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Abstract

We illustrate the capability of a spectral element method to efficiently

handle the numerical analysis of complex dynamic soil-structure interac-

tion problems. Spectral elements are naturally suited for this class of

applications: they provide high accuracy, are CAD-oriented, enjoy the

flexibility of finite elements and allow the implementation of optimized

parallel algorithms. Furthermore, spectral accuracy is the key to reduce

the number of degrees of freedom and efficiently include in the 3D com-

putational model both the structure and the surrounding soil. Therefore

the need of sub-structuring techniques to deal with this type of problems

is avoided. We illustrate the implementation of the method and provide

numerical tests about its parallel performance. Finally, we show how our

spectral element method is suitable for handling a challenging computa-

tional problem, such as the 3D analysis of building vibrations induced by

underground train passage.

1 INTRODUCTION

In spite of the enormous computational progress in recent years, problems in-
volving the interaction of structures with the surrounding soil under dynamic
loading, such as earthquake, wind, or other vibration sources, are still extremely
challenging from the analytical and numerical point of view. These problems
are typically defined by three major elements: the source, the propagation path
and the structure itself. The accurate modelling of each of such elements is a
hard task: the source may not be well defined, such as in the earthquake case,
or it may involve a very large frequency spectrum, such as for traffic-induced
vibrations; the propagation path, in terms of spatial variability of dynamic
soil properties, is seldom well constrained by suitable geophysical/geotechnical
prospecting; finally, the dynamic behaviour of the structure and the supporting
soil may be strongly affected by nonlinear effects, the influence of which can be
assessed reliably only in few cases.

The simultaneous presence of all of these elements in the same numerical
model makes the problem extremely difficult to be handled from the computa-
tional point of view, mainly due to the different scale dimensions of the various
elements, that may range from fractions of a meter for the structure, up to
hundreds or thousands of meters for the propagation path.
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Furthermore, it is well known that dynamic soil-structure interaction (DSSI)
problems face another major difficulty, since closed-form transparent boundary
conditions for time-domain formulations are available only in approximate form
(see, e.g., the Clayton and Engquist paraxial conditions [7]). Therefore, the
analyst is generally forced to artificially enlarge the computational domain to
prevent spurious signals originated from the boundary to affect the region of
interest.

To overcome such problems, engineers and researchers dealing with DSSI
problems are accustomed to sub-structuring techniques. One of the best known
examples of such techniques is the replacement of the soil supporting a vibrating
structure by a suitable set of elastic springs and dashpots, calibrated to model
the soil stiffness, the radiation of waves outside the foundation and the internal
dissipation of materials [15]. Although this approach had an enormous and
beneficial impact on practical DSSI applications, it is afflicted with important
theoretical limitations, such the frequency-dependence of the equivalent springs
and dashpots, their availability for simple soil-foundation geometries only, and
the inaccurate treatment of nonlinear effects (e.g., internal dissipation in the
soil and/or sliding or uplifting at the soil-foundation interface).

A recent and quite promising sub-structuring technique is the “domain re-
duction method” [2], where the problem of coupling a “large” domain (including
the earthquake source and the propagation path) and a “local” domain (the
structure with the supporting soil) is solved by rigorously calculating the nodal
forces at the boundary between both domains. The main problem with this
technique, that is general enough to be applied either in a finite element or in a
spectral element framework [12], is that for complex 3D geometries the coupling
procedure itself may become a demanding task.

Hybrid approaches, widely used in recent years in various DSSI problems,
may be also viewed as particular sub-structuring techniques, where different
numerical methods are coupled to fully exploit their capabilities in different
domains for seismic wave propagation and soil-structure interaction analyses.
Examples of such hybrid approaches can be found in [37] for coupling boundary
elements and finite elements, [26] for finite elements and finite differences, [5]
for spectral elements and finite elements.

However, the enormous progress of supercomputing with huge computational
power on one side, and the possibility of constructing low-cost PC clusters, on
the other side, has encouraged a notable effort to exploit in parallel computer
architectures the capabilities of well established and versatile numerical codes,
such as finite elements (FEM,[38]) and finite differences (FD, [36], [21]).

All of these methods suffer of the well-known limit affecting numerical sim-
ulation of wave phenomena, that is the need to fix the accuracy of the method
based on the frequency content of travelling signals, in order to prevent the
onset of non-physical, spurious effects, commonly referred to as numerical dis-
persion. The obvious solution to this problem is grid refinement, a choice at
the base of popular methods - the so-called h-methods - like standard finite el-
ements and finite differences. In the research practice they are used with rules
of thumb linking the number of grid-points per wavelength and the maximum
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frequency which can be effectively simulated. FEM, in particular, are widely
adopted for soil-structure interaction analyses also because of their capability
to model physical domains with complex shape. Unfortunately, effective grid-
refinement significantly increases the number of degrees of freedom, leading,
especially for 3D DSSI analyses, to exceedingly large storage requirement and
computing time.

