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Abstract

Modelling tracer transport (leading to a single linear advection–di+usion equation) for realistic data provides a challeng-
ing task with respect to the robustness of the underlying numerical procedures. In this paper, we contribute at this point by
formulating a positive spatial advection scheme for unstructured triangular meshes. The proof of positivity is presented in
detail, using an elementary classi2cation. It is shown that with a careful reconstruction procedure and a moderate demand
towards the grid a positive advection scheme is obtained. Next, a brief discussion is given on how we implement this
scheme in combination with an implicit time-stepping procedure. As a numerical example, we discuss tracer transport in
a strongly heterogeneous porous medium. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The study of contaminants or tracers in subsurface or surface environmental problems is an impor-
tant task in environmental engineering. Numerical computations are important, among others because
measurements are di8cult to obtain. These computations are done in a wide variety of spatial do-
mains with complex geometries and on time scales of several months or more. In [18] a ;exible
simulation tool has been proposed for tracer transport, based upon triangular 2nite volumes in com-
bination with implicit time stepping. Here, the spatial advection scheme is based upon a variant of
the JST-scheme [9]. This is a central scheme with arti2cial di+usion explicitly added. In this paper
we enhance the robustness of the solver further by adding a spatial advection scheme based upon
upwinding and by expanding this scheme towards hybrid grids.

In this paper, the chosen strategy for obtaining a positive advection scheme is limited reconstruc-
tion, e.g., [11], a popular technique, which in essence originates from the work of Van Leer, e.g.,
[6]. The technique is based upon the theorem that a second-order scheme can be obtained from a
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2rst-order scheme, by taking its numerical ;ux function and by replacing some basic unknowns by
higher-order reconstructed values. This reconstruction involves some gradients and it is well-known
that it is necessary to limit the gradients in order to prevent oscillatory behavior. For triangular grids
the most popular way of limiting is strongly geometrical, a good example is the Barth=Jespersen
limiter [2,1]. For structured grids promising results have been obtained with a procedure, which in
essence dates back to Sweby [15]. Here, two gradients are weighted using a more analytical ap-
proach. For time accurate computations, it is preferable if the switch functions, used to limit, are
smooth functions of its parameters. In literature only few remarks are made towards this issue and
nearly all developed limiting functions are nondi+erentiable. Our goal is to explore a di+erentiable
limiting function. Against this background, we prefer to start from the Sweby-type procedure. In the
2rst, more geometrical, procedure it is much more di8cult to formulate smooth limiting functions.

We develop the new spatial advection scheme rather carefully for triangular grids and we will
present all relevant details that are necessary for the proof of positivity. At this point our approach
is basic and based upon a generalization of the notion of a K matrix [17]. A similar approach has
been chosen in [3]. As is often done, we compute the gradients that are necessary for reconstruction
with the aid of the Green–Gauss procedure. A careful choice of the integration volumes needed in
this procedure enables us to give an elementary proof of positivity. With this choice we follow [12]
and, similar to this work, we end up with a modest requirement towards the grids that can be dealt
with.

The outline of this paper is as follows: In Section 2 we present the governing equations. Section
3 is devoted to the formulation of a positive advection scheme via the notion of an advective
K-approximation. In Section 4 the complete reconstruction procedure is described and it is proven
that this reconstruction procedure leads to an advective K-approximation. Section 5 discusses some
issues related to the time-integration procedure, in our case the trapezoidal rule. In Section 6 we
propose a simple strategy for extending the spatial advection scheme towards hybrid grids. Section
7 presents a numerical example and, 2nally, we end with some remarks in Section 8.

