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Abstract. This paper proposes a methodology for extracting features from EEG
in suspected brain death conditions. Those signals are usually caracterized by a
low SNR and in such situations distortions introduced by skull/electrode/cable
interface become very relevant. After a calibration procedure, the analysis of EEG
signals was performed with a Wavelet Packet Decomposition filter, where the main
component of noise are removed with soft thresholding strategy. We propose an
estimate of error probability leading to the choice of wavelet basis and threshold
parameters. As result, in absence of brain activity, the output of this filter produces
really flat signals. However the presence of some activity can be examinated in WP
time-frequency domain revealing distinctions between real brain activity, narrow
band noise and artifacts.

1 Introduction

The electroencephalographic (EEG) recording is extensively used in Intensive
Care Units (ICU) as a reliable measure of electrical brain activity. Moreover,
the interpretation of EEG records aimed at diagnosis of the condition of
“brain death”, better expressed as electro clinical silence (ES), is a crucial
step in modern medicine and represents the fundamental pre-requisite in clin-
ical settings oriented for transplants [1]. Although EEG analysis represents a
diagnostic tool among many others (e.g. cerebral arteriography, single photon
emission tomography), its relatively low cost and its large availability have
gained to this procedure the condition of ”golden standard” in monitoring
comatose patients. However, digital EEG monitoring in ICU is, nowadays,
neither popular nor widespread. Among the reasons for this resistance in
penetrating the common ICU practice, the most important is that EEG mon-
itoring has yet to be proved as an easy and reliable tool. Theoretically, the
analysis of a digital signal seems ”prima facie” a relevant vantage over ana-
logue recordings. However, in case of ES, since previous paper EEG yielded
results that visually correlate faithfully with clinical signs (the fatal flat line),
you should expect that the computerized EEG (CEEG) performs a superior
task in this specific diagnosis procedure. Unfortunately, the noising back-
ground of an ICU generates insidious artifacts and the required amplification
of the small voltage signals cause an amplification of the noise as well.



2 Noise removal by thresholding

The density distribution of a calibrated ES signal is almost gaussian [2]. From
this premise, we can state the problem as one of estimating an unknown
deterministic signal after observing a process sampled over an interval of
length N. We henceforth assume that the observed samples are those of an
underlying unknown signal and of white noise, where

a[m] = s[m] + n[m], (1)

form =1,2,...,N and n ~ N(0,0?).

Implementing an estimator in an orthogonal basis is intuitively appealing
on account of the distribution of the noise energy in such a basis. Wavelet
bases are known to concentrate the energy of piecewisesmooth signals into
a few high-energy coefficients [3]. If the energy is concentrated into a few
high-amplitude coefficients, such a representation can provide an accurate
estimate of s[m]. The advantage of expressing in an orthogonal wavelet basis
is two-fold:

a) if the contaminating noise samples are independent and identically
distributed (i.i.d.) Gaussian, so are the coefficients, and their statistical in-
dependence is preserved.

b) intrinsic properties of the signal are preserved in a wavelet basis.

We first discuss a method for estimating the mean-square error associ-
ated with thresholding wavelet coefficients at a given level. Given a signal
in some basis representation, we will threshold the coefficients and estimate
the resulting error, and this error will then be used in the search for the best
basis family. Succintly we report the problem as analysed in [4]. Moreover we
present a new derivation used to set the error probability of our detection
system.

2.1 Risk of a Wavelet-based estimator

In this section, we present a mean-square error estimator exstensively used
in literature expecially for wavelet de-noising [6] . The mean-square error, or
more formally the risk related to reconstruction of a vector s with a threshold
T, is given by

R(s,T) = E{|ls - 3|1*} (2)

where § is the representation of the reconstructed vector. A signal reconstruc-
tion is obtained by applying some function of a scalar T' (”thresholding”) to
a set of coefficients of s in a given Wavelet basis and then applying an inverse
transformation. This is the general procedure we use throughout the paper.

Though many thresholding functions are appliable, for the sake of simplic-
ity, in this section we analyse strictly the risk limited to the hard thresholding
rule. Soft thresholding rule will be presented in section 3.2 and for other rules
see [8].



