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1. Introduction 
Numerical optimization of the combustion  is a difficult problem not only due to very 
complex physical-chemical processes that accompany this phenomenon but also for 
the complex engineering problem to produce optimal machine using combustion  
(power plant, jet engine and so on). A criterion of optimization reflects a compromise 
between, for example, the efficiency coefficient of  the heat and the amount of 
pollution and so on. Here it’s necessary to take into account existence of unsteady 
regime of combustion that is not admissible in industrial combustion. It is a reason 
why we discuss in this report the optimization problem with clear criterion of 
optimization. It is using of  external combustion for reduction of the resistance and 
even for generation of the thrust of  a body moving with supersonic velocity. It’s a 
significant applied problem analyzed, for example, in [1] - [4].  
 In these papers optimization problems were not discussed but  optimization problems 
were widely investigated in nonreacting aerodynamics [5] - [6]. In fact in our research 
we used  variation methods developed in aerodynamics. In this report we analyze the 
combustion variation problem in exact linear formulation  and develop approximate 
approach to a nonlinear problem based on the model of heat release in the strip of 
flow with zero mass flux.  
 
2. Resistance of a thin body in a supersonic flow with heat 

release 

We analyze flow around a plane body with heat release Q   near the surface. The 
system of  Euler equations is the following: 
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For the case of thin bodies and  small heat release  1/ <<∞TcQ p   this system of  
equations could be linearized: 
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where index )(1  denotes small )1/,1/,1/,1/( 1111 <<<<<<<< ∞∞∞∞ ρρvvuupp  

disturbances of the flow due to influence of the body and the heat release, index )(∞  
refers to the undisturbed flow.  
Inserting the expressions (2) into the equations (1) and ignoring the terms of the 
second and higher order we have:   
 

0/// 111 =∂∂+∂∂+∂∂ ∞∞∞ yvxuxu ρρρ                                                  (3) 
 ,// 11 xPxuu ∂−∂=∂∂∞∞ρ                                                             (4) 

,// 11 yPxvu ∂−∂=∂∂∞∞ρ                                                                 (5) 
).,()//( 11 yxWxuuxTcu p =∂∂+∂∂ ∞∞∞ρ                                     (6) 

 
The equation of state  in the differential form after linearization is as it follows: 
 

./// 111 xTRxRTxP ∂∂+∂∂=∂∂ ∞∞ ρρ                                                        (7) 
 
Eliminating xTxxP ∂∂∂∂∂∂ /,/,/ 111 ρ  from the eqs. (3) - (7), after simple 
manipulations  we will have the resulting equation: 
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Now we show that  the linearized equation with the heat release is nonedding  flow.  
Eq. (4) could be integrated over x   that results ),(11 yfPuu +−=∞∞ρ   where 

0)( ≡yf  that follows from the boundary condition: at −∞→x   01 =P  and 01 =u , 
hence 
 

.11 Puu −=∞∞ρ                                                                                               (9) 
 
From eqs. (5) and (6)  it follows that  ,0// 11 =∂∂−∂∂ xvyu  i.e. we have the noneddy 
flow  with the potential Φ : 
 

),,(),(),( 1 yxyxyx Φ+Φ=Φ ∞   ,// 11 xuu ∂Φ∂=∞   .// 11 yuv ∂Φ∂=∞        (10) 
 
The equation (8) takes the form: 
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where .122 −= ∞Mβ  
 
The equation (11) is the inhomogeneous  wave equation, its solution should be reduce 
to quadratura. The boundary condition on the body surface, described by the 
expression )(xhy = , is  )(|)/( )( xhuv xhy ′==  (gas does not penetrate inside the body),  
or in linear approximation  
 



 3 

).(|)/(|)/( 0101 xhyuv yy ′=∂Φ∂= ==∞                                                            (12) 
 
The solution of the equation (11) with the boundary condition (12) is a sum of the 
solution of the homogeneous wave equation with the boundary condition (12) and the 
solution of the inhomogeneous  wave equation (11) with the zero boundary condition 