2. Governing equations

We consider a scalar conservation law of the form

’
@c
@t

+� :[Cf(c)− D�c] = 0; x∈� ⊂ R2; t ¿ 0: (2.1)

In the case of a tracer (or single phase miscible displacement) there holds

f(c)= c: (2.2)

In this contribution the emphasis is on the advective terms, we assume that

D=0: (2.3)

Moreover, the coe8cient ’(’¿ 0) and C are assumed to be time-independent, with C satisfying

� :C=0: (2.4)

The domain � is covered with a triangular grid with triangles I. The area of I is denoted with
|I|, the boundary @I is composed of three edges e of length |e|. A cell-centered 2nite volume
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Fig. 1. Edge molecule for the discretization of the advective and viscous ;ux on e.

approach is adopted. Integration of (2.1) over I, applying Green’s formula in combination with
appropriate integration rules leads to

’I
dcI
dt

+
∑
e∈@I

he;I(cLe ; e
R
e )= 0: (2.5)

Here, (·)I stands for taking centroid values, cLe and cRe are estimated values of c on the edge e and
h is a numerical ;ux function, for which, following [4], we take the Enquist–Osher function. In the
present case (2.2) (a single linear ;ux) we obtain

he;I(cLe ; c
R
e )=

Ue;I + |Ue;I|
2

cLe +
Ue;I − |Ue;I|

2
cRe : (2.6)

Here, Ue;I = Ce:ne;I with Ce the edge value of the velocity C and ne;I the (in2nitesimal) outward
normal on e with length |e|. The numerical ;ux on edges is evaluated using the edge molecule
depicted in Fig. 1. This enables a ;exible edge-based datastructure with an e8cient edge-based loop
for computing the numerical ;uxes.

3. Positive advection

Taking (2.5) together for all triangles I, we end up with the semidiscrete system

L
dc
dt

=− F(c; C): (3.1)

The matrix L is a diagonal matrix containing the cell values of the porosity ’ multiplied with the
area of the cell.

We refer to the rhs of (3.1) as an advective K-approximation if there exists a matrix function
Q̃=(q̃jk); q̃jk = q̃jk(c; C), with

q̃jk 6 0; j �= k and
∑
k

q̃jk =0 for all c; (3.2)
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such that

Fj(c; C)=
∑
k

q̃jkck for all j in the interior: (3.3)

Note that a discussion of the boundary treatment is omitted. The terminology is consistent with [17].
If the entries q̃jk are independent of c, then the (constant) matrix Q̃ is a K-matrix. The relation
(3.2), (3.3) are strong demands, implying some signi2cant properties. To mention a few: a steady
state is monotonic if the input is monotonic [14], local minima are nondecreasing and local maxima
are nonincreasing [8], a nonnegative input implies a nonnegative solution [7,10].

With reference to the numbering in Fig. 1, the choice cLe = c1; cRe = c2 in (2.6) leads to the classical
2rst-order upwind scheme. It is known, e.g., [11], that the use of limited linear reconstructed values
for cLe and cRe leads to an improved accuracy. In the case of (2.6) a su8cient condition for an
advective K-approximation is that for all triangles I and associated edges e∈ @I there holds

cRe − c1
c2 − c1

¿ 0 (3.4)

and

[cLe − c1 = 0] or
[
cLe − c1
c1 − ck

¿ 0 for at least one k ∈{2; 3; 4}
]
: (3.5)

The proof of this statement has in essence been given in [12]. As a consequence of (2.4) we assume
that ∑

e∈@I

Ue;I =0; (3.6)

which implies∑
e∈@I

he;I(c1; c1)= 0: (3.7)

Thus, ∑
e∈@I

he;I(cLe ; c
R
e )=

∑
e∈@I

�Re;I +
∑
e∈@I

�Le;I (3.8)

with

�Re;I = he;I(cLe ; c
R
e )− h(cLe ; c1); �Le;I = he;I(cLe ; c1)− he;I(c1; c1): (3.9)

A straightforward computation shows that

�Re;I =




−Ue;I
cRe − c1
c2 − c1

(c1 − c2); Ue;I ¡ 0;

0 elsewhere;
(3.10)

�Le;I =




Ue;I
cLe − c1
c1 − ck

(c1 − ck); Ue;I¿ 0; cLe − c1 �=0;

0 elsewhere:
(3.11)

From (3.8), (3.10) and (3.11) it follows directly that (3.2) and (3.3) are implied by (3.4) and (3.5).
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Equivalent with (3.4) is

cLe − c1
c2 − c1

6 1 (3.12)

for all triangles I and e∈ @I, because cRe;I = cLe;I′ with I′ a neighboring triangle (note that in the
local numbering system of e∈ @I′ the indices 1 and 2 change order).