On the other hand, it is possible to improve the quality of numerical simula-
tions by expressing the solution in terms of polynomial functions of high degree:
this is the idea behind the so-called p-methods. The possibility to merge ad-
vantages of both approaches is clearly appealing: one may tune the balance
in favour of either the h- or the p-approach, taking into account the problem
features (geometry complexity, regularity of the solution, etc.). This idea gave
rise to the so-called hp-methods, including Spectral Element Methods (SEM),
the technique adopted throughout this work.

After the pioneering work of Kosloff and Baysal [19], who used a Fourier
decomposition of the displacement field, spectral methods for elastic wave prop-
agation evolved first with the introduction of Chebyshev polynomials [20] and
subsequently of Lagrange polynomials coupled with Legendre-Gauss-Lobatto
quadrature formulas [11],[18]. Spectral element algorithms for the analysis of
large scale soil problems have been proposed in [13], [16], [34].

The starting point of this work is the spectral element method originally
proposed by [11] and subsequently applied in its sequential version in several
works dealing with seismic wave propagation problems in complex geological
configurations [29], [28], [35].

After a brief outline of the method, we show first how its main features fit
well with the needs of complex DSSI problems and the criteria for the implemen-
tation in a parallel computer architecture. Subsequently, the parallel efficiency
of the numerical code is assessed through suitable benchmark problems. Fi-
nally, a challenging example of application will be illustrated, for the evaluation
of building vibrations due to underground train passage.

2 OUTLINE OF THE METHOD

We limit to materials following the linear Hooke constitutive behaviour, filling a
domain Ω with regular boundary, described within a small displacement frame.
As for finite elements, our method stems from the variational formulation of the
elastodynamic problem: for each time t ∈ (0, T ] find u(t) ∈ [H1(Ω)]3 satisfying
initial and boundary conditions and such that
∫

Ω

ρü·v dΩ+

∫

Ω

σ(u) : ε(v) dΩ+

∫

ΓN

t·v dΓ+

∫

ΓNR

tNR·v dΓ =

∫

Ω

f ·v dΩ ∀v ∈ [H1
0 (Ω)]3

(1)
where u is the unknown displacement, v the generic admissible displacement,
f the external volume force applied in Ω and ρ the density; σ and ε denote
usual stress and small-strain tensor, respectively, while vertical double dots de-
note tensor inner product: A : B =

∑3
i,j=1 AijBji. The space H1(Ω) consists of
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functions which are square-integrable on Ω, whose gradient components are also
square-integrable on Ω (see, for instance, [33]); H1

0 (Ω) is the subset of H1(Ω)
whose functions vanish on ΓD. The boundary of Ω consists of three regions: Γ0,
where displacements are prescribed; ΓN , subject to known external tractions t

(vanishing in the free-surface case); ΓNR, where artificial non-reflecting condi-
tions are set to simulate propagation of waves in infinite domains (we adopt the
Stacey boundary conditions, see [11]). The spectral element discretization is
based on the decomposition of Ω in a family of non-overlapping open hexahedra
Ωk, such that

Ω = ∪kΩk and Ωi ∩ Ωj = ∅ if i 6= j

where overline denotes the union of the domain and its boundary. An admissible
hexahedron is obtained from the cube Ω̂ = (−1,+1)3 (the master element),
through a mapping Tk defined as follows:

Tk :





x(k) = α
(k)
1 x̂+ β

(k)
1 ŷ + γ

(k)
1 ẑ + λ

(k)
1 x̂ŷ + µ

(k)
1 x̂ẑ + ν

(k)
1 ŷẑ + σ

(k)
1 x̂ŷẑ + δ

(k)
1

y(k) = α
(k)
2 x̂+ β

(k)
2 ŷ + γ

(k)
2 ẑ + λ

(k)
2 x̂ŷ + µ

(k)
2 x̂ẑ + ν

(k)
2 ŷẑ + σ

(k)
2 x̂ŷẑ + δ

(k)
2

z(k) = α
(k)
3 x̂+ β

(k)
3 ŷ + γ

(k)
3 ẑ + λ

(k)
3 x̂ŷ + µ

(k)
3 x̂ẑ + ν

(k)
3 ŷẑ + σ

(k)
3 x̂ŷẑ + δ

(k)
3

(2)

where coordinates {x(k), y(k), z(k)} and {x̂, ŷ, ẑ} are associated to Ωk and Ω̂,
respectively. While, in general, transformation (2) describes hexahedra with
curved quadrilateral faces, in practice mesh generators produce elements with
planar faces. Therefore, the physical domain Ω is approximated by Ω̃, whose
boundary is the union of planar quadrilaterals; Γ0, ΓN , and ΓNR, are replaced by
Γ̃0, Γ̃N , and Γ̃NR, respectively. For each hexahedron Ωk, the eight parameters