General formulation. According to Mallat notation [4] (we used it throgh-
out the following sections) we describe the hard thresholding rule as

Yz, if |ym| >T

Ve (Y2) = (3)
0, if [y.| <T.

for any scalar y, where 7' is the threshold. Usually the measure of loss caused
by recovering signal coefficients, derives from a quadratic distance which de-
pends on T and on signal coefficients y;:

L8y We) 0 T = (s — Y (42))? (4)

Considering the reconstructed signal § as obtained from the rule (4) applied
to the wavelet coefficients in a particular orthogonal basis B = {W,,} and
with W, expressing the vector of projection (inner product) of x onto the
wavelet basis W,, = (x, W,), the mean value of the loss is the estimation
error (2)

E{L(y; (W.),8,T)} = E{lls - Wy, (W,) |’} = R(s,T),  (5)

where for compactness W, represents the matrix of basis functions. Repre-
senting the signal s = W, W, with the wavelet basis ( Wy is the vector with
components (s, W) ), risk can be expressed in terms of the basis coefficients
too, or

N
R(s,T) = E{|[WaW. — Wary, Wa) [P} = E{Ws, — 7 Wa)

i=1

2} .
(6)

To better understand the structure of R, we rewrite the function v, (W,,) =

i

Wa, Liw,, |> where T is the indicator function. As briefly alluded to earlier,
remember that W,, = Ws, + W, and W,, ~ N(0,0?%).

After few calculations and considering WE, iy, (<7 + Wi Lyw, |>17 = Wi,
we obtain from (6)

N
R(s,T) = > E{W2 Ty, v + W Tpw, o7 } - (7)

i=1

This equation express an intuitive concept: the contribute to the total risk
is dued to the signal coefficients when the noisy coefficient W,, is under the
threshold and to the pure noise W2 when W,, is over the threshold.

Wavelet Packet Decomposition and Rectangular approximation.
The Wavelet Packed Decomposition (WPD) differs from Wavelet Decomposi-
tion (WD) since it decomposes approximation and detail coefficients, building
a complete tree [10].



This difference allows to better locate the signal activities into time-
frequency(scale) plan in a more complete way than WD and to monitorize
with the same detail level all frequency bands. This feature is really impor-
tant for both detection and analysis purposes, as discussed in next section.
Consider a level j of WPD decomposition of the signal s. This level contains
N coefficients distributed into 2/ basis and, as previously affirmed for WD,
only few coefficients are significantly greater than zero. Obvious}l\y the signal
energy is conserved in the WP domain so, £ = Zizio si2 =3l W, 2

Now we introduce an approximation assuming that the distribution of
coefficients W, is constant for a subset of indexes V. = {i : W, # 0} and

ne = card(N.) < N
+\/& ifieN,
Wi, = ’ (8)
0, itigN.

In other words, we approximate with a rectangular function the distribution
of WP coefficients in a way to maintain the signal energy. Obviously this
function works well when there are few coefficients to approximate in the WP
domain. In following sections we assume almost one WP coefficient of signal
> T and we include the energy loss after thresholding with an efficiency factor
k = =% < 1. This factor is strictly related with n. and those parameters

Estrue
define the compression efficency of a WPD with a given basis.

3 Detection and analysis

The aim of this paper is to demonstrate the effective reliability of a detection
and analysis system of EEG signals of patients in critical condition based on
WPD. In this optics we describe the qualitative behavior of the risk. In the
next paragraph we show the relation between error probability and compres-
sion and therefore suggest which kind of wavelet basis use for decomposition.
If detection shows some evidence of life, it’s important to define some analysis
procedure to recover and reconstruct this embedded and unknown activity.
We used the algorithm implemented by Donoho and Johnstone based on
the needing of some visual feature (smoothness) of the reconstructed signal.
Their works demonstrated the optimality, under certain condition, of the use
of soft-thresholding rule when minimizing the risk R(s,T') in a minimax sense
[6]. In this paper, since the noise considered is zero-mean, we define

SNR = 101log (Va;s)) (9)

as measure of Signal to Noise power Ratio.