4. Reconstruction

Let Pa and Pb be two points in R2. With tab we denote the vector from Pa to Pb and with nab the
normal, pointing to the right, on the segment between Pa and Pb. The length of the vectors tab; nab
is equal to the length of the segment PaPb. In the following we use the numbering from Fig. 1. We
assume that the triangulation is such that (called a TVD triangulation in [12])

n13:t1e¿ 0 and n41:t1e¿ 0: (4.1)

Here, t1e denotes the vector pointing from cell center P1 to the midpoint of the edge. Note that
(4.1) must hold for each triangle I and associated edge e∈ @I. For Fig. 1 this means that a similar
property holds on the other side of the edge e(e∈ @I′).
Let �1 be an approximation of the gradient of c in cell center P1. We de2ne

�e1 =�1:t1e; �21 = c2 − c1; (4.2)

cLe = c1 +  �e1: (4.3)

For the computation of �1 we apply Green–Gauss reconstruction on the triangle P1P3P4. Some
computations show that

�e1 = [(n41:t1e)(c1 − c3) + (n13:t1e)(c1 − c4)]=I134 (4.4)

with I134 = t13:n14. Due to the counterclockwise ordening there holds I134 ¿ 0 (I134 is twice the
area of P1P3P4).

We consider a limiting function  of the form

 =  (r); r=
�21
�e1

: (4.5)

From (4.3) it easily follows that

cLe − c1
c2 − c1

=
 
r
: (4.6)

From (3.5), (3.12), (4.3), (4.4) and (4.6) in combination with the mesh restriction (4.1) it follows
that

06  6 r (4.7)

is a su8cient condition for an advective K-approximation.



814 P. Wilders, G. Fotia / Journal of Computational and Applied Mathematics 140 (2002) 809–821

An example of a limiting function  satisfying (4.7) is the modi2ed Van Leer limiter used in
[3]. However, we like to have a di+erentiable limiter. A good candidate is the R− 1 limiter (R− �
limiter with �=1) from [20]:

 =2
(r + |r|)r
(1 + r)2

: (4.8)

It is easy to check for (4.7). On the interval [0; 1]  is close to r, except near r=0.
For equidistant meshes it is known, e.g., [20], that condition (4.7) can be relaxed and that (4.8)

does not present an optimal compromise between accuracy and monotonicity. It is an open question
whether one can relax (4.7) for unstructured meshes [3,10].

Substitution of (4.3), (4.4) in (2.5), (2.6) shows that the semi-discrete system (3.1) takes the
form

L
dc
dt

=− Qc; Q=(qjk); Q=Q1 + Q : (4.9)

Q1 is the (constant) matrix associated with the 2rst-order upwind scheme. Q corresponds with the
limited anti-di+usion and has entries depending upon c (through the limiting function  only). To
be precise Q is the matrix that one reads of directly from the second term on the rhs of (4.3) in
combination with (4.4). For example, from the term  (n41:t1e)(c1 − c3) the part  (n41:t1e) is shifted
to the matrix elements of Q . Assuming  =1 turns Q into a constant matrix associated with a
fully decentral scheme (due to the bias of triangle P1P3P4). Note that Q and Q̃ di+er in general.
Here, Q̃ is the matrix constructed in Section 3. In our approach the matrix Q̃ is only used to study
the scheme analytically.

5. Time integration

The trapezoidal rule is used for the time integration of the semidiscrete system (3.1). This leads
to

1
 n

Lcn+1 +
1
2
Fn+1 = bn; bn =

1
 n

Lcn − 1
2
Fn: (5.1)

Here,  n denotes the time step. We call (5.1) positive if [10]

cn¿ 0 ⇒ cn+1¿ 0: (5.2)

The linear invariance property of the employed numerical ;uxes leads to F(�c + "; C)= �F(c; C).
This implies that (5.2) is equivalent with the absence of general under- and overshoots [7].

