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ed Studies, Resear
h and Development in Sardinia2 Cagliari University HospitalAbstra
t. This paper proposes a methodology for extra
ting features from EEGin suspe
ted brain death 
onditions. Those signals are usually 
ara
terized by alow SNR and in su
h situations distortions introdu
ed by skull/ele
trode/
ableinterfa
e be
ome very relevant. After a 
alibration pro
edure, the analysis of EEGsignals was performed with a Wavelet Pa
ket De
omposition �lter, where the main
omponent of noise are removed with soft thresholding strategy. We propose anestimate of error probability leading to the 
hoi
e of wavelet basis and thresholdparameters. As result, in absen
e of brain a
tivity, the output of this �lter produ
esreally 
at signals. However the presen
e of some a
tivity 
an be examinated in WPtime-frequen
y domain revealing distin
tions between real brain a
tivity, narrowband noise and artifa
ts.1 Introdu
tionThe ele
troen
ephalographi
 (EEG) re
ording is extensively used in IntensiveCare Units (ICU) as a reliable measure of ele
tri
al brain a
tivity. Moreover,the interpretation of EEG re
ords aimed at diagnosis of the 
ondition of"brain death", better expressed as ele
tro 
lini
al silen
e (ES), is a 
ru
ialstep in modern medi
ine and represents the fundamental pre-requisite in 
lin-i
al settings oriented for transplants [1℄. Although EEG analysis represents adiagnosti
 tool among many others (e.g. 
erebral arteriography, single photonemission tomography), its relatively low 
ost and its large availability havegained to this pro
edure the 
ondition of "golden standard" in monitoring
omatose patients. However, digital EEG monitoring in ICU is, nowadays,neither popular nor widespread. Among the reasons for this resistan
e inpenetrating the 
ommon ICU pra
ti
e, the most important is that EEG mon-itoring has yet to be proved as an easy and reliable tool. Theoreti
ally, theanalysis of a digital signal seems "prima fa
ie" a relevant vantage over ana-logue re
ordings. However, in 
ase of ES, sin
e previous paper EEG yieldedresults that visually 
orrelate faithfully with 
lini
al signs (the fatal 
at line),you should expe
t that the 
omputerized EEG (CEEG) performs a superiortask in this spe
i�
 diagnosis pro
edure. Unfortunately, the noising ba
k-ground of an ICU generates insidious artifa
ts and the required ampli�
ationof the small voltage signals 
ause an ampli�
ation of the noise as well.



2 Noise removal by thresholdingThe density distribution of a 
alibrated ES signal is almost gaussian [2℄. Fromthis premise, we 
an state the problem as one of estimating an unknowndeterministi
 signal after observing a pro
ess sampled over an interval oflength N . We hen
eforth assume that the observed samples are those of anunderlying unknown signal and of white noise, wherex[m℄ = s[m℄ + n[m℄; (1)for m = 1; 2; :::; N and n � N (0; �2).Implementing an estimator in an orthogonal basis is intuitively appealingon a

ount of the distribution of the noise energy in su
h a basis. Waveletbases are known to 
on
entrate the energy of pie
ewisesmooth signals intoa few high-energy 
oeÆ
ients [3℄. If the energy is 
on
entrated into a fewhigh-amplitude 
oeÆ
ients, su
h a representation 
an provide an a

urateestimate of s[m℄. The advantage of expressing in an orthogonal wavelet basisis two-fold:a) if the 
ontaminating noise samples are independent and identi
allydistributed (i.i.d.) Gaussian, so are the 
oeÆ
ients, and their statisti
al in-dependen
e is preserved.b) intrinsi
 properties of the signal are preserved in a wavelet basis.We �rst dis
uss a method for estimating the mean-square error asso
i-ated with thresholding wavelet 
oeÆ
ients at a given level. Given a signalin some basis representation, we will threshold the 
oeÆ
ients and estimatethe resulting error, and this error will then be used in the sear
h for the bestbasis family. Su

intly we report the problem as analysed in [4℄. Moreover wepresent a new derivation used to set the error probability of our dete
tionsystem.2.1 Risk of a Wavelet-based estimatorIn this se
tion, we present a mean-square error estimator exstensively usedin literature expe
ially for wavelet de-noising [6℄ . The mean-square error, ormore formally the risk related to re
onstru
tion of a ve
tor s with a thresholdT , is given by R(s; T ) = Efks� ŝk2g (2)where ŝ is the representation of the re
onstru
ted ve
tor. A signal re
onstru
-tion is obtained by applying some fun
tion of a s
alar T ("thresholding") toa set of 
oeÆ
ients of s in a given Wavelet basis and then applying an inversetransformation. This is the general pro
edure we use throughout the paper.Though many thresholding fun
tions are appliable, for the sake of simpli
-ity, in this se
tion we analyse stri
tly the risk limited to the hard thresholdingrule. Soft thresholding rule will be presented in se
tion 3.2 and for other rulessee [8℄.



