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ABSTRACT
Prestack wave-equation migration has proved to be a very accurate shot-by-shot imag-
ing tool. However, 3D imaging with this technique of a large field acquisition, espe-
cially one with hundreds of thousands of shots, is prohibitively costly. Simply adapting
the technique to migrate many superposed shot-gathers simultaneously would render
3D wavefield prestack migration cost-effective but it introduces uncontrolled non-
physical interference among the shot-gathers, making the final image useless. How-
ever, it has been observed that multishot signal interference can be kept under some
control by averaging over many such images, if each multishot migration is modified
by a random phase encoding of the frequency spectra of the seismic traces.

In this article, we analyse this technique, giving a theoretical basis for its observed
behaviour: that the error of the image produced by averaging over M phase encoded
migrations decreases as M−1. Furthermore, we expand the technique and define a
general class of Monte-Carlo encoding methods for which the noise variance of the
average imaging condition decreases as M−1; these methods thus all converge asymp-
totically to the correct reflectivity map, without generating prohibitive costs.

The theoretical asymptotic behaviour is illustrated for three such methods on a
2D test case. Numerical verification in 3D is then presented for one such method
implemented with a 3D PSPI extrapolation kernel for two test cases: the SEG–EAGE
salt model and a real test constructed from field data.

I N T R O D U C T I O N

Echo-reconstruction techniques for subsurface imaging are
based on experiments in which short acoustic impulses, emit-
ted at the surface, illuminate a certain volume and are
backscattered by inhomogeneities of the medium. Depth mi-
gration of prestacked seismic data, which is a central step in
the processing flow for hydrocarbon prospecting, is a wave-
equation-based process that transforms recorded echoes into
acoustic images of the subsurface.

Any migration technique begins with an a priori estimate
of the velocity field, i.e. a model of the earth’s subsurface
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representing an estimate of the actual propagation velocities.
Subsequent iterations of the imaging process are required to
improve the initial earth model by perturbing velocities in an
effort to obtain optimal focusing of seismic events on their
correct depth location (Yilmaz 1987).

In the context of 3D industrial applications, the numerical
process involved is a heavy computational task even with mod-
ern high-performance computers, demanding much in terms
of data storage, data movement and computational effort on
parallel architectures (Ober et al. 1997; Brieger 2000).

Prestack depth-migration algorithms are usually divided
into two classes (Gray et al. 2001): wavefield extrapolation
techniques, based on the implementation of some form of
scalar one-way equation, and Kirchhoff techniques, using ray
tracing as the wave propagation model.
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Wavefield extrapolation techniques are well adapted to
common-shot seismic data. In this domain, they naturally split
into two independent identical propagation problems, one re-
lated to the source wavefield and the other to the recorded
wavefield, followed by the standard imaging condition. A
suitable choice for the extrapolation is a depth propagation
method based on the approximate solution of the one-way
equation, either in the (x, y, ω)-domain (Hale 1991; Collino
and Joly 1995) or in the (kx, ky, ω)-domain (Gazdag and
Sguazzero 1984). Common-shot wave-equation migration has
proved to be a very accurate imaging tool. Unfortunately, the
cost of prestack 3D wavefield extrapolation performed shot
by shot, especially with hundreds of thousands of shots, is still
prohibitive for industrial data-set applications.

Kirchhoff techniques (Bleistein et al. 2001), based on the
eikonal approximation of the wave equation associated with
the source and receiver locations, are recognized as the most
flexible method of imaging prestack seismic data and are use-
ful, regardless of the acquisition geometry. However, Kirch-
hoff migration using first-arrival traveltime solutions of the
eikonal equation, which has been the workhorse reconstruc-
tion method for the last decade, may encounter severe imaging
inaccuracies in geological situations with fast lateral velocity
variations. The use of a more complete description of eikonal
propagation, including multipathing, would increase the qual-
ity of Kirchhoff-migrated images at the cost of expensive and
cumbersome ray-tracing algorithms, which break down near
caustics. Although impressive results on multi-arrival Kirch-
hoff migration or Gaussian-beam migration have been re-
ported (Hill 2001; Xu et al. 2001; Notfors et al. 2003), their
implementation in a production environment remains prob-
lematic.

For these reasons and for accuracy of a prestack migration
package, we believe that wave-equation prestack migration,
although reputed to be computationally more expensive than
the Kirchhoff approach, should be used when severe multi-
pathing is present in complex geological situations (Ehinger
et al. 1996).