There exists a matrix function Q̃ with property (3.2) such that F = Q̃c. As a consequence, (5.1)
is equivalent with

Ãcn+1 = bn; Ã=
1
 n

L+
1
2
Q̃

n+1
: (5.3)

Property (3.2) implies (independently of  n):

ãjk 6 0; j �= k and
∑
k

ãjk ¿ 0; for all c: (5.4)
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From this it easily follows that

cn¿ 0 ⇒ bn¿ 0 (5.5)

is a su8cient condition for positivity.
There holds

bn = B̃cn; B̃=
1
 n

L− 1
2
Q̃

n
: (5.6)

Using (3.2) this expression shows that (5.5) is satis2ed for  n su8ciently small. One can work out
this further to obtain a condition relating the time step  n to the main diagonal elements of Q̃. This
condition can be formulated as a restriction of the Courant number %. For example, in the case of
the 2rst-order upwind scheme this procedure leads to %6 2, e.g., [20]. Our numerical experiments
indicate that computations with larger Courant numbers are visible as well.

For the implementation of (5.1) we substitute F =Qc, see (4.9). This leads to

An+1cn+1 = bn; An+1 =
1
 n

L+
1
2
[Q1 + Qn+1

 ]: (5.7)

The vector Qncn is computed and a time step  n is chosen for which bn = [(1= n)L − 1
2Q

n]cn¿ 0.
Next, (5.7) has to be solved. In this section, we omit the time step index n in further notation. The
following iterative procedure, with c(0) = cn, is introduced:

J (k)c(k+1) = b+ [J (k) − A(k)]c(k): (5.8)

It is common practice to perform only one iteration with (5.8) and the 2nal result is a linearly
implicit variant of the trapezoidal rule. Second-order time accuracy is only preserved if J is the full
Jacobian of the function Ac.

Several choices for J are possible. Often J =(1= n)L+ 1
2Q1, is taken (defect-correction technique),

e.g., [20,10]. It is also possible to rewrite the equation using Q̃ instead of Q and to take J =(1= n)L+
1
2 Q̃ [19,10]. This approach leads to positivity at all possible stages of (5.8). We take

J =
1
 n

L+
1
2
Q=

1
 n

L+
1
2
[Q1 + Q ]: (5.9)

Substitution in (5.8) leads to

J (k)c(k+1) = b: (5.10)

As been stated, only a single iteration with (5.10) is performed. The resulting linearly implicit scheme
is nearly second-order accurate in time; (5.9) is close to the full Jacobian. Only variations via the
limiting functions are not taken into account, thus, avoiding a detailed analysis of these variations.
Due to the fact that the levels on the lhs of (5.10) di+er, it is not possible to use the arguments of
Section 4. This means that positivity is not guaranteed for a 2xed number of iterations in (5.10).
We 2nd this acceptable for the moment. The resulting linearly implicit scheme is conservative
as a time–space scheme. We mention this, because literature may cause some confusion at this
point.

Finally, system (5.10) has been solved using ILU-preconditioned Bi-CGSTAB. The matrix J is
a sparse matrix with a maximum of 10 nonzero elements in each row (10-point cell molecule).



816 P. Wilders, G. Fotia / Journal of Computational and Applied Mathematics 140 (2002) 809–821

Fig. 2. Example of a hybrid mesh, Ni is the number of edges of cell i.

Furthermore, J reads J = J1+J ; J1 = (1= n)L+1
2Q1; J = 1

2Q , see (5.9). The matrix J1 is a compact
M -matrix with good iterative properties. The matrix J corresponds with a fully decentral approxi-
mation. Furthermore, the function J (c)c is known to be derived from an advective K-approximation,
which implies a K-matrix property for this function in a transformed sense. All of this indicates that
(5.10) presents a good starting point for iterative solution methods.

6. Hybridization

In case of hybrid meshes, we may encounter an N -point molecule as for example in Fig. 2.
The edge under consideration is denoted by e. Cells 1 and 2 are the cells left and right of edge
e respectively. Ni is the number of edges of cell i. We want to determine the advective ;ux on
edge e thereby using a generalization of the discretization schemes of the triangular grid case. Two
approaches are possible. We can design numerical ;ux functions that use, apart from the primary
cells 1 and 2, all secondary cells 3; : : : ; N1+1 and N1+2; : : : ; N1+N2, or we can select two secondary
cells on both sides of the edge and use these cells for the numerical functions of the triangular case
as described in Section 3. We have chosen for the second option, because this option is simpler to
implement.