:0|)/( 01 =∂Φ∂ =yy  
 

).,(),(),( 1101 yxyxyx HΦ+Φ=Φ                                                                 (13) 
 
Taking into account that the flow perturbations caused by the body is expressed only 
behind the body  the solution could be written as it follows: 
  

).()/1(),(10 yxhyx ββ −=Φ                                                                      (14) 
 
The solution of the inhomogeneous  wave equation could be deduced by the method 
of reflection [4]  that is based on the fact that the boundary condition automatically is 
valid if we analyze the problem in all space with using imaginary (fictitious) heat 
sources mirrored  from the wall heat sources. This solution is as it follows 
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In accordance with eq. (10) 
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     In the linear approximation the pressure coefficient  of the pressure dC  using  eq. 
(9) could be written in the form 
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that after expressing of the velocity in terms of the potential is the following 
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We denote  
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the density of the integral amount of heat releasing along the characteristic arriving in 
the point with the coordinate )0,(x and having the angle of inclination to the axis  x  
equal to .arcsin 1−

∞= Mα  In this case the amount of releasing heat in the space 
between two characteristics arriving in point x  and  dxx +  is equal to ∞Mdxxq /)(  
and the amount of heat )(xQ  that is released upstream of  the characteristic arriving in 
the point  )0,(x  is equal to 
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and the coefficient of the pressure on the body surface can be written as it follows 
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It means that the peculiarity of the linear solution is that the pressure in a point on the 
body surface is controlled only by the integral amount of the heat released on the 
characteristic arriving in this point  and does not depend on the distribution of the heat 
release  along the characteristic.  
The final result is that  the resisting force (or the thrust) xR of the body in the linear 
approximation is  
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or taking into account the expression (17)  it can be presented as it follows: 
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3. Optimization of the body profile and heat release  
We use results of the previous section  for  defining of the coefficient of efficiency  in 
the problem of the thrust generation by external burning in supersonic streams. We 
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analyze the situation when the heat release takes place only over the stern (the back 
part) of the body and do not take into account the impedance of the front part of the 
body. In this case the deduced  coefficient of efficiency would be the upper 
estimation.  In accordance with the expression (18)  the longitudinal force is 
controlled by the profile )(xhy =  and the function of the heat release )(xQ . It is 
natural to introduce a limit on the value of the maximal heat release intensity 

maxmax ]/([ dxTcudQ p ∞∞∞=≤ ραα . In our case this limit is defined by the condition 

of  applicability of the linear theory 1max <<α . We assume that the beginning of heat 
release takes place at the beginning of the back part (the stern profile)  of the body, 
Fig.2. We formulate the variation problem as it follows: between functions )(xQ  
describing the heat release that satisfy the condition  max0 QQ ′≤′≤  and functions 

)(xh  describing the profile of the back part of the body with boundary conditions in  
0=ix   and  0)( =fxh  we must find such functions that result maximal coefficient of 

efficiency QuRx /∞=η . It is significant to stress that we do not assume any 
additional limitations (the body thickness, volume and so on) as they could only to 
reduce the  coefficient of efficiency  η .  
The condition  max0 QQ ′≤′≤  is equivalent to the equation 
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where )(xf  is a new real-valued function.  So the problem of  maximization of the 
functional (18) with the differential condition (19) is reduced [2, 3] to maximization 
of the functional  
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where  )(xµ  is the Lagrange multiplier.  Optimal functions ),(xh  )(xQ  and  f(x) is 
defined from the Euler equation of the variation problem: 
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which  taking into account (20)  have the form: 
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0=fµ .                                                                                                             (23) 