A technique allowing the simultaneous wavefield depth ex-
trapolation of many shot-gathers within a single data migra-
tion is now well understood and developed. The first proposed
method, described by Morton and Ober (1998) and Romero
et al. (2000), is based on repeated extrapolation of seismic
data volumes obtained by the superposition of sources and
shot-gathers, where at each iteration the phase of seismic sig-
nals is randomly shifted.

As pointed out by Bonomi and Cazzola (1999), a simple
analysis shows that the random encoding of the seismic sig-

nals leads to a Monte-Carlo quadrature: the resulting imaging
condition, averaged over many runs, provides, in addition to
the expected correct contribution, spurious random terms that
vanish in the limit of a large number of depth migrations. In
fact, this is the case when, for each run, the frequency spectra
of sources and shot-gathers are encoded with a new sequence
of complex random numbers, all independently drawn from
the same probability distribution function with a mean value
of zero and variance of one. Depending on the distribution,
the generalized encoding may shift the phase and/or multiply
the amplitude of each component of the frequency spectra by a
random factor. All these concepts have been numerically vali-
dated on the SEG–EAGE salt model and on field data, running
a prestack migration code which implements a 3D phase-shift-
plus-interpolation (PSPI) extrapolation kernel.

We conclude from this work that, for large industrial appli-
cations involving hundreds of thousands of shots, in order to
achieve an acceptable level of noise, the number of runs need
not exceed a small fraction of the number of shots.

P R E S TA C K WAV E - E Q U AT I O N M I G R AT I O N

In this work, the earth’s crust is modelled as a three-
dimensional half-space: the x- and y-axes are horizontal and
the z-axis is vertical, pointing downwards. The model is kept
simple with a flat surface and constant density throughout the
medium. Pressure waves are assumed to be travelling at point
r = (x, y, z) = (x, z) with velocity c(r). Let P(rs, rg, t) denote the
pressure measured at time t by a receiver at position rg = (xg,
zg) after an impulse has been emitted from source position rs =
(xs, zs) at t = 0. For a given shot, the pressure field recorded
at each point rg is a solution of the scalar wave equation (Stolt
1978).

Migration is an inversion process which reconstructs the
map R(r) of local reflectivity from the only available informa-
tion, i.e. the prestacked volume of seismic data, given by

Q(xs, xg, t) = P(xs, 0, xg, 0, t) (1)

and the velocity field c(r). Reflectors along points of disconti-
nuity in the medium are conceptually located by moving the
source and receiver downwards along down- and upgoing
wavefronts (Stolt and Benson 1986). As the source and re-
ceiver approach each other, the traveltime t approaches zero.
At these points, r =rs =rg, the reflection coefficient R and the
wavefield P are related as follows:

R(r) = P(r, r, 0). (2)
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Thus the prestacked migrated seismic volume P(r, r, 0) repre-
sents, through (2), an image of the subsurface.

To construct the migrated seismic volume, we start from the
depth extrapolating formula derived in Appendix A, written
in the space–frequency domain as a double convolution,

p̂
(
xs, xg, z + �z, ω

) =
∑
x′

s,x′
g

W�z

(
xs − x′

s,
ω

cs

)

×W�z

(
xg − x′

g,
ω

cg

)

× p̂
(
x′

s, x′
g, z, ω

)
, (3)

where p̂(xs, xg, z, ω) = P̂(xs, z, xg, z, ω). To initiate the data
extrapolation process, (3) requires the surface initial condi-
tion, p̂(xs, xg, 0, ω) = Q̂(xs, xg, ω). It can be seen that the ex-
trapolator Ŵ�z is split into two parts, one operating on the
source position and the other on the receiver position, with
velocities cs = cz(x′

s) and cg = cz(x′
g), respectively.

The methodology, described in Appendix B, to derive an
imaging condition for one shot can be generalized to a
sequence of N independent shots, for which the resulting
prestacked seismic section is written as

Q(xs, xg, t) =
N∑

n=1

δ(xs − sn)Tr (n)(xg, t), (4)

where sn is the source position at the nth shot and Tr(n) rep-
resents the resulting field of recorded traces. Using (4) as the
initial condition of the iterative extrapolation process defined
by (3), we conclude that each common-shot-gather can be mi-
grated independently. The only coupling among the migrated
fields is introduced through the imaging condition (A6), which
can now be written as

R(x, j�z) =
N∑

n=1

R(n) (x, j�z) , j = 1, 2, . . . . (5)

R(n) represents the local reflectivity, calculated using (B6),
showing the acoustic image of the earth’s crust resulting from
the depth extrapolation of the nth shot-gather:

R(n)(x, j�z) =
∑

ω

p̂(n)
s (x, j�z, ω) p̂(n)

g (x, j�z, ω) . (6)

These equations, from which the total image of the subsurface
structure can be computed, define in the field coordinate sys-
tem the canonical imaging condition for seismic data recorded
by firing a sequence of N independent shots. Considering that,
in marine surveys, N is of the order of hundreds of thousands,
equations (5) and (6) illustrate the high computational cost
of the prestack processing, thus motivating the development

of an adequate compression technique to condense groups of
shot-gathers into a unique data set and form an image.