α
(k)
i , β

(k)
i , γ

(k)
i , δ

(k)
i , λ

(k)
i , µ

(k)
i , ν

(k)
i , σ

(k)
i (i = 1, 2, 3) are determined exploiting

the 1-to-1 mapping between corner points of Ωk and Ω̂.
On the reference element Ω̂ we introduce Qn(Ω̂), the space of polynomial func-
tion with degree less than or equal to n with respect to each variable: the generic
element of Qn(Ω̂) reads

ψ̂ =

n∑

i,j,k=0

aijkx̂
iŷj ẑk (3)

where the {aijk} are real coefficients and n is called spectral degree. A finite
dimensional approximation Vh,n of H1

0 (Ω) can then be defined considering the

continuous functions obtained by mapping the {ψ̂}’s element-by-element on the
hexahedra:

Vh,n =
{
v ∈ C0(Ω) : v = 0 on Γ̃0 and v|Ωk

= ψ̂ ◦ T−1
k , ψ̂ ∈ Qn(Ω̂)

}
(4)

where ψ̂◦T−1
k is the mapping of ψ̂ from Ω̂ to Ωk. It can now be understood that

the generic Tk introduced in (2) is an element of [Q1(Ω̂)]3: thus, when n > 1 the
mapping is sub-parametric, meaning that its degree is lower than the spectral
degree. This choice is essentially motivated by a practical consideration: mesh
generators produce 8-points hexahedra, while n−order hexahedra need (n+1)3
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total points (and produce different grids for analyses with different spectral de-
gree). Furthermore, the adopted sub-parametric mapping (2) is known to enjoy
good mathematical properties (see, for instance, [9]). Nevertheless, if high order
hexahedra are desirable (for instance, when dealing with domains with curved
boundary which can be described in terms of geometrical primitives, or for large
displacement/deformation formulations), they can be incorporated in the spec-
tral element frame with small additional effort [22].
The next step is the introduction of the Legendre-Gauss-Lobatto (LGL) nodes

in Ω̂ = [−1,+1]3. They are obtained via tensor product of the one-dimensional
LGL nodes ζ0, ..., ζn defined over the interval [−1,+1]: it turns out that ζ0 = −1,
ζn = +1 and the intermediate points are the zeros of the first derivative of the
Legendre polynomial of degree n [4]. The full spectral grid {ap}N

p=1 can then be
built mapping the LGL nodes over the hexahedra and eliminating duplicated
points: as for finite elements, a global numbering is associated to the N grid-
points. If iso-parametric mapping has to be used, this procedure is obviously
inverted: for each element Ωk, the (n + 1)3 spectral grid-points should be ex-
ternally provided, in order to define the n−order hexahedron. Sub-parametric
and iso-parametric mapping for a two-dimensional case are shown in figure 1.
An intuitive basis for Vh,n is provided by {Np(x)}N

p=1, the Lagrange polyno-

     

      

          

          

          

  
 

  

      

    
  

    

  
  

  

  
  

  

  

  

  

  

 

 
 

 

 

 

 

  

  

  

  

  

  
  

    

  

    

    

  

  
  

     

      

          

          

          

Figure 1: Examples of sub-parametric (top) and iso-parametric (bottom) map-
ping between the generic quadrilateral (hexahedron in 3D) and the reference

element Ω̂: spectral degree n = 4.

mials of order n defined over the spectral grid-points:

Np ∈ Vh,n and Np(aq) = δpq
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where δpq is the Kronecker delta. Then the semi-discrete approximation of (1)
reads:
for each t ∈ (0, T ] find u(t) =

∑N
q=1(uq(t)ê1 + vq(t)ê2 + wq(t)ê3)Nq, u(t) ∈

[H1(Ω)]3, with prescribed displacements on Γ̃0 and such that, for i = 1, 2, 3:

N∑

q=1

[
(üqê1 + v̈qê2 + ẅqê3) · êi

∫

Ω

ρNpNq dΩ +

∫

Ω

σ((uqê1 + vqê2 + wqê3)Nq) : ε(Np êi) dΩ

]
+

∫

ΓN

t · (Np êi) dΓN +

∫

ΓNR

tNR · (Np êi) dΓNR =

∫

Ω

f · (Np êi) dΩ ∀p = 1, ..., N

(5)
where êi is the unit vector of the i-th coordinate.
The first time-derivatives of unknowns {uq, vq, wq} appear also in the term tNR

due to non-reflecting conditions. In order to time-discretize (5), we use the
following 2nd order LF2-B2 scheme, which has been proven to be effective [25]:

f̈(tn) = [f(tn+1) − 2f(tn) + f(tn−1)] /(4 t)2 + O((4 t)2)

ḟ(tn) = [3f(tn) − 4f(tn−1) + f(tn−2)] /(24 t) + O((4 t)2)
(6)

where tk = k4 t, k = 0, 1, 2, ... . Proceeding as for finite elements, one has to
replace derivatives and integrals in (5) with suitable numerical approximations.