General formulation. A

ording to Mallat notation [4℄ (we used it throgh-out the following se
tions) we des
ribe the hard thresholding rule as
T (yx) =8<: yx; if jyxj > T0; if jyxj � T: (3)for any s
alar yx where T is the threshold. Usually the measure of loss 
ausedby re
overing signal 
oeÆ
ients, derives from a quadrati
 distan
e whi
h de-pends on T and on signal 
oeÆ
ients ys:Lf
T (yx) ; ys; Tg = (ys � 
T (yx))2: (4)Considering the re
onstru
ted signal ŝ as obtained from the rule (4) appliedto the wavelet 
oeÆ
ients in a parti
ular orthogonal basis B = fW xig andwith Wx expressing the ve
tor of proje
tion (inner produ
t) of x onto thewavelet basis Wxi = hx;W xii, the mean value of the loss is the estimationerror (2)EfL(
T (W x) ; s; T )g = Efks�W x
T (W x) k2g = R(s; T ); (5)where for 
ompa
tness W x represents the matrix of basis fun
tions. Repre-senting the signal s =W xWs with the wavelet basis (Ws is the ve
tor with
omponents hs;W xii ), risk 
an be expressed in terms of the basis 
oeÆ
ientstoo, orR(s; T ) = EfkWxWs �Wx
T (Wx) k2g = NXi=1 E �jWsi � 
T (Wxi) j2	 :(6)To better understand the stru
ture of R, we rewrite the fun
tion 
T (Wxi) =WxiIjWxi j>T where I is the indi
ator fun
tion. As brie
y alluded to earlier,remember that Wxi =Wsi +Wni and Wni � N(0; �2).After few 
al
ulations and 
onsideringW2siIjWxi j<T+W2siIjWxi j�T =W2siwe obtain from (6)R(s; T ) = NXi=1 E nW2siIjWxi j<T +W2niIjWxi j�To : (7)This equation express an intuitive 
on
ept: the 
ontribute to the total riskis dued to the signal 
oeÆ
ients when the noisy 
oeÆ
ient Wxi is under thethreshold and to the pure noise W2ni when Wxi is over the threshold.Wavelet Pa
ket De
omposition and Re
tangular approximation.The Wavelet Pa
ked De
omposition (WPD) di�ers from Wavelet De
omposi-tion (WD) sin
e it de
omposes approximation and detail 
oeÆ
ients, buildinga 
omplete tree [10℄.



This di�eren
e allows to better lo
ate the signal a
tivities into time-frequen
y(s
ale) plan in a more 
omplete way than WD and to monitorizewith the same detail level all frequen
y bands. This feature is really impor-tant for both dete
tion and analysis purposes, as dis
ussed in next se
tion.Consider a level j of WPD de
omposition of the signal s. This level 
ontainsN 
oeÆ
ients distributed into 2j basis and, as previously aÆrmed for WD,only few 
oeÆ
ients are signi�
antly greater than zero. Obviously the signalenergy is 
onserved in the WP domain so, Es =PNi=0 jsij2 =PNi=0 jWsi j2.Now we introdu
e an approximation assuming that the distribution of
oeÆ
ients Wsi is 
onstant for a subset of indexes N
 � fi : Wsi 6= 0g andn
 = 
ard(N
) � N Wsi = 8><>:�q Esn
 ; if i 2 N
0; if i 62 N
: (8)In other words, we approximate with a re
tangular fun
tion the distributionof WP 
oeÆ
ients in a way to maintain the signal energy. Obviously thisfun
tion works well when there are few 
oeÆ
ients to approximate in the WPdomain. In following se
tions we assume almost one WP 
oeÆ
ient of signal> T and we in
lude the energy loss after thresholding with an eÆ
ien
y fa
tork = EsEstrue < 1. This fa
tor is stri
tly related with n
 and those parametersde�ne the 
ompression eÆ
en
y of a WPD with a given basis.3 Dete
tion and analysisThe aim of this paper is to demonstrate the e�e
tive reliability of a dete
tionand analysis system of EEG signals of patients in 
riti
al 
ondition based onWPD. In this opti
s we des
ribe the qualitative behavior of the risk. In thenext paragraph we show the relation between error probability and 
ompres-sion and therefore suggest whi
h kind of wavelet basis use for de
omposition.If dete
tion shows some eviden
e of life, it's important to de�ne some analysispro
edure to re
over and re
onstru
t this embedded and unknown a
tivity.We used the algorithm implemented by Donoho and Johnstone based onthe needing of some visual feature (smoothness) of the re
onstru
ted signal.Their works demonstrated the optimality, under 
ertain 
ondition, of the useof soft-thresholding rule when minimizing the risk R(s; T ) in a minimax sense[6℄. In this paper, sin
e the noise 
onsidered is zero-mean, we de�neSNR = 10 log�var(s)�2 � (9)as measure of Signal to Noise power Ratio.