D ATA C O M P R E S S I O N

In complex geological structures, the illumination induced by
a single shot is largely concentrated around normal ray tra-
jectories of the wavefront. In the extrapolation process of a
single shot-gather, this simple fact typically results in a prolif-
eration of ‘zeros’ swamping the partial image of the subsur-
face (Ehinger et al. 1996), thus leading to an enormous loss of
computational efficiency when implementing (6).

To avoid a large number of extra calculations, a viable im-
plementation of (5) relies on the decomposition of the velocity
model v(r) into subdomains, each one assigned to one shot-
gather. However, this approach is potentially a source of dif-
ficulties: strongly echoing reflectors, lying outside the subdo-
main in question but with events present in the shot-gather,
will be not correctly migrated and, as a consequence, un-
wanted artefacts will appear at the boundaries of the resulting
partial image. The search for the optimal size of each subdo-
main, hopefully providing a trade-off between accuracy and
efficiency, will be cumbersome in critical geological situations.

To reduce the processing load, another prestack migration
strategy can be envisaged by compressing many shot-gathers
into a unique data set which covers the entire acquisition do-
main. A possible strategy may be to superpose linearly all
sources into a unique source term and all shot-gathers into a
unique gather of traces. The resulting compressed prestacked
seismic section can be written as

Q(N)(xs, xg, t) =
N∑

n=1

δ(xs − sn)
N∑

n′=1

Tr (n′)(xg, t). (7)

Using (7) as the new initial condition for the iterative depth
extrapolation formula (3), it follows from the definition of
imaging condition (A6) that the map of the local reflectivity
takes the form,

R(N)(x, j�z) =
N∑

n=1

[
R(n)(x, j�z) +

N∑
n′ �=n

R(n,n′)(x, j�z)

]
. (8)

In this expression, each partial reflection coefficient R(n) (equa-
tion (6)) provides the correct contribution relative to the nth
shot-gather. Any other term, R(n,n′), is a spurious correction
representing, in the (x, t)-domain, the zero-lag time correla-
tion between the wavefield emitted by the nth source and the
depth extrapolated wavefield relative to the n′th shot-gather,
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and given by

R(n,n′)(x, j�z) =
∑

ω

p̂(n)
s (x, j�z, ω) p̂(n′)

g (x, j�z, ω) . (9)

In fact, when the distance ||sn −sn′ || between two sources, n

and n′, is large enough, a poor temporal coincidence between
p(n)

s and p(n′)
g is expected at each reflector position, so that, in

this limit, R(n,n′) must tend pointwise to zero.
The control of all spurious terms R(n,n′) can be formulated

in different ways as a set-partitioning problem. Each set rep-
resents a cluster of S shots (S � N), where each pair of shots
would have to be selected with source positions as far apart as
possible. Recalling that N might be of the order of hundreds
of thousands, the intractability of this optimization problem
has led us to a different approach based on a Monte-Carlo
estimate of (8).

M O N T E - C A R L O WAV E F I E L D I M A G I N G

Since we want to make the computing cost of the processing
of a very large data set affordable, we address the problem
of imaging the subsurface by implementing a sequence of M

data migrations that is as short as possible. For this purpose,
M must be a small fraction of N, the total number of shots.

Our idea, which formalizes and generalizes that described
by Morton and Ober (1998) and Romero et al. (2000), is
to construct a new prestack section, multiplying each Fourier
component ω of the nth source wavelet by a complex number
an,ω and each Fourier component of the associated recorded
wavefields by its complex conjugate a∗

n,ω. Observe that each
multiplication implies a phase shift of both emitted and re-
ceived signals and, depending on the modulus of an,ω, also a
change of amplitude. A unique source term and a unique shot-
gather are then assembled in the space–frequency domain by
superposing all modified source wavelets and seismic traces.
The resulting prestacked volume,

Q̂(N)(xs, xg, ω) =
N∑

n=1

an,ω δ(xs − sn)
N∑

n′=1

a∗
n′,ω T̂r

(n′)
(xg, ω), (10)

is the initial condition for the depth extrapolation process. The
linearity of the one-way propagation (equation (3)), leads to
the imaging condition, written here in terms of p̂(n)

s and p̂(n)
g ,

r (N)(x, j�z) =
N∑

n=1

[
r (n)(x, j�z) +

N∑
n′ �=n

r (n,n′)(x, j�z)

]
, (11)

with

r (n)(x, j�z) =
∑

ω

|an,ω|2 p̂(n)
s (x, j�z, ω) p̂(n)

g (x, j�z, ω) , (12)

r (n,n′)(x, j�z) =
∑

ω

an,ω a∗
n′,ω p̂(n)

s (x, j�z, ω) p̂(n′)
g (x, j�z, ω) .