We are left with the choice of selecting the secondary cells. At the moment we have worked
out this only for quadrilateral meshes. Consider the situation presented in Fig. 3. First of all, our
choice must be such that (4.1) is satis2ed. This condition can be expressed by stating that the two
secondary points to be chosen on the left side of the edge e must lie on di+erent sides of the line
connecting the cell center 1 with the midpoint of the edge e, thus leaving two possible choices.
Next, we consider for both cases the triangle used in the Green–Gauss procedure for computing the
gradient. For accuracy reasons we want to avoid excessive stretching, i.e., we prefer small angles.
The outcome is that the cell centers 4 and 5 are chosen to complete the molecule on the left side
of the edge e. For the other side a similar reasoning holds.
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Fig. 3. Part of a quadrilateral grid.

Fig. 4. JST scheme.

7. A numerical example

We consider a test problem from [5,18], i.e. the quarter of 2ve spots with strongly heterogeneous
realistic permeability data. The velocity 2eld, illustrated in Fig. 5, has been computed from the
pressure equation with a mixed 2nite element code. Fig. 4 presents the computed tracer concentration
at 0.6 PVI using the previous version of our code with the JST-scheme. For obtaining the result
in Fig. 6, we have used Durlofski’s limited reconstruction [4] in combination with the Shu–Osher
time-stepping procedure [13]. A good resemblance can be observed. However, the JST-solution is
more di+usive. Fig. 7 shows the tracer concentration such as computed with the spatial advection
scheme described in this paper in combination with the trapezoidal rule. The results obtained in
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Fig. 5. Velocity 2eld.

Fig. 6. Durlofski + Shu–Osher.

Figs. 6 and 7 are quite similar. The computations so far have been done with a maximal Courant
number close to one. In Fig. 8, we have extended Fig. 7 by doing the computations with a maximal
Courant number of the order 30. It can be seen that the quality of the solution does not diminishes.
This is somewhat surprising and asks for a thorough investigation of the high Courant number case.

Finally, for detailed investigations the above computed fronts may still be too spreaded. One way
out is to re2ne the spatial mesh. In Fig. 9, we plot the concentration obtained on a mesh with
approximately 51000 triangles and with a maximal Courant number of the order 30. An excellent
resolution can now be observed.
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Fig. 7. Present scheme.

Fig. 8. Large Courant number.

8. Final remarks

In transport computations, a high degree of ;exibility is wanted in choosing the structure of the
computational grid. This can for example be dictated by the complex geometry of the physical
domain or by the demand to be able to model very local processes such as contaminant releases.
To increase the ;exibility, we focus in our work on the application of hybrid grids. As a 2rst step,
we have developed a triangular solver with quite acceptable results [5,18]. Since then, we have
encountered some new applications with stricter demands towards positivity. Therefore, we have
developed the present positive advection scheme. Our basic goal was to develop a scheme suitable
for time-accurate computations. In the present contribution, we have developed such a scheme and
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Fig. 9. Fine spatial grid.

we have given a proof of its positivity. The numerical example, presented in Section 7, indicates a
good performance.

A fundamental step in our proof of positivity is the speci2c choice of the Green–Gauss volume
for the computation of the directional gradient in the reconstruction procedure, see (4.1), (4.4). For
the second directional gradient needed in the Sweby procedure, we have chosen the simplest central
approximation, see (4.2). A next step will be to investigate whether the resulting approximation is
linearity preserving. It might be that the chosen central approximation is too simple and needs to be
adapted, for example similar to [3].

With respect to the use of hybrid grids we want to remark that we have started to study both
triangular grids and quadrilateral grids for a problem concerning tracer transport in a coastal region
[16]. So far, the results look promising and we intend to extend these computations towards a hybrid
grid consisting of a mix of triangles and quadrilaterals.
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