Derivatives are evaluated in the reference element Ω̂ via the chain rule, where
terms linking {x(k), y(k), z(k)} and {x̂, ŷ, ẑ} are obtained through (2), and deriva-
tives in the reference element are computed via the matrix of the collocation
derivative (see [4], chap. 2). Integrals are also computed in Ω̂:

∫

Ω

f dΩ =
∑

k

∫

Ωk

f dΩ =
∑

k

∫

Ω̂

f̂ Jk d Ω̂ '
n∑

r,s,t=0

f̂(x̂r, ŷs, ẑt)Jk(x̂r, ŷs, ẑt)ŵrŵsŵt

(7)
where ŵl is the generic weight of the Gauss-Lobatto quadrature formula [4] and
Jk is the Jacobian of transformation (2) . Merging (5) and (6), and evaluating
derivatives and integrals as decribed above, leads to the following algebraic
problem

Mü + Cu̇ + Ku = F (8)

where M, C, and K are usually denoted as the mass, damping and stiffness
matrix. It is understood that a 1-to-1 relation exists between local indices of
the element ((r, s, t) in (7)) and global indices of arrays in (8); furthermore,
an ordering has been chosen for solution array u (for instance, the first N
components for the uq, then the vq and finally the wq). The size of the algebraic
problem is 3N .
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3 MAIN FEATURES OF SEM FOR DYNAMIC

SOIL-STRUCTURE INTERACTION PROB-

LEMS

We have already discussed in the introduction the challenging aspects of large 3D
DSSI problems, mainly related to the need of simultaneously modelling small-
scale and large-scale elements, on one side, and, on the other side, to the possible
onset of nonlinearities, both within the structure and within the supporting soil.
The treatment of nonlinear effects within the SEM framework is the subject of
a recent study that has provided very promising results [35]. Here we show,
instead, how the features of the SEM are suited to deal accurately with DSSI
problems involving also complex shaped structures, like dams, bridges, subways,
monumental or historical buildings, and portions of soil beneath.

A first important feature of SEM, that was shown to be a great help in design
of seismic analyses [11], [18], [32], as well as in numerical simulation of general
wave phenomena [24], [3], [23], is that they are capable - to some extent - to
exploit the flexibility of standard finite elements in dealing with complex struc-
tures, and enjoy the possibility to play on the degree of piecewise polynomial
functions to model high frequency waves, rather than using grid refinement.
This is illustrated in figure 2: acoustic waves arising from a point source prop-
agate through a 2D homogeneous domain with irregular shape. The snapshots,
taken at the same instant, are computed using different spectral degrees. Those
with lower degrees are clearly affected by numerical dispersion, which is prac-
tical absent in the cases with higher degree. This example highlights a major
asset of hp-methods for wave applications: the possibility of changing the ac-
curacy of the numerical solver - and therefore to deal with signals with higher
frequency - without the need to modify the computational grid, an operation
highly demanding for applications with complex geometry. While, in princi-
ple, it is possible to design FEM algorithms with shape functions of arbitrary
degree, engineering implementations are usually limited to degree 2, due to prac-
tical constraints. On the opposite, the SEM can perform analyses with arbitrary
degree, simply selecting it at run-time.

Furthermore, due to the adoption of sub-parametric mapping, the interac-
tion with CAD-based models is straightforward. On the computational ground,
the resulting algorithm can be highly optimized, thanks to a matrix-free im-
plementation (memory allocation reduction) and the natural use of explicit
time-marching schemes (CPU-time saving): as a consequence, the treatment
of large-scale problems eases off . The implementation on massively parallel
machines is effective, despite the more complicated data-structure with respect
to low-order methods. Since the SEM have a very close relationship with fi-
nite elements, our method can easily inherit many technicalities developed for
the latter, including physical models and numerical schemes. Last but not least,
the algorithm behaves like a black-box requiring a minimum effort from the user,
who simply has to provide the grid, the selected spectral degree and, possibly,
the number of processors available for the parallel run. The Achilles’ heel of
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spectral elements is the need to use mesh of quadrilaterals and hexahedra. In
recent years there have been a few attempts to include triangular elements in the
SEM for elasticity problems [17], [5]: this gave rise to sophisticated and some-
how elegant mathematical approaches which, in our view, are not completely
suited for engineering applications (for instance, they can hardly be extended to
complex 3D models and introduce additional computational effort). Based on
our experience, both as developers and users of SEM, the limit concerning the
use of pure quadrilateral elements mainly belongs to the past, since nowadays
flexible and powerful tools for hexahedra mesh generation are available [6]. Fully
automatic mesh generation with quadrilateral elements has still to come, but
we believe that the supplementary effort to generate such numerical grids is well
worthwhile, since hexahedra have proven to be more accurate than tetrahedra
for structural and elastic analyses (at equal computational effort: see [1], [27]
and references therein).

4 IMPLEMENTATION IN A PARALLEL COM-

PUTER ARCHITECTURE

Optimal implementation of a parallel spectral element solver may be a tricky
task, since elements possess a high number of degrees of freedom with re-
spect to standard FEM, thus requiring more sophisticated criteria for domain-
decomposition and message passing organization.