 6 

 
From eq. (23) it follows that the external  )(xQ  could consist of  arcs corresponding 
to 0=µ  and 0=f . Along the former arc with 0=µ , the strict inequality  

max),(0 QxQ ′′<  is valid. In this case  from  eq. (22) follows that consth =′   and  from 
eq. (21) that  constxQ =′ )( .  Along the latter arc with 0=f  either  0)( =′ xQ  or  

max)( QxQ ′=′ . In this case from eq. (21) follows that here also constxh =′ )( .  It means 
that  optimal function  )(xQ  consist of the linear distributions  and the optimal  profile  
consist of the straight lines. The conditions in the points of junction are the following: 
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where a symbol  ∆  denotes the difference between the values to the left and right of 
the point of break, Qhx δδδ ,,  are arbitrary variations of the angular point coordinate 

and the value of )(xQ  in this point. For arbitrary  angular point (as we do not impose 
any limitation on its coordinates) the latter equation is equivalent to the set of 
equations: 
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Hence it follows that  0=′∆h  and  0=∆Q , i. e. angular points  are impossible and 
the optimal heat release has  constant intensity constQ =′ . 
And lastly at variation of   ix   and  fx   (the coordinates of the initial and final 
sections of the sternpost of the body where the heat release takes place) the 
transversability condition  must be fulfilled that is the following 
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This condition for the case of arbitrary variations  of  fi xxh ),(  and  )( fxQ  has the 
form 
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where h′  and  Q′  are the optimal inclination of the profile and the optimal heat 
release intensity. The first two equations defines the Lagrange multiplier 

∞∞∞−= Tcu pρµ 5.0 . Then from the last equation it follows that maxQQ ′=′ , 
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This expression presents also the similarity criterion: two bodies that are flowed over 
by  gases  with different adiabatic exponents and the  Max numbers have the same 
coefficient of efficiency when 
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Fig. 3  demonstrates values of η  as a function of  the maximum  heat release 
intensities maxα  for different flow  Mach numbers ∞M  ( ).4.1=κ  
This results demonstrates that  in order to generate the thrust, the body must have the 
wave resistance  and some part of the heat is used for overcoming of this resistance.  
The optimal body is characterized by the wave resistance equal to ( if xxL −=  is the 
length of the body sternpost) 
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that is a half of the force connected with heat release.   
Without heat release minimal wave resistance in the supersonic flow equal to zero and 
have the infinitely thin plate and the Buzeman biplane. So for the Buzeman biplane 
our estimation of the coefficient of efficiency gives two times higher values.    
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4. Optimization of the body profile for given heat release  in the 

flow   

Actual heat release that takes place due to combustion at injection of a fuel into the air 
flow is controlled by several physical-chemical processes: turbulent mixing and 
molecular mixing, chemical kinetics and small-scale coupling between these 
processes. We assume that heat release does not depend on the body profile, i. e. we 
assume that the function )(xQ  fixed  at the body profile variations are known. The 
variation problem formulation is the following: to find the profile )(xh  resulting  
minimal wave resistance or maximal thrust. In this problem we allow for heat release 
upstream of the body.  
We introduce the characteristic length qL  where takes place complete heat release and 
present the function of the heat release as it follows: 
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The resistance of the body per unit of the width is the following  
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where fC  is the coefficient of restriction that is assumed to be constant. 

Formulation of the problem is the following: between functions )(xh describing the 
profile of a body with fixed  length  LXX if =−  and boundary conditions on the 

beginning and the end of the body   0)()( == fi XhXh  we must find such profile that 
minimize the integral in eq. (25) where Q(x) is described by eq. (24). The body can 
has additional restriction such as the maximal thickness  H   and the area S : 
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This problem with the isoperimetric condition (26) is equivalent to defining of the 
extreme of the functional 
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 and λ  is the Lagrange multiplier. 

The Euler equation of the variation problem in this case is the following: 
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where  a  and  b  are constant which should be defined from the boundary conditions. 
 
In the general case the optimal profile consists of several arcs described by eq. (28). In  
the junction points the conditions are the following: 
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where the symbol  ∆  denotes the difference between the values in brackets to the left 
and right of the point of break. Without any restrictions on the position on the angular 
points  we have instead  
 

0)]([ 2 =′∆ xh ,          0]
)(

)(2[ =
′

+′∆
∞∞∞ Tcu

xQ
xh

pρ
.                                 (29) 

 
If the given thickness of the body is achieved in a junction point  it would be 
sufficient the condition 
 
                      0)]([ 2 =′∆ xh .                                                                   (30) 
 
And at last in the case when the coordinates of the beginning and the end of the body 
are moved with respect to the zone of  heat release the transversability  condition must 
be valid. As we assumed that  0)()( == fi XhXh  the transversability  condition is the 
following: 
 

0)]([])([ 22 =′−−+′− ffifi XXhXCXh δδ .                                          (31) 
 
The Lagrange multiplier λ  is found from the isoperimetric condition (26). 
 