(13)

Suppose now that the collection an,ω forms a suite of inde-

pendent, identically distributed, random variables, then the
stochastic mean values of both r(n) and r(n,n′) take the form,

〈 r (n) 〉(x, j�z) = 〈 | a |2 〉
∑

ω

p̂(n)
s (x, j�z, ω) p̂(n)

g (x, j�z, ω) ,
(14)

〈 r (n,n′) 〉(x, j�z) = | 〈 a 〉 |2
∑

ω

p̂(n)
s (x, j�z, ω) p̂(n′)

g (x, j�z, ω) ,
(15)

where 〈 | a |2 〉 denotes the mean value of the squared modulus
of the random variable a, and | 〈 a 〉 |2 denotes the squared
modulus of the mean value.

Let us assume that each random variable an,ω is indepen-
dently drawn from a probability distribution function such
that 〈 a 〉 = 0 and 〈 | a |2 〉 = 1. Then, by computing the ex-
pectation of r(N) (equation (11)), we surprisingly obtain the
desired result,

〈 r (N) 〉(x, j�z) =
N∑

n=1

R(n)(x, j�z) = R(x, j�z), (16)

which is the correct imaging condition, as given by (5) and (6).
To obtain numerical estimates of (16), a Monte-Carlo im-

portance sampling strategy must be used (Hammersley and
Handscomb 1964). More precisely, we run a sequence of M

depth migrations starting each time from a new randomly
compressed seismic volume (10). We then construct the se-
quence, r1, r2, . . ., rM, of images to form the arithmetic mean,

AM (x, j�z) = 1
M

M∑
m=1

rm (x, j�z) . (17)

AM is an unbiased estimator for (16). Monte-Carlo theory
states that, as M increases, the variance of the arithmetic mean
AM decreases pointwise as M−1. In other words, when the
number M of migrations increases, the following pointwise
limit almost certainly exists:

lim
M→∞

AM = 〈 r (N) 〉 = R(x, j�z). (18)

Limit (18) implies that the stochastic approach just described
produces an image emerging from the incoherent noise of the
background.

Computer experiments confirm that this form of imaging is
robust in the sense that it provides a depth-migrated section
that can be correctly interpreted even after a reduced number
of migrations (many fewer than the number of shot-gathers).
From this point of view, Monte-Carlo imaging of compressed
seismic data might constitute a breakthrough in the processing
of industrial seismic acquisitions.
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Figure 1 Scatterer images resulting from the standard shot-gather pro-
cessing (top) and from the migration of one source and one shot-
gather, both compressed with no encoding (bottom).

To illustrate the Monte-Carlo method, we first studied the
imaging of a single point scatterer at depth 1200 m in a 2D
constant velocity field of v=4000 m/s. The synthetic data set,
constructed with a finite-difference solver, simulates a marine
acquisition composed of 90 shot-gathers with a far offset equal
to 1000 m. The migration domain is 1400 m × 3000 m, �x =
�z = 10 m, the recording time is 4 s and �t = 4 ms. Figure 1
(top) shows the scatterer image reconstructed by the standard
shot-by-shot processing.

A code implementing a finite-difference extrapolation ker-
nel operating in the frequency domain was used for an initial
2D test presented in this work. In a first computer experiment,
a unique source term and a unique shot-gather of seismic traces
were constructed by summing, respectively, all sources and the
90 shot-gathers with no random encoding at all. This situa-
tion corresponds to setting aω,n = 1 in (10). Figure 1 (bottom)
shows the resulting image: the scatterer is completely delocal-
ized and unrecognizable.

In a second computer experiment, a sequence of migrations
with randomly compressed sources and shot-gathers was run.
The value +1 or −1 was assigned with probability 1/2 to each
coefficient aω,n of (10). This last probability distribution satis-
fies both conditions < a > =0 and < a2 > =1. Figure 2 (top)
shows the scatterer image after only one migration: the correct
structure is barely discernable through the background noise.
Averaging a sequence of M images, the level of noise decreases
in agreement with the analysis presented in the previous sec-
tion. For this example, the noise reduction displayed in Fig. 3
demonstrates that, after about 20 Monte-Carlo steps, the rel-
ative error, namely the random noise level, has decreased by
more than one order of magnitude, making the reconstructed
scatterer already clearly interpretable as shown in Fig. 2
(bottom).