4.1 Mesh partition

In our method, mesh partition is a fully automated procedure that divides
the computational domain and the mesh among the processors, aiming at two
main targets: balance the computational load on each CPU and minimize data
exchange between the processors. The first task consists in dividing the com-
putational domain in parts that require approximately the same computational
effort. The load on a processor for an element-by-element explicit scheme is
easily related to the number of elements assigned to that processor. Data ex-
change is associated with nodes and elements close to the interface between sub-
domains, shared by different processors. Communication is minimized reducing
data length and amount of message-passing per time step. Thus, mesh partition-
ing plays a crucial role by producing “optimal” interfaces among sub-domains,
involving the minimum number of nodes and elements. We adopted Metis, a
family of well-known multilevel partitioning algorithms [14]. Even though it
was originally designed for dealing with finite element meshes, Metis essentially
works on graphs, and can be fruitfully adapted to a mesh-based method like
spectral elements. Graphs can be defined either using the nodes or the elements
as vertexes: both these strategies may be adopted in an explicit element-by-
element solution scheme, but we show in the following that the element based
strategy fits better within a spectral element frame.
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Following eq. (8) and the approximation (6), u(n+1), the nodal displacement
at tn+1, may be calculated as follows:

u(n+1) = ∆t2 M−1(f
(n)
ext − f

(n)
int ) + 2u(n) − u(n−1) (9)

where the term f
(n)
int includes contributions from stiffness and damping matrix.

Each processor should be able to calculate its part of the nodal unknowns,
storing part of the nodal displacement vectors u(n) and u(n−1), and its portion

of the mass matrix and of the external force vector f
(n)
ext . The internal elastic

force vector f
(n)
int at time tn should also be evaluated. This is done by summing

on the interface nodes the results of an integration over the spectral elements: an
easy task for nodes that are internal to the computational domain, and a critical
one when nodes and/or elements are close to the interface between sub-domains.

4.2 Node based partitioning

In this approach spectral grid-points are divided in subsets associated 1-to-1
with the processors of the parallel machine: as a result, elements crossed by
the interface are split in two or more parts. For the sake of simplicity we focus
on two processors P1 and P2, the corresponding sub-domains Ω1 and Ω2, and
their interface Γ12; in figure 3 elements from E1 to E4 and elements from E7
to E10 are assigned to P1 and P2 respectively, while E5 and E6 are crossed by
the interface and shared between the two processors.
A further division can be made, defining internal, border and external nodes for
each processor. The internal nodes can be updated without the need of com-
munication among processors. Updating border nodes requires information on
the nodal unknowns belonging to other sub-domains. Finally, external nodes
are updated by other sub-domains and processors, but their nodal unknowns
are required for the border nodes update.
Concerning processor P1, the knowledge of nodal variables at the time tn for
the internal and border nodes (marked with ◦ and ⊗, respectively) allows to
calculate deformation, stresses, and to integrate over the internal elements from
E1 to E4. Border nodes also need the contribution from the elements crossed
by the interface: in order to perform the integration over elements E5 and E6,
processor P1 should have at disposal the nodal unknowns of the external nodes
that belong to processor P2 (marked with ∇): communication between proces-
sors is required. Similarly processor P2 can integrate on elements from E7 to
E10, while to complete the integration on the interface elements, needs the data
relative to its external nodes.
The main advantage of this approach is that the communication between pro-
cessor is required only once per time step; a major drawback is the fact that the
operations on the interface elements have to be calculated by each processor ,
and the amount of data exchange may be high since it involves all the nodes
belonging to the interface elements.
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4.3 Element based partitioning

This approach stems from a different partition of the mesh that is now divided
on an element basis rather than on a node basis: nodes “follow” element par-
tition and some of them are shared. The mesh is divided among the different
processors assigning to each of them a group of elements of approximately the
same size; the interface between sub-domains is located on the edge or face be-
tween the elements, therefore no interface elements are considered, and interface
nodes are defined instead.
We again use the two processor example. In figure 4 we see that elements from
E1 to E4 belong to the sub-domain Ω1 and are assigned to processor P1, while
elements from E5 to E10 are relative to the sub-domain Ω2 and to processor P2.
Nodes lying on the interface Γ12 are shared by the two sub-domains and proces-
sors: they are assigned to one or the other processor on a load balance basis. It
turns out that that the internal nodes for a processor are those grid-points not
lying on the interface; border nodes belong to the interface and are assigned to
the processor at hand, while the external nodes belong to the interface but are
assigned to a different processor: the value of their nodal unknowns is needed
to update the degrees of freedom defined on the internal and border nodes.
At each time step each processor updates a portion of the vector of nodal dis-
placements u(n+1). Focusing on processor P1 in figure 4, the nodal displacements
u(n) and u(n−1) for internal and border nodes are known, as well as the exter-