We analyze first the optimal profile of the body  without external heat release and we 
will compare the restriction of  this body with the restriction of the optimal body with 
heat release.  For given length and thickness of the body we will analyze particular 
cases corresponding to different values of the area of the isoperimetric condition. It 
would be more convenient to set the value of the Lagrange multiplier λ  or the 
geometric parameters of the body and to define corresponding values of the area, the 
body profile and the restriction. 



 10 

a) Let  0=fC  and  0=λ , the length of the body  L and the thickness H are given. 
In this case in accordance with (28) the profile consist of  straight lines. From the  
transversability  condition (31)  (as at constL =  fi XX δδ = ) it follows that 

22 )]([)]([ fi XhXh ′=′  and  the optimal body in this case is the rhomb with given 
thickness in the middle of the bisecant, with the area of the cross section  

LHS 5.0=  and with the wave resistance 
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b) Let us choose such value of  λ  that in the section with maximum thickness the 
profile would have zero derivative< i. e. in the section with 2/)( Hxh =    

.0/ =dxdh  In this case the optimal profile is described by one curve of the second 

order (28) and taking into account (31) we have ),1(2)(
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. This smooth profile has the area and the 

restriction that is 3/4  times greater than has the rhomb type body. 

c) In the case  2

8
L
H−<<∞− λ  the optimal body consist of  the arcs 1-2, 3-4 and the 

straight line 2-3, and in accordance with (30) in the points 2 and  3 there is no 
break, i. e. there is no the derivative discontinuity of  )(xh′ . If point 2 has the 
coordinate ξ5.0  where 1<<ξ  the optimal body  is describes by the formulas (the 
body is symmetrical by )5.0 Lx = :                 

=)(xh
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In the case 0→α  the optimal body  tend to the rectangle with the sides  H  and 
L  (i. e. HLS → ) and ∞→xR . It is obvious that this limiting case is pure formal 
as the linear theory is not valid here. 

d) 0>λ  and  HLS 5.0< . It is easy to check that in this case   
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Here from the condition 0)( ≥xh  follows maximal possible value LH /8=λ . For 
this value 0/ =dxdh  in the points 0=x  and Lx =  and LHdxdh /2/ =  in the 
point .2/1=x  In this case the area 3/HLS =  that is minimal possible and the 
restriction of such concave body is equal to the restriction of the convex body with 
smooth profile in the section with maximum thickness. In the case 2/8 LH>λ  
takes place the degenerated case when between points 1-2 and 4-5 the thickness 
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equal zero, i. e. at the area 3/HLS <  in fact the length of the optimal profile is 
reduced and it is situated between the points 2 and 4 so the linear theory is not 
valid.   

e) In accordance with the recommendations from the literature the linear theory is 
valid when .1.0/03.0 << LH  The particular solutions from the items a)-d) are 
the classical solutions of the theory of optimal aerodynamics forms [5]. At  fixed 
length of the optimal  body profile does not depend on friction. But without 
restriction on the body length it directly controlled by friction. In the literature 
there are such solutions for the bodies with fixed thickness and the area of  the 
cross-section.   

f) Now we analyze the case of external combustion. Sequence and number of  arcs 
described by eq. (28)  and constituting the optimal profile depend on coordinates 
of beginning and end of the heat release qX  and qq LX +  as well as by coordinate 