3.1 Dete
tionTo evaluate the error probability of a system based on hard or soft thresh-olding, we 
onsider two situations. In the �rst 
ase, the patient is alive so hisEEG signal 
an be modeled with the additive model (1). The probability ofa null dete
tion (i.e. to obtain a ve
tor of zeroes 0) isP (e)+ = P (ŝ = 0) = P (Wx
T (Wx) = 0) = NYi=0P (jWxi j < T ); (10)sin
e we are 
onsidering orthogonal bases and un
orrelated noise. Using thesame approximation des
ribed in (8), the equation (10) 
an be rewritten asP (e)+ = Yi2N
 P  jWni +rEsn
 j < T! Yi62N
 P (jWni j < T )= P  jWn +rEsn
 j < T!n
 � P (jWn j < T )N�n
 = pn
Es :pN�n
n (11)In the se
ond 
ase, we 
onsider an ES signal (s = 0) so it 
an be 
onsideredas pure noise (Wxi = Wni). The probability of dete
t something di�erentfrom noise isP (e)� = P (ŝ 6= 0) = 1� NYi=0P (jWni j < T ) (12)= 1� P (jWn j < T )N = 1� pNnThe whole error probability of our system 
an be written asP (e) = P (ejs 6= 0) + P (ejs = 0) = P (e)+ + P (e)� (13)= 1� pNn �1��pEspn �n
�where P (e)+represents the in
iden
e of false negatives and P (e)� the in
i-den
e of false positives.Straightforward 
onsiderations on (13) demonstrate the need of a high
ompression (n
 � N) to keep low the error probability. But this is the 
aseour approximation works better. Our purpose is to obtain some reasonablevalues of loss (k) and 
ompression (n
) for a 
lini
al a

eptable error. Weplot the equation (13) in fun
tion of n
N %, 
onsidering k = 12 and for someSNR values (�g.1). For low values of 
ompression the in
iden
e of P (e)� ispredominant while, for very high value of 
ompression (� 97%), the 
ontri-bution of false negatives is the most signi�
ant and limits the lower boundof the error.For example, to obtain a P (e) < 10�4 with SNR= 0, we need of a basiswith a 
ompression of n
N � 97% with a loss of 50%. We made a lot oftests with EEG signals and we found that Coi
et4 family [10℄ satis�es these
onstraints.



Fig. 1. Error probability for di�erent SNR.3.2 AnalysisThe SURE algorithm is a method presented by Donoho and Johnstone [5℄for the soft-thresholding pro
edure de�ned by�(yx) = sign(yx)8<: jyxj � T; if jyxj � T > 00; if jyxj � T � 0 (14)Besides the bene�ts of this strategy, largely des
ribed in [6℄, the weakdi�erentiability of this thresholding fun
tion makes straightforward appli
a-ble the Stein method [9℄ to estimate the risk R(s; T ) in an unbiased fashion.The optimal threshold T will be 
hosen to minimize this approximation forea
h de
omposition level. This "adaptative" method is really quasi-optimalin the "dense" situation, i.e. when the energy is distributed over many 
o-eÆ
ients, but it has a serious drawba
k in situations of extreme sparsityor, in other words, when the signal 
ompression is high. Donoho proposeda pre-testing pro
edure to In this 
ase, exploiting that, in probability, ifWn � N(0; �2); kWnkl1n � Tf = �p2 log(n) [7℄, the threshold is set toTf . As usual, noise varian
e is approximated with �̂2 = �MAD(Wx)0:6745 �2.In Fig.2 we apply WP soft thresholding on a EEG signal measured froma patient in Brain Silen
e 
ondition (Fig.2
, 2d) 
ompared to the analogueappli
ation on a signal deriving from a normal patient (Fig.2a, 2b).4 Future workIn this paper a prepro
essing system for de-noising and 
omputerized anal-ysis of EEG signals in 
riti
al 
onditions has been presented. The basi
 al-gorithm is based on Wavelet Pa
ked De
omposition and our inspe
tion has



Fig. 2. Normal EEG thresholded and 
ompared with ES EEG.been dedi
ated to the orthogonal basis. This kind of approa
h was �rst de-veloped by Donoho and Johnstone with their SURE algorithm based on asoft-thresholding strategy [5℄. Starting from this miliary stone, we derive areally simple methods to relate the risk, and 
onsequenlty the error proba-bility of a dete
tion system based upon these 
on
epts, to the 
ompressionproperties of the underlying set of bases 
hosen for denoising. We proje
t toapply this algorithm to long EEG a
quistion (setting a sample frequen
y of128 Hz and an a
quisition of 12 h, we have a set of � 5:5 million of samplesfor ea
h EEG derivation). The aim is to build an automati
 pre-analyzer tohelp the expert to only examine the really interesting parts.Referen
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