nal force vector f
(n)
ext ; the processor has to calculate stresses and perform the

integration over its elements (from E1 to E4), and clearly needs to receive the
information of the nodal displacement of the external node (marked with 5).
Similarly processor P2 should receive from processor P1 the data related to the
displacements of the external nodes (marked with ⊗). A first communication
is then required at this stage of the time step. After that, each processor can
perform the integrations over its sub-domains.
While the coefficients of the force vector at the internal nodes can be fully cal-
culated by the corresponding processor, computation at the interface nodes de-
pends also from the contribution of elements belonging to different sub-domains,
and communication is required once again. Processor P1 receives the contribu-

tion to f
(n)
int due to elements E5 and E6 to their own external nodes. These data

are summed to the contribution evaluated by processor P1, due to elements E3
and E4, in order to complete the computation of the force vector. Processor
P2, in turn, receives from P1 the result of the integration over element E4 for
its external nodes (marked with 5).
All in all, the main advantage of this approach is that the load on each proces-
sor is well balanced, since the operations on elements and nodes may be exactly
distributed between the different processors; moreover, the amount of data to
be communicated is minimum. On the other hand, the main drawback is that
communication is required twice per time step.
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4.4 Spectral element strategy

The node based approach is a standard choice for linear finite element codes
in which the stiffness and mass matrix are assembled, since in that case the
requirement of a single communication per time step is particularly appealing.
In the spectral element case, even if both approaches are feasible, the element
based technique is preferable.
As previously illustrated, the number of nodes of a spectral element depends on
n, the spectral degree adopted: there are n+ 1 nodes per edge, (n+ 1)2 nodes
per face, and (n+1)3 nodes per hexahedron. Let us denote by nΓ the number of
elements crossed by an interface between two sub-domains. In the node based
approach all the nodal unknowns belonging to the interface elements have to be
exchanged between the two processors considered, once per time cycle; this is
approximately equivalent to exchange 3nΓ(n+1)3 real numbers in 3D (the exact
amount depends on the interface shape). In the element based partitioning the
interface is stuck to the element faces, the nodal displacements belonging to the
interface nodes are exchanged twice per time cycle, corresponding to 6nΓ(n+1)2

reals.
Therefore, the ratio of data exchange between the node based and the element
based partitioning is approximately equal to (n + 1)/2 - making the two ap-
proaches equivalent for n = 1 (finite elements) - and increases with the spectral
degree adopted. For instance, in the case n = 5 the amount of communication
is three times smaller for the element based partitioning. For very low values
of the spectral degree, the necessity to synchronize processors twice per cycle in
the element based approach may lead to worse results with respect to node par-
titioning; but as mesh complexity and spectral degree increases, the advantages
of the element based partitioning become fundamental to get a good parallel
efficiency.

5 PARALLEL PERFORMANCE

The parallel efficiency of our code was checked with a set of benchmarks per-
formed on two different computer architectures located at CILEA (Consorzio In-
teruniversitario Lombardo per l’Elaborazione Automatica, Segrate, Italy). The
computer architectures for our tests are summarized in Table 1.

The parameters considered for the performance tests are the following:

T (i)SEQ, CPU time for the i-th time step in the sequential run;
T (i)PAR, CPU time for i-th time step in the parallel run;

TSEQ =
∑m

i=1
T (i)SEQ

m
, average T (i)SEQ over m time steps;

TPAR =
∑m

i=1
T (i)P AR

m
, average T (i)PAR over m time steps;

PE =
TSEQ

NCPU TP AR
, parallel efficiency, where NCPU is the number of CPUs.
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Machine Name Golgi Avogadro
] CPUs 48 256

CPU type AMD Opteron 64 bit 2.2 GHz Intel Xeon 32 bit 3.06 GHz
] CPUs/node 4 2
RAM/node 4Gb 2Gb
Connections Gigabit Ethernet, Inifiniband Myrinet (fiber optic)

Operative system Linux Fedora core 3 Linux Red Hat 9.0

Table 1: Characteristics of the two clusters adopted for parallel efficiency tests