0x  where the body has the maximum thickness Hxh =)( 0 . Here possible  
different situations: when heat release begins upstream from the section of the 
maximum thickness; when heat release takes place on the back side of the body; 
and when heat release begins in the section of maximal  thickness. From eq. (29) 
for the angular point qX   written for the cases  0xX q >  or 0xX q <  it follows 

that  0)( =′ qXQ  and )()( 22 qq XhXh ′=′ . Similar situation takes place in the 

angular point  qq LX + . But in the case  0)( ≠′ qXQ  in accordance with eq. (30) 
beginning of heat release can be only in the section with the maximal heat release 

0xX q = . Finally the possible optimal configuration consists of two arcs )(1 xh  

and  )(2 xh corresponding to eq. (28) and containing one angular point in 0xx = . 
Now  we take a look at the case when )()( qqq LXQXQ +′=′  that corresponds to 

physically reasonable case of  smooth beginning  in qXx =  and smooth 

extinguish  in LXx q +=  of combustion. From the set of equations  
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corresponding this case  the unknown 0x , iX  and  fX  can be found and after this 
eq. (27) gives an opportunity to find the minimal restriction of the optimal body.  
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5. A model of heat release in the strip of flow with zero mass 

flux. Estimation of the heat release efficiency coefficient for 

generation of the thrust in the nonlinear case. 
Our previous results refer to the linearized  problem that is valid when 

1/ <<= ∞∞∞ dxTcudQ pρα . For estimation of the efficiency coefficient η  when  the 

linear theory is not valid we will analyze  the flow over the body  taking into account 
strong  distortions. The profile of the body and the heat release law we will take from 
the linear solution of the variation problem. We will analyze the flow shown in the 
Fig. 4 where head release is accompanied by formation of the shock wave.  We 
assume that heat release takes place at constant pressure and analyze the limiting case 
of zero mass flux  in the strip of flow where takes place heat release.  
       Now we present necessary equations. The plane 1D  strip flow with heat release 
with constant pressure is describe by the set of equations 
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).()
2
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xdQ
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pdFdI

uFddG

p

ρ
 

 
From the first equation it follows that constu = , i. e. the velocity in constant at 
isobaric heat release. Simple manipulations result the formula 
 

)(
1

)( 0 xQ
Pu

FxF
κ
κ −+=      

   
that shows that area of the strip of flow is controlled only by heat release ( 0F  is the 
initial area). In the limiting case when 00 =F  we have for  constant intensity of heat 
release an expression for the derivation angle of the velocity from the body surface  
 

dx
dQ

Pu
tg

κ
κϕ 1−= ,    or      ϕα tg

u
u

P
P

∞∞

=    where     
dx
dQ

Tcu p ∞∞∞

=
ρ

α 1
        (32) 

 
Taking into account  eqs. (32) the expression for  the coefficient of efficiency  for the 
configuration presented on the Fig. 4 is the following: 
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,                                       (33) 

 
where H in the thickness of the body,  β  is the deviation angle  of the flow behind the 
shock wave, the pressure P  and the flow velocity u  is controlled by the shock wave, 
the angle of the shock wave depends on the heat release intensity α .  
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The geometrical parameters  giving maximum  value η  were found numerically for 
given values α . Fig. 5 - 8 present results for  η   corresponding to different Max 
numbers of the flow ∞M  and  Fig. 9 demonstrate optimal dimensionless thickness  

LHH /=       
as a function of  α .  At small heat release this results are in agreement with the linear 
theory. Maximal value of  η   (and maximum   heat release) corresponds to the 
boundary of the flow separation. Fig. 10  shows maximal  η    as a function of the 
flow Max number  ∞M .  

 

6. Conclusions 
1. We  formulated and resolved the problem in the linear formulation of optimal heat 

release and body profile for minimal resistance or minimal thrust for plane 
symmetrical bodies at supersonic velocities. We have analyzed the isoperimetric 
problems aiming to find both optimal body profile and optimal heat release 
distribution and, at given heat release intensity, to find optimal body profile 
yielding maximum coefficient of efficiency. 

 
2. We approximately analyzed the variation problem in nonlinear formulation based 

on the model of heat release in the strip of flow with zero mass flux and presented 
quantitative results. 

 
3. Developed method could be applied to another combustion problem connected, 

for example, with problems of industrial combustion.   
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Fig.9 
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