3.1 Detection

To evaluate the error probability of a system based on hard or soft thresh-
olding, we consider two situations. In the first case, the patient is alive so his
EEG signal can be modeled with the additive model (1). The probability of
a null detection (i.e. to obtain a vector of zeroes 0) is

N
P(e)" = P(5 = 0) = P(Wpy, (Wa) = 0) = [[ P(W.,

i=0

<T), (10)

since we are considering orthogonal bases and uncorrelated noise. Using the
same approximation described in (8), the equation (10) can be rewritten as

P@+:IIPQWM+¢g<ﬂ>IIHM%

1EN, iZNe

<T)

€, "
=P <|Wn + n—\ < T) - P(|Wy| < T)N=7e :p’g;.p;\’—"c (11)

In the second case, we consider an ES signal (s = 0) so it can be considered
as pure noise (W, = W,,). The probability of detect something different
from noise is

N
P(e)fzp(g;é(]):l—HP(‘Wm
i=0
=1-P(W,| <T)¥ =1-p}

<T) (12)

The whole error probability of our system can be written as

P(e) = P(e|s # 0) + Ple|s = 0) = P(e)* + P(e)~ (13)

=1 - (5) ]
n

where P(e)*represents the incidence of false negatives and P(e)~ the inci-
dence of false positives.

Straightforward considerations on (13) demonstrate the need of a high
compression (n, < N) to keep low the error probability. But this is the case
our approximation works better. Our purpose is to obtain some reasonable
values of loss (k) and compression (n.) for a clinical acceptable error. We
plot the equation (13) in function of %%, considering k = % and for some
SNR values (fig.1). For low values of compression the incidence of P(e)~ is
predominant while, for very high value of compression (~ 97%), the contri-
bution of false negatives is the most significant and limits the lower bound
of the error.

For example, to obtain a P(e) < 10~* with SNR= 0, we need of a basis
with a compression of §¢ ~ 97% with a loss of 50%. We made a lot of
tests with EEG signals and we found that Coiflet4 family [10] satisfies these
constraints.
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Fig. 1. Error probability for different SNR.

3.2 Analysis

The SURE algorithm is a method presented by Donoho and Johnstone [5]
for the soft-thresholding procedure defined by

[ye| = T if |ye| =T >0

X(Yz) = sign(y.) (14)
0, if ‘yz‘ -T<0

Besides the benefits of this strategy, largely described in [6], the weak
differentiability of this thresholding function makes straightforward applica-
ble the Stein method [9] to estimate the risk R(s,T’) in an unbiased fashion.
The optimal threshold 7" will be chosen to minimize this approximation for
each decomposition level. This "adaptative” method is really quasi-optimal
in the "dense” situation, i.e. when the energy is distributed over many co-
efficients, but it has a serious drawback in situations of extreme sparsity
or, in other words, when the signal compression is high. Donoho proposed
a pre-testing procedure to In this case, exploiting that, in probability, if
Wn ~ N(0,0%),|[Wnliie < Ty = oy/2log(n) [7], the threshold is set to

MAD(W,) >
0.6745 :

In Fig.2 we apply WP soft thresholding on a EEG signal measured from
a patient in Brain Silence condition (Fig.2c, 2d) compared to the analogue
application on a signal deriving from a normal patient (Fig.2a, 2b).

Ty. As usual, noise variance is approximated with 62 = (

4 Future work

In this paper a preprocessing system for de-noising and computerized anal-
ysis of EEG signals in critical conditions has been presented. The basic al-
gorithm is based on Wavelet Packed Decomposition and our inspection has
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Fig. 2. Normal EEG thresholded and compared with ES EEG.

been dedicated to the orthogonal basis. This kind of approach was first de-
veloped by Donoho and Johnstone with their SURE algorithm based on a
soft-thresholding strategy [5]. Starting from this miliary stone, we derive a
really simple methods to relate the risk, and consequenlty the error proba-
bility of a detection system based upon these concepts, to the compression
properties of the underlying set of bases chosen for denoising. We project to
apply this algorithm to long EEG acquistion (setting a sample frequency of
128 Hz and an acquisition of 12 h, we have a set of ~ 5.5 million of samples
for each EEG derivation). The aim is to build an automatic pre-analyzer to
help the expert to only examine the really interesting parts.
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