In all comparisons we used m = 1 000, while NCPU ranges from 1 up to 128
for the “Avogadro” cluster, and up to 32 for the “Golgi” cluster. The results
obtained on the two architectures are similar, so the presentation will be limited
to the Avogadro cluster. Our benchmark is the wave propagation induced by
a point force inside an homogeneous medium. The computational models are
cubes with side length of 1 km (“small” case), 2.155 km (“medium” case) and
4.642 km (“large” case), respectively. Both structured and unstructured grids
were considered. In the structured case the element size is 100 m, corresponding
to 68 921, 704 969 and 6 331 625 spectral nodes, respectively, using a spectral
degree n = 4. The allocated memory is approximately 100 Mb, 1 Gb and 10 Gb,
for the three cases. For the unstructured mesh, the number of spectral nodes
ranges from 68 429 (“small”) up to 5 201 645 (“large”) with n = 4; in the latter
case the elements size ranges from 15 up to 500 meters.
The tests are meant to provide PE measurements for realistic problem size and
engineering applications. This is the main reason why we fixed the total size of
the problem, rather than the memory allocated to each CPU, as often done in
similar tests [34]. Furthermore, we considered the average PE value over 1000
CPU time steps for each test, rather than its peak value. As shown in figure 5, in
the “small” case the performance obtained for structured and unstructured mesh
are similar, at least up to 56 CPUs, with an estimated average PE=83.4%. For
increasing CPUs, the PE fluctuates around an average value ranging from 60%
to 70%. While a possible explanation for the average PE decay is the latency
time - the communication between CPUs becomes predominant with respect to
the computational time for solving the elastic equations in small subdomains
-, major fluctuations may be due to odd mesh partition and corresponding
unequal distribution of degrees of freedom among processors. Obviously, for
problems with larger size, fluctuations are expected to be less evident, as the
mesh partitioning automatically improves.
The PE curves for the “medium” and “large” cases are in good agreement,
both for the structured or the unstructured domain discretization. Figure 6
shows that the PE value for the “large” case is nearly independent on the
number of CPUs, with an average value of 74.5% both for the structured and
the unstructured grids. As expected, the PE trend is much smoother than for
the “small” problem of figure 5.

12



6 APPLICATION TO A LARGE DYNAMIC

SOIL-STRUCTURE INTERACTION PROB-

LEM: THE CASE OF UNDERGROUND TRAIN

INDUCED VIBRATIONS

The analysis of surface or underground train-induced ground vibrations and
their effect on human beings and surrounding structures has recently become of
paramount importance, especially for environmental impact studies of new high-
speed train lines crossing urban areas. This problem is particularly challenging
and demanding from a computational point of view, since it requires to handle
the dynamic interaction of train-track-tunnel-soil-structure. It is not surprising
that this problem has been mainly tackled in the past using empirical and/or
simplified models, mainly through 2D finite element approximations that typ-
ically strongly underestimate radiation damping. One of the first examples of
fully 3D approaches to such problems is the coupled boundary element/finite el-
ement procedure recently proposed by [8] for the numerical analysis of free-field
vibrations due to a moving load in a tunnel.

In this section we show how our approach can handle within a reasonable
computer time the propagation of waves from the track through the soil, and
from the soil to a realistic structure. A validation of the spectral element ap-
proach with independent solutions based on the Betti-Rayleigh theorem has
already been presented elsewhere [31] for the case of a train travelling at the
surface of a layered halfspace.

A thorough study of this problem is beyond the scope of this work, and
will be the object of a future paper. Instead, we address here the more relevant
computational aspects, with emphasis on the performance of the numerical code.
A summary of the more significant results is also provided, mainly with the aims
of illustrating the potential practical applications of the numerical code.

A sketch of the sample problem considered in this study is shown in Figure
7. It consists of a eight-storey building close to a railway line. For the sake
of comparison and to show the capability of handling different configurations,
we have considered the following cases: (i) surface railway line (denoted by “s”
in the following), (ii) underground railway line (denoted by “u”), and iii) the
intermediate situation where the line is partly underground and partly located
in a trench delimited by a retaining wall (denoted by “u− s”). Our objective is
to study the vibrations induced in the soil and in the building by the passage
of a two-carriages train, moving with speed c=70 km/h=19.4 m/s.

Details on the assumptions adopted to simulate the complex dynamic in-
teraction between the moving train, the track and the soil, will be omitted
for simplicity. The interested reader may refer to [30] and [31] for a thorough
discussion of such assumptions.

The grid discretization is suitable to accurately propagate frequencies up to
10 Hz, that is the range of the Fourier spectrum of traveling load. Note that,
owing to the strong difference of the mechanical properties of soil and concrete
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and to the different geometrical details as well, the grid refinement needed in the
various parts of the model is quite different. Therefore, a highly unstructured
mesh is needed to minimize the number of elements, as shown in Figure 7 (the
“u − s” grid has 3 888 elements and, for spectral degree equal to two, 6 043
nodes and 18 129 degrees of freedom).

For the stability requirement of the time-advancing scheme (see [11] for de-
tails), the time step is ∆t = 0.9 × 10−5s (25% of the Courant-Friedrichs-Levy
value for explicit time-advancing schemes). The total duration of the simulation
is 14.5s, corresponding to around 1.6 × 106 time steps. Since the single time
step takes 9.53× 10−5s CPU time on a single CPU of the Avogadro cluster, the
complete run requires 42 hours and 38 minutes. The corresponding run with 32
CPUs requires around 1 hour and 34 minutes.