The same study was performed twice more: once by ran-
domly encoding the phase of each source and shot-gather, aω,n

= exp (i θ ω,n) with θ ω,n uniformly distributed inside the in-
terval (0, 2π ), as implemented by Morton and Ober (1998).
Observe that even in this case we have < a > = 0 and <|a|2 >

=1. Another possibility that was tested consists of sampling
aω,n in a Gaussian probability distribution function with mean
0 and variance 1. In other words, this last encoding multiplies
every Fourier component of the signal by a different real num-
ber (in the range between ±∞), thus leaving the phases of the
spectrum untouched, apart from a sign.

The results of these tests are summarized in Fig. 3, which
illustrates the behaviour in M−1 of the squared L2-norm mea-
suring the difference between the ‘real’ image (standard shot-
by-shot processing) and the average image defined by (17).
Observe that the three implemented sampling methods pro-
vide statistically similar images for any value of M and that the
correct reconstruction is also possible by adequately changing
only the amplitude of the extrapolated signals. In this figure,
we extrapolated to M = 100 in order to demonstrate the va-
lidity of our theory, although from a practical point of view,
this is a non-sense since in this example we deal with only
90 shots.
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Figure 2 Scatterer images obtained from the depth extrapolation of
one source and one shot-gather, both compressed implementing equa-
tion (10) with ± 1 random encoding: result after one migration (top)
and result after 20 Monte-Carlo migrations (bottom).

3 D I M P L E M E N TAT I O N A N D E X A M P L E S

From equation (B5), which describes the prestack downward
extrapolation, we have concluded that, as long as seismic data
are represented in the field coordinate system, source and re-
ceiver can be independently extrapolated. Whereas depth ex-
trapolation in a stratified medium can be handled piecewise
with the simple phase-shift formula, the case with lateral ve-
locity variations requires more attention.
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Figure 3 The drastic noise reduction shown in Fig. 2 is illustrated by
the behaviour of the squared L2-norm of the relative error, inversely
proportional to the number of partial migrations. As expected, the
three sampling methods, i.e. the random phase encoding, the ± 1
distribution and the Gaussian law, are statistically equivalent.

To overcome this difficulty and still keep the computational
complexity of the migration to a minimum, the phase-shift
plus interpolation (PSPI) method proposed by Gazdag and
Sguazzero (1984) provides an extrapolation kernel in which
the wave propagation is modified in order to obtain a pure
spectral method for downward extrapolation in an inhomo-
geneous medium. Its computational advantage is that each
reference solution required by the PSPI algorithm is obtained
from a constant-velocity extrapolation whose implementation
inherits the parallel structure of the phase-shift algorithm. Ref-
erence velocities play a crucial role, but optimizing their num-
ber and their choice had not been considered before our im-
plementation, described in detail by Bonomi et al. (1998).

SEG–EAGE salt model

The SEG–EAGE Narrow Angle data set or C3-NA was cho-
sen to illustrate the capabilities of our Monte-Carlo imaging
formulation, implemented using the 3D PSPI extrapolator ker-
nel described above (Cazzola et al. 2001). The performance
of the resulting overall methodology was compared with the
standard shot-by-shot wave migration using the same depth
extrapolator. Altogether the C3-NA data set consists of about
4800 shot-gathers. We decided to migrate 10% of these shot-
gathers, randomly chosen from the data set, performing 480
shot-by-shot migrations. To obtain a fair comparison between
the two implementations, we ran 480 Monte-Carlo steps,
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requiring exactly the same computing time as that of the dec-
imated volume.

In order to obtain a reference image for comparison, we
also migrated the entire data set shot-by-shot; the computing
cost of this migrated volume is ten times larger than the cost
of each of the other two runs and is done in this case only for
purposes of comparison.

Figures 4–7 illustrate the velocity field and the migration
results relative to cross-line 350 of the SEG–EAGE salt model.
Figure 5 shows an image that corresponds to the shot-by-shot
extrapolation of 10% of the shot-gathers; migration smiles,
due to the reduced surface coverage resulting from the shot
decimation, are clearly present here, especially on the first two
kilometres of the depth section.

