the

class ImageFieldAlgorithms is the class ImageFieldTyped used, the algorithms

are valid for any type. These algorithms are rather simple, namely

static ImageField* new_proj_x(int image_data_type,

static ImageField* new_proj_y(int image_data_type,

static ImageField* new_proj_z(int image_data_type,

static ImageField* new_proj_x_avg(int image_data_type,

static ImageField* new_proj_y_avg(int image_data_type,

static ImageField* new_proj_z_avg(int image_data_type,

static ImageField* new_proj_x_max(int image_data_type,

static ImageField* new_proj_y_max(int image_data_type,

static ImageField* new_proj_z_max(int image_data_type,

static ImageField* new_cropped(int image_data_type,

static ImageField* new_imbedded(int image_data_type,

static ImageField* new_diffused(int image_data_type,

The first functions create slices, the last three either crop to a smaller image,

or imbeds a field into a larger field of with background of a given value, or creates a

diffuse image. One purpose of an imbedded image is to allow a simple interpolation

algorithm to scan over all sites of the original (inner) image using a stencil without

special cases for the near-border regions. Diffusion has been put into this base class

because it is considered to be generally useful for segmentation. The word new is

used in the names to emphasize that space is allocated, a field is actually contructed.

The use of an algorithm class is a scheme of organization that is more relevant for

the class FieldInterpolAlgorithms in which the algorithms are complicated.

24 3 Image Field

3.4 ImageFieldAssign

To continue the descriptions by working backwards from ImageFieldTyped the class

ImageFieldAssign defined in file image field assign.hh is a direct base class of

ImageFieldTyped. The purpose is the implement type conversion of fields using

the function

LimitRange<T>::limit_range()

Both the assignment operator and the copy constructor can also convert be-

tween types.

The declaration of the class is

template <class T>

class ImageFieldAssign : public ImageFieldBase<T>

which shows us that the next link in the chain of inheritance is the class

ImageFieldBase.

3.5 ImageFieldBase

The class ImageFieldBase defined in file image field base.hh is part of the hier-

archy of inheritance that contains data and implementations. This class contains

the actual array of field data. This class is a templated class that inherits from

ImageBase

template<class T>

class ImageFieldBase : public ImageBase

For faster arithmetic, direct access is given to the class that hold the field data.

inline const TNTVect<T>& getImageArray() const

inline TNTVect<T>& getImageArray()

Two virtual functions of ImageBase are redefined,

3.6 FieldInterpolAlgorithms 25

void setDimension(unsigned char dimension)

void setBounds(const int *lattice_bounds)

so as to give an error message if called. The consequence is that the number

of elements and shape of the array cannot be changed. On the other hand, the

physical size of each pixel or voxel can be changed.

3.6 FieldInterpolAlgorithms

The classes FieldInterpolAlgorithms and FieldInterpolHelper defined in files

Field/field interpol algorithms.hh Field/field interpol algorithms.C implement

algorithms for interpolation of field defined on a regular grid. These functions are

static ImageField* new_extend_by_two(int image_data_type,

const ImageField& fldntrpl);

static int check_template_with_field(int image_data_type,

const ImageField& fldntrpl,

int dimension_must_be,

const int* lattice_site,

int extent);

static int make_stencil_rhs(int image_data_type,

const ImageField& fldntrpl,

StencilVector_ref rhs,

StencilSites& sites,

const int* lattice_site);

static ImageField* new_by_interpol(int image_data_type,

const ImageField& fldntrpl,

const ImageBase& grid,

const MapDef& mapping,

int precision_level,

const PrecisionChoice& pc);

static int point_to_voxel(int image_data_type,

const ImageField* field_pnt,

ImageField* field_out,

const PrecisionChoice& pc);

The function new_extend_by_two() extends the field in every direction by two

sites, using extrapolation. By doing this, a template centered anywhere within the

original field will have reasonable field values for all pixels/voxels of the template.

26 3 Image Field

That is, for a template centered near the edge of the original field, at least on leg

of the template will extend beyond the original field, so the template is used on

the field generated by the function new_extend_by_two() rather than used on the

original field. This approach allows the use of the template over the entire field

(the original width of the field) without having to use a special procedure near the

edge.

The interpolated field is generated by new by interpol(). It is up to the

user to delete the result of the interpolation when it is no longer needed, hence

the word ”new” in the function name. The calling argument int image_data_type

describes the type of the generated field, since the return value of ImageField* is

actually a pointer to the templated class ImageFieldTyped. The calling argument

const ImageField& fldntrpl is the field to be interpolated. The calling argument

const ImageBase& grid describes the pixel or voxel size and the bounds, that is, the

number of pixels or voxels in each direction. The calling argument const MapDef&

mapping is the mapping from the new field to the old field. This direction of the

mapping may seem backwards but the given positions are on the new grid and

those positions must be mapped to the input field. The calling argument int

precision_level describes the technique of interpolation. Useful values are either

PRECISION LEVEL3 or PRECISION LEVEL4. The latter involves over-sampling,

which takes more time. The calling argument PrecisionChoice& pc is a way of

specifying the stencil and type of basis function without specifying the exact stencil

size. The public member PrecisionChoice.stencil type can be 1 or 2 for any basis

type and can be 3 for 2 or 3 dimensions with basis type 2. The larger value indicates

a larger stencil. The public member PrecisionChoice.basis type can be 1 or 2, which

corresponds to Taylor expansion or Gaussian weights, respectively.