Figure 8 displays the decay with distance of the vertical displacement at
ground surface, calculated for the three cases analyzed and along the three
transverse profiles indicated in the same figure. Similarly, Figure 9 illustrates
the snapshots of vertical displacement for the “u − s” case, at three different
times. Although the discussion of these results is out of the scope of this work,
we note that for relatively low train speeds, as is the case of this study, the
ground motion amplitude decay with distance is fast, so that the building is
practically unaffected by the train passage.
As shown in Figure 10, although the displacement amplitudes of the building are
quite small, the numerical transfer functions, obtained by the Fourier spectral
ratio of the response at a given level with respect to the free-field response,
reproduce correctly the vibration modes of the building, computed with an
independent numerical code [31].

7 CONCLUSIONS

The spectral element method (SEM) has already become one of the most popular
and effective approaches for numerical wave propagation analyses in the seis-
mological field. This paper demonstrates how it can efficiently deal also with
challenging engineering problems such as complex 3D dynamic soil-structure
interaction analyses, that are generally difficult to be handled from the compu-
tational point of view by more traditional numerical techniques, such as finite
elements (FEM) and finite differences. As a matter of fact, the spectral accu-
racy of SEM allows to reduce the number of grid points required to propagate a
signal with a given wavelength (3-4 nodal points per minimum wavelength ac-
cording to [11] against around twice this number for FEM), so that the number
of nodal points for large 3D numerical domains is considerably reduced.
The parallel implementation discussed in detail in this work provided satisfac-
tory results, with parallel efficiency ranging from 70% to 80%, independent of
the number of CPUs.
In comparison with well-established FEM, spectral element algorithms do not
enjoy the wide availability of element libraries and nonlinear analysis capabili-
ties. The first point has often been indicated as one of the main limitations of

14



the method at hand. Due to the significant development of grid generators, we
believe that this problem actually belongs to the past: modern all-hexahedra
mesh generators [6] have proven to be able to deal with complex geometries
usually encountered in dynamic soil-structure interaction problems. Of course,
fully automatic generation of good quality all-hexahedra grids has still to come,
but the extra effort required is well worthwile and eases off the solution of the
differential problem (see for instance [1] and references therein). The lack of non-
linear constitutive models and large displacement formulation algorithms which,
on the other hand, are available in the FEM literature, can be explained with
the relatively recent adoption of SEM among engineers and scientists working
in the computational mechanic field. Actually, there are no theoretical reasons
preventing the implementation of such features within a spectral element frame
(see [10] and [22], respectively). Based on our experience of developers and
users, spectral elements have given evidence to enjoy the same capabilities of
FEM (apart the possibility to easily deal with triangular elements) in a wide
range of applications, not necessarily limited to computational mechanics [23]
[24]. The introduction of new features is under study, such as two-phase media,
domain reduction method [2] for coupling numerical models of different size,
other constitutive material models. We do hope that this work will stimulate
other researchers to contribute to this promising numerical approach.
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Figure 2: Snapshots of acoustic wave propagation from source S simulated for
increasing spectral degrees: n = 1 (top-left), n = 2 (top-right), n = 3 (bottom-
left) and n = 4 (bottom-right). Solutions provided by lower spectral degrees
show significant numerical dispersion.
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Processor P1: internal nodes are marked with ◦, border nodes with ⊗, external
nodes with ∇. Processor P2: internal nodes are marked with 4, border nodes
with ∇, external nodes with ⊗.

E3

12

E2

E9

1

E7E5

E9

E3

E10E8

E1

E6E4

E7

2Ω

E8

1Ω

E6

Γ

E10

P 2

E1

P
E4

E2

E5

Figure 4: Element based partitioning on a 2D mesh with spectral degree n = 3.
Processor P1: internal nodes are marked with ◦, border nodes with ⊗, external
nodes with 5. Processor P2: internal nodes are marked with 4, border nodes
with 5, external nodes with ⊗.

20



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100 110 120

# CPUs

P
E

''small'' structured

''small'' unstructured

Figure 5: PE obtained on the Avogadro cluster at CILEA for the “small”
benchmark case with structured (grey line) and unstructured (black line) grids.
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Figure 6: PE obtained on the Avogadro cluster at CILEA for the “large”
benchmark case with structured (grey line) and unstructured (black line) grids.
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Figure 7: Spectral element mesh adopted for the simulation of train-induced
vibrations in the “u − s” case. E=Young’s modulus, ν = Poisson ratio, ρ =
mass density, Q = quality factor = 1/2ξ , ξ being the damping ratio. VP and
VS are the P and S wave propagation velocities, respectively.
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Figure 8: Top: sketch of the three configurations under study: (i) surface railway
line, (ii) underground railway line, (iii) partially underground railway. Bottom:
maximum vertical diplacement for the three profiles.
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Figure 9: Snapshots of the vertical displacement at T = 3.5, 5.8 and 8.1 s. The
gray scale is saturated in order to show the propagating wavefield induced by
the traveling load.

24



Figure 10: Top: spectral ratios with respect to free-field response at (a) ground
level, (b) fourth floor and (c) roof. Bottom: vibration modes of the structure,
deduced by band-pass filtering the calculated time response at the corresponding
natural frequencies.
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