Figure 6 shows the Monte-Carlo imaging of the same cross-
line after 480 steps. In this test, PSPI and the Monte-Carlo
imaging provide an image very close to the one obtained by
sequentially migrating all shot-gathers (Fig. 7). The migra-
tion smiles that plague the shot-by-shot approach on a deci-
mated input cannot be present with the Monte-Carlo method,
since it exploits the full coverage of the data set. Even the
level of random noise present in Fig. 6 is lower than that
of Fig. 5. As previously mentioned, the background noise
intrinsic to this stochastic imaging algorithm can be attenu-
ated according to (18) by increasing the number of partial
images.

Figure 4 Cross-line 350 of the SEG–EAGE salt model: the velocity
field.

Figure 5 Cross-line 350 of the SEG–EAGE salt model: shot-by-shot
migration. 480 shot-gathers, corresponding to 10% of the entire data
set, were randomly selected and depth extrapolated. The migration
smiles are due to the reduced surface coverage resulting from the shot
decimation.

Field data

Monte-Carlo imaging with PSPI downward extrapolation has
been tested on a challenging 3D data set from the Gulf of Suez,
characterized by poor signal-to-noise ratio, irregular coverage
and, above all, salt diapirism. Furthermore, the acquisition di-
rection in this area was forced by operational constraints to
follow the geological strike. This, in conjunction with the steep
dips of the salt flanks, penalizes Kirchhoff migration, which
generates strong artefacts that obscure the subsalt reflections
and make the interpretation of the salt base particularly diffi-
cult (Fig. 8).

Figure 9 shows the result of Monte-Carlo migration after
1100 iterations. As the migrated area corresponds to about
22 000 shots, the computing time is reduced by a factor
of approximately 18 if compared with the performance of
the standard shot-by-shot wave-equation migration. Wave-
equation migration permits us to delineate the salt base, in-
dicated in Fig. 9 by the two arrows, and even to distinguish
some of the weak events below. For instance, artefacts subpar-
allel to the surface and present in the Kirchhoff reconstruction
no longer appear with the wavefield approach. Even the top of
the salt dome is better reconstructed. In this example, where
Kirchhoff migration is inadequate to handle the complexity
of the subsurface and the standard wave-equation approach
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Figure 6 Cross-line 350 of the SEG–EAGE salt model: Monte-Carlo
imaging. After 480 steps, PSPI and the Monte-Carlo imaging provide
an image close to the one shown in Fig. 7, obtained by sequentially
migrating all shot-gathers.

Figure 7 Cross-line 350 of the SEG–EAGE salt model: shot-by-shot
migration of the entire data set.

appears too costly, our Monte-Carlo strategy leads to a prac-
ticable imaging solution.

C O N C L U S I O N

The goal of this work has been to provide a theoretical frame-
work for collectively migrating a large number of shot gathers

Figure 8 Gulf of Suez data set: Kirchhoff migration. Strong artefacts
obscure subsalt reflections and make the interpretation of the salt base
very difficult.

Figure 9 Gulf of Suez data set: Monte-Carlo migration after 1100
iterations. The arrows indicate the salt base. Wave-equation migration
permits us to delineate the salt base and even to distinguish some of
the weak events below.

from a single data set, using a stochastic encoding technique.
With this, we are assured that by running a sequence of mi-
grations with randomly encoded volumes, the noise level of
the average image decreases asymptotically to zero.
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The Monte-Carlo imaging strategy described here was im-
plemented with a PSPI extrapolation kernel and then tested
on two complex 3D data sets: the SEG–EAGE synthetic salt
model and a data set acquired in the Gulf of Suez. In these
two complicated examples, the Monte-Carlo approach has
demonstrated itself to be a viable cost-effective industrial so-
lution, with results in both cases superior to those achieved
using standard Kirchhoff migration.

We conclude that Monte-Carlo imaging is a migration
method that has the potential to become a new standard for
3D prestack wavefield depth migration. The main advantage
of the stochastic approach is that it enables shot-profile wave-
equation migration to be performed at sustainable comput-
ing costs, even with large production data sets (Cazzola et al.

2004).

A C K N O W L E D G M E N T S

The authors thank ENI E&P Division, IEOC Production
and Agiba Petroleum Company for permission to publish,
Patrizia Cibin and Flavio Doniselli for providing the Kirchhoff
migration results and Luca Bertelli and Cristiano Salino for
their encouragement. They also thank Giovanni Cardone and
the referees who made many helpful suggestions that improved
the presentation of the results of this paper.

R E F E R E N C E S

Bleistein N., Cohen J.K. and Stockwell J.W. 2001. Mathematics
of Multidimensional Seismic Imaging, Migration and Inversion.
Springer Verlag, Inc.