3.7 LinTrans

The class LinTrans defined in files Field/lin trans.hh Field/lin trans.C contains

one 3 by 3 matrix and one 3 component vector as public members.

double _mat[9];

double _vec[3];

Methods of the class can be used to construct the matrix and to add to the

existing transform.

void transform_identity();

3.8 MapDef 27

void transform_translate(double x, double y, double z);

void pre_transform_translate(double x, double y, double z);

void post_transform_translate(double x, double y, double z);

void transform_scale(double x, double y, double z);

void pre_transform_scale(double x, double y, double z);

void post_transform_scale(double x, double y, double z);

void transform_rotate(double degrees,

double x_axis, double y_axis, double z_axis);

void pre_transform_rotate(double degrees,

double x_axis, double y_axis, double z_axis);

void post_transform_rotate(double degrees,

double x_axis, double y_axis, double z_axis);

The ”post transform” methods are applied to the vector vec[] as well as the

matrix mat[], which is consistent with how the vector part is used in the class

MapDef.

3.8 MapDef

The class MapDef defined in files Field/map def.hh Field/map def.C contains

one method, which implements a linear mapping of a point.

int map_a_point(const ImageBase& field_in,

const ImageBase& field_out,

const double *location_in,

double *location_out) const;

The class contains the linear mapping as a public data member

LinTrans linear;

The matrix of the linear transform is applied first, then the vector translation

is applied.

The class contains two arrays that describe the coordinate system as being

based on a corner or the middle of the grid.

signed char beg_field_pos[3];

signed char end_field_pos[3];

28 4 Utilities

The case

beg_field_pos[3] = { -1 , -1 , -1 }

means that a corner is (0.0, 0.0, 0.0). Whereas the case

beg_field_pos[3] = { 0 , 0 , 0 }

means that the center is (0.0, 0.0, 0.0). For former is more typical of an image

and the latter is useful for rotations. For interpolation, typically the mapping should

be from the destination to the source because given destination points need to

sample the source wherever they are put by the mapping.

3.9 ObjVar

The class ObjVar declared and implemented in file Field/obj var.hh is a reference

counting wrapper for a pointer. It has the same implementation as StencilHandle.

In the future it might inherit from a base class that is specific to fields.

3.10 DataExplorer

The class DataExplorer defined in files Field/data explorer.hh Field/data explorer.C

reads and writes simple grids in IBM Open Data Explorer format. This class is not

now used in order to avoid having the compilation of the interpolation routines

depend upon the installation of Data Explorer.

4 Utilities

Some higher-level algorithms are in the directory Utils.

4.1 RegridBrick

The class RegridBrick defined in files Utils/regrid brick.hh and Utils/regrid brick.C

has two public methods.

4.2 GridSlice 29

static ImageField* new_brick_from_aspect(int image_data_type,

const ImageField& fldin,

const double* aspect_ratio,

const PrecisionChoice& pc,

int debug);

static ImageField* new_brick_from_bounds(int image_data_type,

const ImageField& fldin,

const int* lattice_bounds,

const PrecisionChoice& pc,

int debug);

The type of the output field (the return value) is specified by the calling pa-

rameter int image_data_type. The word ”new” in the function name is intended

to remind the user that new space is allocated by the functions and that it is up

to the user to delete the space when no longer needed. The input field is const

ImageField& fldin. The overall size of the field is constant so if the user specifies

const double* aspect_ratio then the number of pixels or voxels of the new field

is changed accordingly. If the user specifies the const int* lattice_bounds then

the size of each pixel or voxel is changed accordingly. The calling argument const

PrecisionChoice& pc specifies the stencil and basis to be used for interpolation.

For normal use, the value of int debug should be zero.

4.2 GridSlice

The class GridSlice defined in files Utils/grid slice.hh and Utils/grid slice.C

generates two-dimensional slices from a three-dimensional field. The field that is

sliced needs to be specified in the constructor

GridSlice(const ImageField& field_in);

or by calling

void setSource(const ImageField& field_in);

When the field is specified, a wider field is created by extrapolation, using

FieldInterpolAlgorithms:: new_extend_by_two().

A slice is created by calling

30 4 Utilities

ImageField* newImageField(const double* position,

const double* xdir,

const double* ydir,

const ImageBase& grid,

double thickness,

int precision_level,

const PrecisionChoice& pc,

int debug) const;

The center of the slice is given by const double* position. The directions

of the axes of the slice are given by const double* xdir and const double* ydir.

The pixel size and number of pixels (aspect ratio and lattice bounds) is given by

const ImageBase& grid. The value of each pixel can be an average over a given

thickness, as specified by the calling argument double thickness. As described

for FieldInterpolAlgorithms:: new_by_interpol(), the int precision_level de-

scribes the interpolation technique and <const PrecisionChoice& pc> describes the

stencil and basis. For normal use, the value of int debug should be zero.

4.2 GridSlice 31

Acknowledgments

This work has been partially supported by the Sardinian Regional Authorities.

	Basic Classes
	StencilParams
	StencilSites
	StencilVector
	Bspline
	StencilTerms
	ImageBase
	StencilMatrix
	Constants
	StencilHandle

	Linear Algebra Classes
	LinAlgVector
	Number
	LimitRange
	Vector1, Vector2, Vector3
	TNTVect
	ReadOnlyNumArray
	Timer
	CastToSelfType
	Matrix Inversion

	Image Field
	ImageFieldTyped
	ImageField
	ImageFieldAlgorithms
	ImageFieldAssign
	ImageFieldBase
	FieldInterpolAlgorithms
	LinTrans
	MapDef
	ObjVar
	DataExplorer

	Utilities
	RegridBrick
	GridSlice