Bonomi E., Brieger L.M., Nardone C.M. and Pieroni E. 1998. PSPI:
a scheme for high performance echo-reconstructive imaging. Com-
puters in Physics 12, 126–132.

Bonomi E. and Cazzola L. 1999. Prestack imaging of compressed seis-
mic data: a Monte Carlo approach. 69th SEG Meeting, Houston,
USA, Expanded Abstracts, 1914–1917.

Brieger L. 2000. HPF to OpenMP on the Origin2000: a case study.
Concurrency: Practice and Experience 12, 1147–1154.

Cazzola L., Bonomi E., Brieger L.M. and Zanoletti F. 2001. Monte
Carlo wavefield imaging of 3D prestack data. 63rd EAGE Confer-
ence, Amsterdam, The Netherlands, Extended Abstracts, Session
A-26.

Cazzola L., Pizzaferri L., Ratti L., Cardone G. and Bonomi E. 2004.
An example of wavefield depth migration and Monte Carlo imag-
ing in West Africa deep waters. 74th SEG Meeting, Denver, USA,
Expanded Abstracts, 1037–1040.

Collino F. and Joly P. 1995. Splitting operators, alternate directions,
and paraxial approximations for the three-dimensional wave equa-
tion. SIAM Journal on Scientific Computing 16, 1019–1048.

Ehinger A., Lailly P. and Marfurt K.J. 1996. Green’s function im-
plementation of common-offset, wave-equation migration. Geo-
physics 61, 1813–1821.

Gazdag J. 1978. Wave equation migration with the phase shift
method. Geophysics 43, 1342–1351.

Gazdag J. and Sguazzero P. 1984. Migration of seismic data by phase-
shift plus interpolation. Geophysics 49, 124–131.

Gray S.H., Etgen J., Dellinger J. and Whitmore D. 2001. Seismic mi-
gration problems and solutions. Geophysics 66, 1622–1640.

Hale D. 1991. 3-D depth migration by McClellan transformations.
Geophysics 56, 1778–1785.

Hammersley J.M. and Handscomb D.C. 1964 Monte Carlo Methods.
Chapman and Hall, London.

Hill N.R. 2001. Prestack Gaussian-beam depth migration. Geophysics
66, 1240–1250.

Morton S.A. and Ober C.C. 1998. Faster shot-record depth migra-
tions using phase encoding. 68th SEG Meeting, New Orleans, USA,
Expanded Abstracts, 1131–1134.

Notfors C., Gray S.H. and Bleistein N. 2003. Imaging using multi-
arrivals: Gaussian beams or multi-arrival Kirchhoff. 65th EAGE
Conference, Stavanger, Norway, Extended Abstracts, E03.

Ober C.C., Oldfield R.A., Womble D.E. and Mosher C.C. 1997. Seis-
mic imaging on massively parallel computers. 67th SEG Meeting,
Dallas, USA, Expanded Abstracts, 1418–1421.

Romero L.A., Ghiglia D.C., Ober C.C. and Morton S.A. 2000. Phase
encoding of shots records in prestack migration. Geophysics 65,
426–436.

Stolt R.H. 1978. Migration by Fourier transform. Geophysics 43,
23–48.

Stolt R.H. and Benson A.K. 1986. Seismic Migration, Volume 5. Geo-
physical Press, London.

Xu S., Chauris H. and Noble M. 2001. Common-angle migration: a
strategy for imaging complex media. Geophysics 66, 1877–1894.
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A P P E N D I X A

Depth wavefield extrapolation formula

In this appendix, we derive the depth extrapolation formula
(equation (3)), which is valid for prestacked seismic data gath-
ered in the shot–receiver domain. To begin we assume that the
wave velocity c is constant. Let P(xs, zs, xg, zg, t) be repre-
sented by a Fourier series:

P
(
xs, zs, xg, zg, t

) =
∑
ks,kg

∑
ω

P̂(ks, zs, kg, zg, ω)

× exp[i(ks · xs + kg · xg + ωt)], (A1)

where ks, kg are respectively the source and receiver wavenum-
ber vectors and ω is the time angular frequency. Since we are
interested in the depth extrapolation of the prestacked seismic
volume (equation (1)), we look for the solution describing a
wavefield propagating downwards. Such a solution is

P̂
(
ks, zs, kg, zg, ω

) = Q̂(ks, kg, ω) exp[i(qgzg + qszs)], (A2)
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qg = ω

c

√
1 − ‖ kg‖ 2

( c
ω

)2
,

qs = ω

c

√
1 − ‖ ks‖ 2

( c
ω

)2
,

where

Q̂(ks, kg, ω) =
∑
xs,xg

∑
t

Q(xs, xg, t)

× exp[−i(ks · xs + kg · xg + ωt)] (A3)

is the Fourier-transformed prestacked volume (Stolt 1978).
By imposing the condition zg = zs = z in (A2) and setting
p̂(ks, kg, z, ω) = P̂(ks, z, kg, z, ω), we obtain the phase shift
formula which predicts p̂ as a result of moving both source
and receiver from depth z to z + �z and with the prestacked
volume imposed as the initial condition for the depth extrap-
olation, i.e. p̂(xs, xg, 0, ω) = Q̂(xs, xg, ω):

p̂
(
xs, xg, z + �z, ω

) =
∑
ks,kg

p̂
(
ks, kg, z, ω

)

×Ŵ�z

(
ks,

ω

cs

)
Ŵ�z

(
kg,

ω

cg

)
× exp[−i(ks · xs + kg · xg)].

(A4)

Ŵ�z(k, ω

c ) denotes the exponential downward extrapola-
tor whose domain of application is restricted to the non-
evanescent region of the Fourier domain (Gazdag 1978).

We would like to migrate data using an arbitrary velocity
model; however, it is clear from the construction of (A4) that
this expression is no longer valid for a velocity field c = c(r)
with lateral variations. To overcome this difficulty, it is prefer-
able to simplify the migration model a step further, keeping
its computational complexity to a reasonable level. The ba-
sic strategy adopted is the following. We start from the phase
shift formula (A4), written in the space–frequency domain as
a double convolution

p̂
(
xs, xg, z + �z, ω

) =
∑
x′

s,x′
g

W�z

(
xs − x′

s,
ω

cs

)

×W�z

(
xg − x′

g,
ω

cg

)
× p̂

(
x′

s, x′
g, z, ω

)
, (A5)

where p̂(xs, xg, 0, ω) = Q̂(xs, xg, ω). Finally, the imaging con-
dition (equation (2)) yields the map of the local reflectivity
displaying an acoustic image of the earth’s crust:

R(x, z + �z) =
∑

ω

p̂ (x, x, z + �z, ω) . (A6)

The direct introduction of the velocities cs = cz(x′
s) and cg

= cz(x′
g) into the extrapolating equation (A5) is not formally

justifiable; however, it provides a prestack migration model for

inhomogeneous media which has proved to be a very accurate
imaging tool (Gray et al. 2001).

A P P E N D I X B

The one-shot problem

In this appendix, we derive equation (6), the imaging condition
for a single shot gather. We assume that the prestacked seismic
volume Q(xs, xg, t) contains the information resulting from
one shot emitted at position rs = (s, 0) at the surface. Thus the
prestacked volume (equation (1)) takes the form,

Q(xs, xg, t) = δ(xs − s)Tr (xg, t), (B1)

where Tr(xg, t) represents the collection of seismic traces
recorded during the experiment. Introducing the initial condi-
tion (B1) into (A5) after the first iteration step, the following
extrapolated wavefield results:

p̂
(
xs, xg, �z, ω

) = W�z

(
xs − s,

ω

cs

)
p̂g

(
xg, �z, ω

)
= p̂s (xs, �z, ω) p̂g

(
xg, �z, ω

)
. (B2)

Note that the wavefield p̂s(xs, �z, ω) is formally identical to
the extrapolated wavefield produced by the purely symmetric,
impulsive source,

ps (xs, 0, t) = δ(xs − s)δ(t). (B3)

The wavefield p̂g(xg, �z, ω) represents the prediction on the
seismic traces, assuming the receivers inside the earth are at
level �z. This prediction is determined by the surface condi-
tion,

pg
(
xg, 0, t

) = Tr (xg, t). (B4)

Introducing both conditions (B3) and (B4) into (A5), we obtain
the value of p̂ that would be valid for source and receivers
inside the earth at each depth multiple of �z:

p̂
(
xs, xg, j�z, ω

) =
p̂s (xs, j�z, ω) p̂g

(
xg, j�z, ω

)
, j = 1, 2, . . . , (B5)

where both fields, p̂s and p̂g, at the jth level result from the
convolution between the exponential downward extrapolator
W with p̂s and p̂g evaluated at the (j − 1)th level. Observe that
source and receiver are independently extrapolated; the only
coupling between p̂s and p̂g is introduced through the imaging
condition (equation (A6)), from which we derive the map of
the local reflectivity at depth j�z:

R(x, j�z) =
∑

ω

p̂s (x, j�z, ω) p̂g (x, j�z, ω) . (B6)
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